跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/03 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐伯寧
研究生(外文):Hsu, Po-Ning
論文名稱:氧化鑭鋁電阻式記憶體嵌入鎳奈米晶粒之電阻轉換特性之研究
論文名稱(外文):Resistive Switching Characteristics in LaAlO3-based RRAM With Embedded Nickel Nanocrystals
指導教授:謝焸家吳建宏吳建宏引用關係
指導教授(外文):Hsieh, Ing-JarWu, Chien-Hung
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:電阻式記體氧化鑭鋁鎳奈米晶粒
外文關鍵詞:Resistive random-access memoryLaAlO3Nickel nanocrystals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
近年來在非揮發性記憶體 (Non-volatile memory) 的研究上正加速蓬勃發展,但目前面臨著高操作電壓、操作速度慢及低耐久度等缺點,且元件不斷微縮的趨勢下,使得閘極氧化層變薄進而導致漏電流變大,而使可靠度降低等問題。非揮發性電阻式記憶體其結構簡單、低操作電壓、操作時間快速、可多位元記憶、耐久性佳、記憶元件面積縮小、非破壞性讀取和低成本等優點,而被廣泛地研究中。但在除此之外還必須具備較佳的穩定性,如較長的耐受度及保存能力,才能夠在眾多新式記憶體中脫穎而出。
本研究為了改善氧化鑭鋁電阻式記憶體的操作功率與穩定性,在不同的電極氧化鑭鋁電阻式記憶體上中嵌入鎳奈米晶粒。本研究可以分為兩部份,第一部份是先使用氮化鉭(TaN)當電極,製作5、10、20、30 nm四種厚度的氧化鑭鋁電阻式記憶體,並分別以未退火、300℃ 及400℃ 不同溫度的退火條件;第二部份則是選定氧化鑭鋁厚度20及30 nm,並分別用鋁(Al)、氮化鉭(TaN)和鈦(Ti)在氧化鑭鋁層上嵌入鎳奈米晶粒並進行退火做比較。
所有嵌入嵌入鎳奈米晶粒的元件都呈現了雙極性電阻轉換特性,而選用鋁(Al)作為電極,厚度20 nm並且嵌入鎳奈米晶粒,未退火的元件擁有>60次的操作次數、能夠持續量測1萬秒的耐久度、以及在加溫100℃時依舊能夠擁有健全的雙極性電阻式記憶體特性。

Recent years, the non-volatile memory had been accelerating booming. But also have disadvantages like high operating voltage, slow operating speed and low durability. Also in keep miniature the semiconductor component, it will make gate oxide thin film thinner result in large current, decrease the reliability. Non-volatile resistive switching memory have many advantages, ex: simple structure, low operating voltage, fast operating speed, multi-bit save capability, good durability, smaller size, non-destructive read and low cost. Besides it must also have better stability. For example the longer durability and better save capability. In this study, in other to decrease lanthanum aluminate oxide (LaAlO3) resistive switching memory operating voltage and improve the stability.In different symmetrical electrodes LaAlO3 resistive switching memory embedded nickel nano-crystals.
This study can divide into two parts. First is choosing 5, 10, 20, 30 nm four thickness of LaAlO3 with TaN by as-deposited, 300℃, 400℃ different annealing conditions. The second is chosen thickness of LaAlO3 20 and 30 nm, which adding nickel nano-crystals embedded into different symmetrical electrodes Al, TaN and Ti by as-deposited, 300℃, 400℃ different annealing conditions.
This NiNCs embedded LaAlO3 RRAM studied shows the bipolar resistive switching property and reaches the best performance by non-annealing, Al/ LaAlO3 (20 nm) / NiNCs/ Al. It has over than 60 times switching voltage test, 104 retainability, and reproducible resistive switching characteristics at annealing 100℃.

中文摘要 ------------------------------------------------------------------------------------------- i
英文摘要 ------------------------------------------------------------------------------------------- ii
誌謝 ------------------------------------------------------------------------------------------------- iii
目錄 ------------------------------------------------------------------------------------------------- iv
第一章 緒論 1
第二章 簡介與文獻回顧 4
2.1 記憶體簡介--------------------------------------------------------------------------------- 4
2.1.1 鐵電記憶體(ReRAM)--------------------------------------------------------- 4
2.1.2 磁阻式記憶體(MRAM)------------------------------------------------------- 5
2.1.3 相變化記憶體(PCRAM)------------------------------------------------------ 5
2.1.4 電阻式記憶體(RRAM)-------------------------------------------------------- 6
2.2 電阻式記憶體操作狀態與轉換特性 9
2.2.1 操作電壓(Voltage)------------------------------------------------------------- 9
2.2.2 電流上限值(Current compliance)-------------------------------------------- 9
2.2.3 路徑形成(Forming)------------------------------------------------------------ 9
2.2.4 設置(Set)與重置(Reset)------------------------------------------------------- 10
2.2.5 單極性(Unipolar)與雙極性(Bipolar)---------------------------------------- 10
2.2.6 無極性(Nonpolar)-------------------------------------------------------------- 10
2.3 電阻式記憶體轉換機制 13
2.3.1 缺陷級電荷誘捕和釋放(Trap Charging and Discharging)--------------- 13
2.3.2 燈絲理論(Filament Theory)--------------------------------------------------- 14
2.4 傳導機制 23
2.4.1 離子傳導(Ionic Conduction)-------------------------------------------------- 23
2.4.2 歐姆傳導(Ohmic Conduction)------------------------------------------------ 24
2.4.3 空間電荷限制傳導(Space-Charge-Limited Conduction)----------------- 25
2.4.4 普爾-法蘭克發射(Poole-Frenkel Emission)-------------------------------- 25
2.4.5 蕭特基發射(Schottky Emission)--------------------------------------------- 26
2.4.6 穿隧發射(Tunneling Emission)---------------------------------------------- 27
2.5 高介電材料崁入金屬奈米晶體 28
第三章 實驗流程 33
3.1 實驗步驟名詞解釋 33
3.1.1 RCA------------------------------------------------------------------------------- 33
3.1.2 溼式氧化(Wet Oxidation)----------------------------------------------------- 34
3.1.3 射頻濺鍍系統(RF Sputter System)------------------------------------------ 35
3.1.4 電子束蒸鍍系統(Electron Beam Evaporation System)------------------- 35
3.1.5 熱阻絲蒸鍍系統(Thermal Evaporation Coater)---------------------------
35
3.1.6 退火(Annealing)---------------------------------------------------------------- 36
3.2 試片製作流程 37
3.2.1 基材與絕緣---------------------------------------------------------------------- 37
3.2.2 下電極製程---------------------------------------------------------------------- 38
3.2.3 第一層高介電材料鍍製------------------------------------------------------- 38
3.2.4 金屬奈米晶粒鍍製------------------------------------------------------------- 39
3.2.5 退火條件------------------------------------------------------------------------- 40
3.26 上電極鍍製---------------------------------------------------------------------- 40
3.2.7 控制組備製---------------------------------------------------------------------- 41
3.3 I-V 量測設備 42
第四章 實驗結果與討論 43
4.1 薄膜結構分析 43
4.2 電性量測分析 43
4.2.1 5 ~30nm LaAlO3未嵌入鎳奈米晶粒---------------------------------------- 43
4.2.2 TaN電極,20 -30nm LaAlO3嵌入鎳奈米晶粒--------------------------- 44
4.2.3 Ti電極,20 ~ 30 nm LaAlO3嵌入鎳奈米晶粒---------------------------- 44
4.2.4 Al電極,20 ~ 30 nm LaAlO3嵌入鎳奈米晶粒--------------------------- 44
4.3 4.3 條件綜合比較 45
4.3.1 漏電流曲線分析---------------------------------------------------------------- 45
4.3.2 綜合比較------------------------------------------------------------------------- 45
第五章 結論及未來展望- 74
5.1 結論------------------------------------------------------------------------------------------ 74
5.2 未來展望------------------------------------------------------------------------------------ 74
參考文獻 75

[1] 彭茂榮, “前瞻記憶體產品技術發展趨勢”, IEK產業服務情報網, 2011 。
[2] 高雄應用科技大學“電阻式非揮發性記憶體 (Resistive Random Access Memory)”,微電子元件與材料研究室,2010。
[3] Ting-Chang Chang、Tsung-Ming Tsai、Kuan-Chang Chang 、Tian-Jian Chu 、Yong-En Syn “Asymmetric Carrier Conduction Mechanism by Tip Electric Field in WSiOX Resistance Switching Device. ” , Electron Device Letters, IEEE, Vol. 6, pp. 342-344, 2012.
[4] Sunjung Kim, “Resistive RAM (ReRAM) Technolog for High Density Memory Applications. ” ,Semiconductor R&;D Center SAMSUNG Electronics, 2013.
[5] 張孟凡,“淺談記憶體 IC”, 國立清華大學電機工程學系, 2009 。
[6] 陳冠宇,“記憶體種類與介紹”,成功大學, 2012。
[7] Ramtron,“非揮發性FRAM記憶技術原理及其應用初探”,台灣半導體產業協會簡訊,No.44A, 2007。
[8] Claude Chappert, Albert Fert and Frédéric Nguyen Van Dau, “The Emergence of Spin Electronics in Data Storage”, Nature Materials, Vol. 6, pp. 813-823, 2007.
[9] 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展”,物理雙月刊,廿六卷四期, pp. 607-619, 2004。
[10] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介”,國研科技創刊號, pp. 32-35,2004。
[11] S. Hudgens and B. Johnson, “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology”, MRS Bulletin, Vol. 29, pp.829-832, 2004.
[12] 鄭環宜,“氧化物變阻式記憶體製備與特性研究”,南台科技大學,電子工程研究所碩士論文,2010。
[13] Y. T. Li, S. B. Long, Q. Liu, H. B. Lu, S. Liu, and M. Liu, “An overview of resistive random access memory devices”, Chinese Science Bulletin, Vol. 56, pp. 3072-3078, 2011.
[14] A. Sawa, “Resistive switching in transition metal oxides”, Materials Today, Vol. 11, pp. 28-36, 2008.
[15] D. Ielmini, F. Nardi, and C. Cagli, “Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM”, IEEE Transactions n Electron Devices, Vol. 58, pp. 3246-3253, 2011.
[16] W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, “Nonpolar nonvolatile resistive switching in Cu doped ZrO2”, IEEE Electron Device Letter, Vol. 29, pp. 434-436, 2008.
[17] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges”, Advanced Materials, Vol. 21, pp. 2632-2663, 2009.
[18] Rainer Waser and Masakazu Aono, “Nanoionics-based resistive switching memories”, Nature Materials, Vol. 6, pp. 833-840, 2007.
[19] D. J. Seong, M. Jo, D. Lee, and H. Hwang, “HPHA Effect on Reversible Resistive Switching of Pt/Nb-Doped SrTiO3 Schottky Junction for Nonvolatile Memory Application”, Electrochemical and Solid-State Letters, Vol. 10, pp. 168-170, 2007.
[20] 林俊宏,“不同電極於HfO2薄膜上之電阻轉換現象”,國立中央大學,化學工程與材料工程學系碩士論文,2010。
[21] R. Waser, “Electrochemical and thermochemical memories”, Electron Devices Meeting, IEDM, pp.1-4, 2008.
[22] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomicswitch“, Letters to Nature, Vol. 433, pp. 47-50, 2005.
[23] Y. Hirose and H. Hirose, “Polarity-dependent memory switching and behavior of Agdendrite in Ag-photodoped amorphous AS2S3 films”, Journal of Applied Physics, Vol. 47, pp. 2767, 1976.
[24] T. Baiatu, R. Waser, and K. Hardtl, “Dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism”, Journal of the American Ceramic Society, Vol. 73, pp. 1663-1673, 1990.
[25] 施敏,伍國鈺著,張鼎,劉柏村譯,“半導體元件物理學”,交大出版社, pp. 274-278,2008。
[26] 李俊諺,“稀土族氧化物薄膜應用於金氧半元件的電性分析”,銘傳大學,電子工程研究所碩士論文,2009。
[27] Ming Tsong Wang, Shao You Deng, Tsung Hong Wang, Bonds Yi-Yi Cheng and Joseph Ya-min Lee, “The Ohmic Conduction Mechanism in High-Dielectric-Constant ZrO2 Thin Films”, Journal of The Electrochemical Society, Vol. 152, pp. 542-544, 2005.
[28] Q. Zuo, S. Long, Q. Liu, S. Zhang, Q. Wang, Y. Li, Y. Wang, and M. Liu, “Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory”, Journal of Applied Physics, Vol. 106, pp. 073724 , 2009.
[29] 洪士哲,“氧化鎳應用於電阻式記體特性之研究”,國立成功大學,材料科學及工程學系碩士論文,2008。
[30] S. M. Sze and K. K. Ng, “Physics of semiconductor device”, 3th edition, A John Wiley &; Sons Press, New York, 2007.
[31] D. A. Neamen著,楊賜麟譯,“半導體物理與元件”,滄海書局,2005。
[32] 游宗憲,“Metal-phthalocyanines 有機薄膜電傳輸性質及發光元件光電特性之研究”,國立成功大學,電機工程研究所碩士論文,2004。
[33] F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory application”, Applied Physics Letters, Vol. 90, pp. 222104, 2007.
[34] Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh, and T. Y. Tsenga, “Influence of Nanocrystals on Resistive Switching Characteristic in Binary Metal Oxides Memory Devices”, Electrochemical and Solid-State Letters, Vol. 14, pp. 135-138, 2011.
[35] D. Panda, A. Dhar, and S. K. Ray, “Nonvolatile Memristive Switching Characteristics of TiO2 Films Embedded With Nickel Nanocrystals", IEEE Transactions on Nanotechnology, Vol. 11, pp. 1536, 2012.
[36] Lin Chen, Hong Yan Gou, Qing Qing Sun, Peng Zhou, Hong Liang Lu, Peng Fei Wang, Shi Jin Ding and David Wei Zhang, “Enhancement of Resistive Switching Characteristics in Al2O3-Based RRAM With Embedded Ruthenium Nanocrystals”, IEEE Electron Device Letters, Vol. 32, pp. 794-796, 2011.
[37] H.-S. Philip Wong, Fellow IEEE, Heng-Yuan Lee, Shimeng Yu, Student Member IEEE, Yu-Sheng Chen, Yi Wu, Pang-Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai, “Metal–Oxide RRAM“ , Proceedings of the IEEE, Vol. 100, No. 6, pp. 1951-1970, 2012.
[38] SHI Qing-liang, XU Jian-ping, WANG Xue-liang, WANG You-wei, JIANG Li-fang, ZHU Ming-xue, HONG Yuan, LI Lan, “Resistance Switching Mechanism of Bistable Memory Device Based on ZnO/PVP Modified by PbS Nanocrystal”, Chinese Journal of Luminescence, Vol. 35, No.7, pp. 846-852, 2014.
[39] Heng Yuan Lee, Pang Shiu Chen, Tai Yuan Wu, Ching Chiun Wang, Pei Jer Tzeng et al., “Electrical Evidence of Unstable Anodic Interface in Ru/HfOx/TiN Unipolar Resistive Memory” Applied Physics Letters, Vol. 92, pp. 142911-142911-3, 2008.
[40] N M Ravindra and Jin Zhao “Fowler-Nordheim tunneling in thin SiO2 films”, IOP Science, Vol. 1, pp. 197-201, 1992.
[41] Z. Q. Liu, D. P. Leusink , W. M. L¨u , X. Wang , X. P. Yang , K. Gopinadhan , Y. T. Lin , A. Annadi, Y. L. Zhao, A. Roy Barman, S. Dhar, Y. P. Feng, H. B. Su, G. Xiong, T. Venkatesan, and Ariando. ”Reversible Metal-Insulator Transition in LaAlO3 Thin Films Mediated by Intragap Defects: An Alternative Mechanism for Resistive Switching” , Materials Science, ICAMT Conferences, 2011.
[42] Jung Ho Yoon, Kyung Min Kim, Min Hwan Lee, Seong Keun Kim, Gun Hwan Kim,Seul Ji Song, Jun Yeong Seok, and Cheol Seong Hwang, “Role of Ru Nano-dots Embedded in TiO2 Thin Flms for Improving The Resistive Switching Behavior” , Applied Physics Letters, Vol. 97, pp. 232904 - 232904-3, 2010.
[43] X. L. Jiang, Y. G. Zhao, X. Zhang, M. H. Zhu, H. Y. Zhang, D. S. Shang, and J. R. Sun, “Trap State Controlled Bipolar Resistive Switching Effect and Electronic Transport in LaAlO3/Nb:SrTiO3 Heterostructures”, Applied Physics Letters, Vol. 102, pp. 233501-233501-4, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top