跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張羽萱
研究生(外文):Yu-Hsuan Chang
論文名稱:含溫度感應性載體之奈米纖維製備及藥物釋放之研究
論文名稱(外文):The Manufacture of Nanofibers that Contain Thermo-Sensitive Carriers and the Study of Drug Release
指導教授:李佳芬李佳芬引用關係
指導教授(外文):Chia-Fen Lee
口試委員:邱文英韓錦鈴
口試委員(外文):Wen-Yen ChiuJin-Lin Han
口試日期:2014-07-25
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:化粧品應用與管理系
學門:民生學門
學類:美容學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:173
中文關鍵詞:苯乙烯氮-異丙基丙烯醯胺電紡絲藥物釋控
外文關鍵詞:StyreneN-IsoproplyacrylamideElectrospunDrug control release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先製備兩大類乳膠顆粒進行比較,第一類為製備出大粒徑Polystyrene及小粒徑Polystyrene等不同粒徑型態之乳膠顆粒,第二類則製備出Poly(MMA-MAA)/Poly(NIPAAm-MAA)溫度感應型核-殼實心乳膠顆粒,以及Poly(NIPAAm-MAA)空心乳膠顆粒,將以上所製備的4種不同性質之乳膠顆粒分別與熱感應性高分子Poly(NIPAAm-co-NMA)混合,並以靜電紡絲法製成內部包覆乳膠顆粒之電紡纖維,並以此電紡纖維作為載體,觀察內部包覆不同性質的乳膠之電紡纖維對於藥物釋放速率的影響,以及電紡纖維之外觀型態。
In this study,the polystyrene latex particles with different size were Synthesized. Afterward, the polystyrene latex particles were mixed with Poly(N-isopropylacrylamide-co-N-methylol acrylamide(poly(NIPAAm-NMA))to from the methanol polymer solution,and then was electrospun to from the manofiber , Moreover, the poly(Methyl methacrylate-Methyl acrylic acid)/Poly(N-Isoproplyacrylamide- Methyl acrylic acid),dense latex particles and
poly(N-Isoproplyacrylamide- Methyl acrylic acid)hollow latex pareicles were mixed with Poly(N-isopropylacrylamide-co-N- methylolacrylamide(poly(NIPAAm-NMA)) to form the methanol polymer solution respectively, and then was electrospun to form the nanofiber, The properties and the of the caffeine nanofibers were studied in this article.

摘要.....I
Abstract........II
目錄.... III
圖目錄... VIII
表目錄... XVII
第一章、緒論...... 1
1.1 前言.........1
1.2研究動機與目的..1
第二章、文獻回顧...2
2.1熱感應型材料... 2
2.2中空乳膠顆粒之製備...... 7
2.3靜電紡絲...... 9
2.4纖維中含有載體之研究.....13
第三章、實驗...... 17
3.1 實驗藥品..... 17
3.2實驗分析儀器... 21
3.3實驗方法...... 23
3.3.1 縮寫名詞對照表...... 23
3.3.2實驗架構.... 24
3.3.3 利用懸浮聚合法製備大粒徑Polystyrene(PS)乳膠顆粒.......25
3.3.4 以KPS為起始劑製備小粒徑PS乳膠顆粒......25
3.3.5 製備實心核-殼 Poly(MMA-MAA) / Poly(NIPAAm-MAA)乳膠顆粒....... 26
3.3.6 製備空心Poly(NIPAAm-MAA)乳膠顆粒.... 27
3.3.7 Poly( NIPAAm-co-NMA )電紡基材之合成....28
3.3.8 含有PS乳膠顆粒電紡纖維之製備...29
3.3.8-1 含實心核-殼Poly(MMA-MAA) / Poly(NIPAAm-MAA)電紡纖維之製備... 30
3.3.8-2 含空心Poly(NIPAAm-MAA)乳膠顆粒(MBA9%)電紡纖維之製備(HFD).....31
3.3.8-3 含空心Poly(NIPAAm-MAA) (MBA9%)乳膠顆粒電紡纖維之製備(HDF)....32
3.3.8-4 含空心Poly(NIPAAm-MAA) (MBA9%)乳膠顆粒電紡纖維之製備(H1DFD)..33
3.3.9乳膠顆粒之載藥測定.... 34
3.3.9-1乳膠顆粒之藥物釋放測定.......35
3.3.10電紡纖維之控制釋放... 36
3.4實驗分析...... 37
3.4.1顆粒型態及粒徑觀察(TEM)....... 37
3.4.2顆粒表面型態觀察(SEM)........ 37
3.4.3電紡纖維耐水試驗..............37
3.4.4轉化率之量測......... 38
3.4.4-1 Polystyrene(PS)轉化率公式.....38
3.4.4-2 實心核-殼Poly(MMA-MAA)/Poly(NIPAAm-MAA)乳膠顆粒之轉化率檢測....39
3.4.5藥物釋控之檢量線製作.....40
第四章、結果與討論.......42
4.1Polystyrene(PS)乳膠顆粒之特性研究..........42
4.1.1大粒徑PS乳膠顆粒之外觀型態及轉化率.........42
4.1.2小粒徑PS乳膠顆粒之外觀型態及轉化率.........44
4.2電紡纖維型態結構........46
4.2.1含大粒徑PS乳膠顆粒之電紡纖維的外觀型態... 46
4.2.2 含小粒徑PS乳膠顆粒之電紡纖維的外觀型態...48
4.3大粒徑PS與小粒徑PS電紡纖維之耐水性........ 50
4.4大粒徑PS與小粒徑PS乳膠顆粒的控制釋放...... 56
4.4.1PS乳膠顆粒含量對於電紡纖維釋放Caffeine之影響 56
4.5 Poly(MMA-MAA)/Poly(NIPAAm-MAA)實心乳膠顆粒及Poly(NIPAAm-MAA)空心乳膠顆粒之特性研究 .....66
4.5.1 Poly(MMA-MAA)/Poly(NIPAAm-MAA)之轉化率..... 66
4.5.1-1 Poly(MAA-MAA)/Poly(NIPAAm-MAA)實心乳膠顆粒之型態觀察........68
4.5.2 Shell層的交聯劑含量對於Poly(NIPAAm-MAA)空心乳膠顆粒型態結構之影響.......70
4.5.2-1在50℃環境下Poly(NIPAAm-MAA)shell層之交聯劑含量對於Poly(NIPAAm-MAA)空心乳膠顆粒型態結構的影響.......73
4.5.2-2在80℃環境下Poly(NIPAAm-MAA)shell層之交聯劑含量對於Poly(NIPAAm-MAA)空心乳膠顆粒型態結構的影響...... 76
4.6實心核-殼Poly(MMA-MAA)/Poly(NIPAAm-MAA)乳膠顆粒對電紡纖維外觀型態的影響.... 79
4.6.1空心Poly(NIPAAm-MAA) (MBA9%)乳膠顆粒對電紡纖維外觀型態的影響..... 81
4.6.2內部載負Caffeine的空心Poly(NIPAAm-MAA) (MBA9%)乳膠顆粒含量對電紡纖維外觀型態的影響....83
4.6.2-1Caffeine載負於Poly(NIPAAm-MAA)空心乳膠顆粒中及載負於poly(NIPAAm-co-NMA)電紡基材中所製得之電紡纖維的外觀型態...... 87
4.7 實心核-殼與空心乳膠顆粒電紡纖維之耐水性.....91
4.8實心核-殼與空心乳膠顆粒的控制釋放......... 100
4.8.1實心核-殼乳膠顆粒含量對於電紡纖維釋放Caffeine之影響....... 100
4.8.2空心乳膠顆粒含量對於電紡纖維釋放Caffeine之影響.....105
4.8.3 Caffeine於空心乳膠顆粒的載藥及釋放影響......110
4.8.3-1 pH值及溫度對於空心乳膠顆粒載入caffeine之影響.......110
4.8.3-2 空心乳膠顆粒載藥之外觀型態...........113
4.8.3-3 pH值環境及釋放溫度對於空心乳膠顆粒釋放Caffeine之影響..........114
4.8.4載負Caffeine的空心乳膠顆粒(樣品代號H1DF、H2DF、H1DFD、H2DFD)含量對於電紡纖維釋放Caffeine之影響.........116
4.8.4-1空心乳膠顆粒載負Caffeine纖維不載負Caffeine......116
4.8.4-2空心乳膠顆粒載負Caffeine,纖維也載負Caffeine.........125
第五章、結論..........143
參考文獻.........149

1.Yong Qiu, Kinam Park,“ Environment-sensitive hydrogels for drug delivery”, Advanced Drug Delivery Reviews 64 (2012) 49–60.
2.Stephanie J. Grainger and Mohamed E. H. El-Sayed,“STIMULI-SENSITIVE PARTICLES FOR DRUG DELIVERY”, University of Michigan, Department of Biomedical Engineering, 1101 Beal Avenue, USA.
3.M.K. Yoo, Y.K. Sung, Y.M. Lee, C.S. Cho, “Effect of polyelectrolyte on the lower critical solution temperature ofpoly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel”, Polymer 41 (2000) 5713–5719.
4.Mark A. Ward, Theoni K. Georgiou, “Thermoresponsive Polymers for Biomedical Applications”, Polymers 2011, 3, 1215-1242.
5.Ya-Lan Yu, Rui Xie, Mao-Jie Zhang, Peng-Fei Li, Lihua Yang, Xiao-Jie Ju,
Liang-Yin Chu, “Monodisperse microspheres with poly(N-isopropylacrylamide) core
and poly(2-hydroxyethyl methacrylate) shell”, Journal of Colloid and Interface Science 346 (2010) 361–369.
6.Tadaaki Inoue, Guohua Chen, Katsuhiko Nakamae, “Allan S. Hoffman, Temperature sensitivity of a hydrogel network containingdi¤erent LCST oligomers grafted to the hydrogel backbone”, Polymer Gels and Networks 5 (1997) 561-575.
7.Guiying Li, Lei Guo, Quanwu Wen, Ting Zhang, “Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release”, International Journal of Biological Macromolecules 55 (2013) 69– 74.
8.吳宏毅,“半互穿型網狀結構體的聚N-異丙基烯醯胺/聚丙烯酸鈉吸濕材之製備及性質研究”,中原大學,碩士論文(2005)
9.Xiangchao Pang, Shuxun Cui, “Single-Chain Mechanics of Poly(N,N‑diethylacrylamide) and Poly(N‑isopropylacrylamide): Comparative Study Reveals the Effect of Hydrogen Bond Donors” Langmuir, (2013), 29, 12176−12182.
10.Hideo Tajima, Satoko Abiko, Kazuaki Yamagiwa,“Size adjustment of spherical temperature-sensitive hydrogel beads by liquid–liquid dispersion using a Kenics static mixer” ,Chemical Engineering Journal 156 (2010) 479–486.
11.Sotirios A. Angelopoulos, Constantinos Tsitsilianis, “Thermo-Reversible Hydrogels Based on Poly(N,N-diethylacrylamide)-block-poly(acrylic acid)-block-poly(N,N-diethylacrylamide) Double Hydrophilic Triblock Copolymer”, Macromol. Chem. Phys. (2006), 207, 2188–2194.
12.Xavier Andre, Markus Burkhardt, Markus Drechsler, Peter Lindner, Michael Gradzielski, Axel H. E. Müller,“Schizophrenic Micelles from a Poly(AcrylicAcid)-Block-Poly(N,N-Diethylacrylamide) Copolymer”, Polymeric Materials: Science and Engineering (2007), 96, 560~561
13.Zhonglan Tang, Yoshikatsu Akiyama, Masayuki Yamato, Teruo Okano,“Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet”, Biomaterials 31 (2010) 7435e7443.
14.Eun Seok Gil, Samuel M. Hudson,“Stimuli-reponsive polymers and their bioconjugates”, Prog. Polym. Sci. 29 (2004) 1173–1222.
15.Takashi Aoki, Mika Muramatsu, Taisuke Torii,Kohei Sanui, and Naoya Ogata,
“Thermosensitive Phase Transition of an Optically Active Polymer in Aqueous Milieu”, Macromolecules (2001), 34, 3118-3119.
16.Yalong Zhang, Ling Xu, Min Yi, Maolin Zhai, Jianrui Wang, Hongfei Ha,“Radiation synthesis of poly[(dimethylaminoethyl methacrylate)-co-(diallyl dimethyl ammonium chloride) hydrogels and its application as a carrier for notoginsenoside delivery”, European Polymer Journal 42 (2006) 2959–2967.
17.H Kaw aguch i, K Fujimo to, YM izuhara. Co llo id Po lym. Sci. , 1992, 270: 53~ 57
18.M. Okubo, H. Ahmad,“Synthesis of temperature-sensitive submicron-size composite polymer particles”, Colloid and Polymer Science,September( 1995), Volume 273, Issue 9, p 817-821.
19.A S Hoffman,LCDong,“Anovelapproach forpreparation of pH-sensitive hydrogels for enteric drug delivery”,J.ControlledRelease,(1991),15(2):141.
20.V. N. Pavlyuchenko, O. V. Sorochinskaya, S. S. Ivanchev, V. V. Klubin, G. S. Kreichman, V. P. Budtov, M. Skrifvars, E. Halme, J. Koskinen,“Hollow-particle latexes: Preparation and properties”, Journal of Polymer Science Part A: Polymer Chemistry,Volume 39, Issue 9, pages 1435–1449, 1 May (2001).
21.Okubo, M.; Katsuta, Y.; Matsumoto, T. J,“Studies on suspension and emulsion. li. peculiar morphology of composite polymer particles produced by seeded emulsion polymerization”, Polym Sci Polym Lett Ed (1982), 20, 45.
22.Cai-Deng Yuan, Ai-Hua Miao, Jian-Wei Cao, “Yong-Shen Xu, Tong-Yu Cao, Preparation of Monodispersed Hollow Polymer Particles by Seeded Emulsion Polymerization under Low Emulsifier Conditions”, Journal of Applied Polymer Science Volume 98, Issue 4, 30 Aug 2005.
23.Charles J McDonald, Michael J Devon, “Hollow latex particles: synthesis and applications”, Volume 99, Issue 3, 2 December (2002), Pages 181–213.
24.Wei Deng, Jishuai Wang, Manyi Wang, Chengyou Kan,“Preparation of Bowl-Like Polymer Particles via Multi-Step Emulsion Polymerization and Alkali Post-Treatment”, Macromol. Symp. (2010), 297, 61–64.
25.Guojun Jiang,XiaohongQin,“An improvedfreesurfaceelectrospinningforhighthroughput
manufacturing ofcore–shell nanofibers”, Materials Letters128(2014)259–262.
26.Xiuli Hu, Shi Liu, Guangyuan Zhou, Yubin Huang, Zhigang Xie, Xiabin Jing,“Electrospinning of polymeric nanofibers for drug delivery applications”, Journal of Controlled Release 185 (2014) 12–21.
27.Wahyudiono, Siti Machmudah, Hideki Kanda, Satoko Okubayashi, Motonobu Gotoa,“Formation of PVP hollow fibers by electrospinning in one-stepprocess at sub and supercritical CO2”, Chemical Engineering and Processing 77 (2014) 1–6.
28.張峰瑋,“靜電紡絲纖維排列均齊性之研究”,中國文化大學,碩士論文,(2010).
29.KeithM.Forward, AlexanderFlores, GregoryC.Rutledge,“Productionofcore/shell fibers byelectrospinningfromafreesurface”, Chemical EngineeringScience104(2013)250–259.
30.Gregory C. Rutledge, Sergey V. Fridrikh,“Formation of fibers by electrospinning”, Advanced Drug Delivery Reviews 59 (2007) 1384–1391.
31.洪琇議,“靜電紡絲技術製備水溶性幾丁聚醣/聚乙烯醇奈米纖維薄膜於抗菌之應用”,臺北科技大學,(2009).
32.Audrey Frenot, IoannisS. Chronakis,“Polymer nanofibers assembled by electrospinning”, Current Opinion in Colloid and Interface Science 8 (2003) 64–75.
33.Nandana Bhardwaj, Subhas C. “Kundu, Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances 28 (2010) 325–347.
34.H. Fong, I. Chun, D.H. Reneker,“Beaded nanofibers formed during electrospinning”, Polymer 40 (1999) 4585–4592.
35.A. Koski, K. Yim, S. Shivkumar,“Effect of molecular weight on fibrous PVA produced by electrospinning”, Materials Letters 58 (2004) 493 – 497.
36.邱浩耕,“電紡聚乙烯醇/葡萄糖氧化酵素生物複合薄膜應用於生物感測器之研究”,逢甲大學,(2010).
37.X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu,“Structure and process relationship of electrospun bioabsorbable nanofiber membranes”, Polymer, 43 (2002) 4403-4407.
38.Matthews JA, Wnek GE, Simpson DG, Bowlin GL.“Electrospinning of collagen nanofibers”, Biomacromolecules. 2002 Mar-Apr;3(2):232-8.
39.Keun Hyung Lee, Hak Yong Kim, Young Jun Ryu, Kwan Woo Kim, Sun Woong Choi,“Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends”,Volume 41, Issue 11, pages 1256–1262, 1 June (2003).
40.Shu-Ying Gu, Zhi-Mei Wang, Jie Ren, Chun-Yan Zhang,“Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristics for wound dressing”, Materials Science and Engineering C 29 (2009) 1822–1828.
41.Hongxu Qi, Ping Hu, Jun Xu, Aijun Wang,“Encapsulation of Drug Reservoirs in Fibers by Emulsion Electrospinning: Morphology Characterization and Preliminary Release Assessment”, Biomacromolecules 2006, 7, 2327-2330.
42.Yu Jin, Dayong Yang, Dongyang Kang, Xingyu Jiang,“Fabrication of Necklace-like Structures via Electrospinning”, Published on Web (2009), Langmuir (2010), 26(2).
43.Jiqing Xu, Yanpeng Jiao, Xiaohong Shao, Changren Zhou, “Controlled dual release of hydrophobic and hydrophilic drugs from electrospun poly (l-lactic acid) fiber mats loaded with chitosan microspheres”, Materials Letters 65 (2011) 2800–2803.
44.Kathrin Friedemann, Andrey Turshatov, Katharina Landfester, Daniel Crespy,“Characterization via Two-Color STED Microscopy of Nanostructured Materials Synthesized by Colloid Electrospinning”, Langmuir (2011), 27, 7132–7139.
45.Blair K. Brettmann, Shirley Tsang, Keith M. Forward, Gregory C. Rutledge, Allan S. Myerson,and Bernhardt L. Trout,“Free Surface Electrospinning of Fibers Containing Microparticles”, Langmuir 2012, 28, 9714−9721.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top