跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/26 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙俊聲
研究生(外文):Jun-Sheng Zhao
論文名稱:以小波神經網路及滑動模式技術設計運動追蹤控制系統
論文名稱(外文):Tracking control of motion systems via a wavelet neural network and sliding-mode technology
指導教授:蘇瑞龍
指導教授(外文):Ruey-Long Su
口試委員:陳邱雄張裕良蘇瑞龍
口試委員(外文):Chiu-Hsiung ChenYu-Liang ChangRuey-Long Su
口試日期:2014-05-28
學位類別:碩士
校院名稱:中國科技大學
系所名稱:資訊科技應用研究所碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:滑動模式控制小波神經網路李亞普諾夫穩定理論
外文關鍵詞:sliding mode controlWavelet neural networkLyapunov stability theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目的為發展一結合滑動模式控制技術及小波神經網路優點之追蹤控制系統;並應用於運動系統當中。其中所提出來的控制策略具有兩部分,分別為適應性小波控制器及強健控制器。適應性小波控制器為主要控制器且使用小波推論機制來完成,用來近似理想滑動模模式控制律;其中網路適應性學習法則將以Lyapunov穩定定理推導而成以確保系統穩定性。另外強健控制器則以H∞控制理論所設計完成,主要用來應付小波神經網路近似器所造成之近似誤差,所以理想的追蹤性能可以被獲得。
最後本論文分別以機翼震盪系統及多軸機器手臂系統來驗證本控制設策略的有效性與強健性。其中更與傳統滑動模式控制相比較,以凸顯本設計策略的優點。

In this thesis, a wavelet neural network (WNN)-based sliding mode control strategy is investigated to resolve the tracking control problem of motion systems. The proposed control system comprises of an adaptive wavelet controller and a robust controller. The adaptive wavelet controller acts as the main tracking controller, which is designed via a WNN to mimic the merits of ideal sliding mode control law. The adaptation laws of the motion control system are derived from the Lyapunov stability theorem, which are utilized to update the adjustable parameters of WNN on-line for further assuring system stability. Moreover, based on control technique, the robust controller is developed to attenuate the effect of the approximation error caused by WNN approximator, so that the desired tracking performance can be achieved.
Finally, two motion systems, the wing rock system and the three-links robotic system, are performed to verify the effectiveness and robustness of the proposed control strategy. Furthermore, the salient merits are also indicated in comparison with the sliding mode control system.

中文摘要....................................................................................................I
英文摘要...................................................................................................II
謝誌.........................................................................................................III
目錄.........................................................................................................IV
表目錄......................................................................................................V
圖目錄.....................................................................................................VI
第壹章 緒論...............................................................................................1
第一節 前言...............................................................................................1
第二節 研究動機........................................................................................1
第三節 研究目的與論文架構......................................................................3
第貳章 文獻探討........................................................................................5
第一節 機翼震盪系統.................................................................................5
第二節 多軸機械手臂系統..........................................................................7
第三節 控制理論........................................................................................9
第參章 滑動模式控制技術於運動追蹤系統之應用....................................15
第一節 前言.............................................................................................15
第二節 運動系統之問題描述....................................................................15
第三節 滑動模式控制...................................... ........................................17
第四節 滑動模式控制技術於運動追蹤系統之應用....................................22
第五節 本章小結......................................................................................39
第肆章 以小波神經網路及滑動模式技術設計運動追蹤控制系統..............40
第一節 前言.............................................................................................40
第二節 小波轉換......................................................................................41
第三節 類神經網路..................................................................................43
第四節 小波神經網路架構介紹................................................................47
第五節 結合小波神經網路及滑動模式控制策略.......................................51
第六節 結合小波神經網路及滑動模式控制策略於運動追蹤系統之應用...56
第七節 本章小結......................................................................................69
第伍章 結論與未來研究主題....................................................................70
第一節 結論.............................................................................................70
第二節 未來研究主題...............................................................................70
參考文獻..................................................................................................72


[1]于明禮,2006。基于超聲電機作動器的二元翼段顫振主動抑制,中國江蘇,南京航空航天大學博士論文。
[2]王進德,2006。類神經網路與模糊控制理論入門與應用,台北,全華科技圖書。
[3]李海東,2007。基于CFD的機翼顫振分析,中國江蘇,南京航空航天大學航空宇航學院碩士論文。
[4]林泓濱,2005。模糊滑動控制使用適應性方法應用於倒單擺系統之研究,中央電機工程研究所碩士論文。
[5]張芝龍,1992。顫振主動抑制系統綜合與實驗研究,中國北京,北京航空太空飛行大學博士學位論文。
[6]張家銘,2001。應用小波類神經網路於旋轉型感應馬達位置控制,元智大學電機工程研究所碩士論文。
[7]張斐章、張麗秋,2009。類神經網路導論,台北,滄海圖局。
[8]陳杏圓、王焜潔,2007。類神經網路導論,台北,高立圖書。
[9]陳桂彬 。中國大百科智慧藏,顫振 ,取自 :http://140.128.103.128/web/Content.asp?ID=28819&Query=1。
[10]楊士福,2010。顫振主動抑制若干問題研究,中國江蘇,南京航空航天大學航空宇航學院碩士論文。
[11]楊發友、顧仲權,2004。飛機機翼顫振自適應抑制研究,南京航空太空飛行大學學報,第36卷第6期,708-712頁。
[12]趙令誠、劉千剛。中國大百科智慧藏,氣動彈性力學 ,取自 :http://140.128.103.128/web/Content.asp?ID=35518。
[13]劉金琨,2005。滑模變結構控制 MATLAB仿真,北京,清華大學出版社。
[14]劉偉國,2001。非線性控制之線型感應馬達驅動系統,元智大學電機工程研究所碩士論文。
[15]盧世元,2009。機械手臂揮灑出自動化的願景,MM機械技術雜誌,291期,40–45頁。
[16]蔡勝傑,2006。具贅餘自由度機械手臂之循跡控制,成功大學航空太空工程研究所碩士論文。
[17]諸德超。中國大百科智慧藏,顫振試驗 ,取自 :http://140.128.103.128/web/Content.asp?ID=28820
[18]百度百科,運動控制,取自:http://baike.baidu.com/view/1501678.htm。
[19]百度百科,控制理論,取自:http://baike.baidu.com/view/1259773.htm。
[20]百度百科,現代控制理論,取自:http://baike.baidu.com/view/672447.htm。
[21]百度百科,小波分析,取自:http://baike.baidu.com/view/83268.htm。
[22]維基百科,小波轉換,取自:http://zh.wikipedia.org/wiki/%E5%B0%8F%E6%B3%A2%E5%8F%98%E6%8D%A2。
[23]維基百科,機械手臂,取自:http://zh.wikipedia.org/wiki/%E6%A9%9F%E6%A2%B0%E6%89%8B%E8%87%82。
[24]A.Baoumhauer, C. koning. 1923. On the Stability of Oscillations of an AeroplaneWing. NACA TM-223.
[25]Andrew, J K; Kurdila, J and Strganac. 1997. T W. Nonlinear Control of a Prototypical Wing Sectionwith Torsional Nonlinearity. Journal of Guidance, Control, and Dynamics, 20(6):1-9.
[26]Bhoir, N; Singh, S N. 2005. Control of Unsteady Aeroelastic System via State-Dependent RiccatiEquation Method. Journal of Guidance, Control, and Dynamics, 28(1):1-7.
[27]Billings S.A., Hua-Liang Wei. 2005. A new class of wavelet networks for nonlinear system identification. IEEE Transactions on Neural Network, 16(4):862–874.
[28]Chih-Lyang Hwang, Yung-Ming Chen, Chau Jan. 2005. Trajectory tracking of large displacement piezoelectric actuators using a nonlinear observer-based variable structure control. IEEE Transactions on Control Systems Technology, 13(1):56-66.
[29]Chin-Min Lin, Chun-Fei Hsu. 2002. Neural-network-based adaptive control for induction servomotor drive system. IEEE Transactions on Industrial Electronics, Ind. Electron., 49(1):115–123.
[30]Chin-Min Lin, Chun-Fei Hsu. 2003. Neural network hybrid control for antilock braking systems. IEEE Transactions on Neural Network, 14(2):351–359.
[31]Chin-Min Lin, Chun-Fei Hsu. 2004. Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings. IEEE Transactions on FUZZY SYSTEMS, 12(5):733-742.
[32]Chiu-Keng Lai ; Kuo-Kai Shyu. 2005. A novel motor drive design for incremental motion system via sliding-mode control method. IEEE Transactions on Industrial Electronics, 52(2):449-507.
[33]D. Wang, Jie Huang. 2005. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Transactions on Neural Network, 16(1):195–202.
[34]Delyon B., Juditsky A., Benveniste A. 1995. Accuracy analysis for wavelet approximations. IEEE Transactions on Neural Network, 6(2):332–348.
[35]Euntai Kim. 2004. Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic. IEEE Transactions on FUZZY SYSTEMS, 12(3):368-378.
[36]Faa-Jeng Lin , Rong-Jong Wai , Hong-Pong Chen. 1998. A PM synchronous servo motor drive with an on-line trained fuzzy neural network controller. IEEE Transactions on Energy Conversion, 13(4):319–325.
[37]Faa-Jeng Lin, Hsin-Jang Shieh, Po-Kai Huang. 2006. Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism. IEEE Transactions on Neural Network, 17(2):432–444.
[38]Faa-Jeng Lin, Po-Hung Shen. 2006. Robust fuzzy neural network sliding-mode control for two-axis motion control system. IEEE Transactions on Industrial Electronics, 53(4):1209-1225.
[39]Gao Wenzhi , Selmic R.R. 2006. Neural network control of a class of nonlinear systems with actuator saturation. IEEE Transactions on Neural Networks, 17(1):147-156.
[40]Ho D.W.C., Ping-Au Zhang, Jinhua Xu. 2001. Fuzzy wavelet networks for function learning. IEEE Transactions on FUZZY SYSTEMS, 9(1):200–211.
[41]Jafarov E.M., Parlakci M.N.A. ; Istefanopulos Y. 2005. A new variable structure PID-controller design for robot manipulators. IEEE Transactions on Control Systems Technology, 13(1):122-130.
[42]Jean-Jacques Slotine, Weiping Li. 1991. Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall.
[43]Jun Zhang, Walter G.G., Miao, Y., Wan Ngai Wayne Lee . 1995. Wavelet neural networks for function learning. IEEE Transactions on Signal Processing, 43(6):1485-1496.
[44]Kehoe,M W. 1995. A Historical Overiew of Flight Flutter Testing. NASA TM-4720.
[45]Konstadinopoulos P, Mook D.T, Nayfeh A.H. 1985. Subsonic wing rock of slender delta wings. Journal of Aircraft, 22:223–228.
[46]Nayfeh A. H., Elzebda J. M., Mook D.T. 1989. Analytical study of the subsonic wing-rock phenomenon for slender delta wings. Journal of Aircraft, 26(9):805–809.
[47]Polycarpou, M.M. 1996. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 41(3):447–451.
[48]Qinghua Zhang. 1997. Using wavelet network in nonparametric estimation. IEEE Transactions on Neural Network, 8(2):227–236.
[49]Rashed M., Goh K.B., Dunnigan M.W., MacConnell P.F.A., Stronach A.F., Williams B.W. 2005. Sensorless second-order sliding-mode speed control of a voltage-fed induction-motor drive using nonlinear state feedback. IEE Proceedings Electric Power Applications, 152(5):1127-1136.
[50]Reyneri L.M. 1999. Unification of neural and wavelet networks and fuzzy systems. IEEE Transactions on Neural Network, 10(4):801-814.
[51]Rong-Jong Wai. 2002. Development of new training algorithms for neuro-wavelet systems on the robust control of induction servo motor drive. IEEE Transactions on Industrial Electronics, 49(6):1323–1341.
[52]Santibanez V., Kelly R., Llama Miguel A. 2005. A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators. IEEE Transactions on FUZZY SYSTEMS, 13(3):362-372.
[53]Shyh-Pyng Shue, Ramesh K. Agarwal, and Peng Shi. 2000. Nonlinear H method for control of wing rock motions. Journal of Guidance, Control, and Dynamics, 23(1):60–68.
[54]Shyh-Pyng Shue, M. E. Sawan, and Kamran Rokhsaz. 1996. Optimal feedback control of a nonlinear system: Wing rock example. Journal of Guidance, Control, and Dynamics, 19(1):166–171.
[55]Szu-Ying Tan and C. Edward Lan. 1997. Estimation of aeroelastic models in structural limit-cycle oscillations from test data. AIAA Journal, 35(6):1025–1029.
[56]Theodorsen, TH. 1935. General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Rep.496
[57]Thomas L. Trankle and Stephen D. Bachner. 1995. Identification of a nonlinear aerodynamic model of the F-14 aircraft. Journal of Guidance, Control, and Dynamics, 18(6):1292–1297.
[58]Utkin V. I. 1993. Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics, 40(1):23-36.
[59]Wang H.,Wang Y. 1999. Neural-network-based fault-tolerant control of unknown nonlinear systems. Proc. IEEE Transactions on Control Theory and Applications, 146(5):389–398.
[60]Y. Qussar, I. Rivals, L. Personnaz, G. Dreyfus. 1998. Training wavelet networks for nonlinear dynamic input-output modeling. Neurocomputing, 20:173-188.
[61]Zhang Q., Benveniste A. 1992. Wavelet networks. IEEE Transactions on Neural Network, 3(6):889-898.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top