(3.227.208.0) 您好!臺灣時間:2021/04/18 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃啟宗
研究生(外文):Huang, Chi-Zong
論文名稱:淮山藥萃取物調控血糖與血脂之評估研究
論文名稱(外文):Effects of Dioscorea Opposita Extracts on Blood Sugar and Lipid Regulation in Streptozotocin/nicotinamide-induced Diabetic Nice
指導教授:李宏謨李宏謨引用關係王祥光王祥光引用關係
指導教授(外文):Lee, Horng-MoWang, Shyang-Guang
口試委員:李宏謨王祥光吳明哲
口試委員(外文):Lee, Horng-MoWang, Shyang-GuangWu, Min-Tze
口試日期:2014-06-17
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:藥物科技研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:64
中文關鍵詞:淮山藥代謝症候群肌小管細胞
外文關鍵詞:Dioscorea oppositaMetabolic syndromeMyotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
代謝症候群 (metabolic syndrome) 在近年來越來越受到重視,是由於現代大多數人往往過量飲食及缺乏運動,加上應酬飲酒過量等,久而久之這些原因就會造成人們過度肥胖、高血糖、高血脂、高血壓等,進而引發更多病症。為了改善代謝症候群及相關病發症的比率,透過將400多種中藥的酒精及水的萃取物進行檢驗並篩檢,找到了幾種中藥的水萃取物對於血糖的調控有明顯的效果,其中淮山藥(Dioscorea opposita) 對於血糖的調控效果顯著,而且淮山藥在古籍紀錄上可以發現搭配其他中藥一起服用,是具有緩和消渴症 (即:糖尿病) 的症狀,因此本研究對淮山藥的功效進行血糖調控及信息傳導路徑的探討。在本次研究中使用淮山藥萃取物對老鼠肌小管細胞 (C2C12 myotubes),及經nicotinamide和streptozotocin誘導的第二型糖尿病鼠(C57BL/6J)進行研究。結果發現經淮山藥作用的老鼠肌小管細胞內對於能量調控路經上的AMPK (AMP-activated protein kinase) 和ACC (acetyl-CoA carboxylase) 兩個蛋白質的磷酸化表現量上升,另一方面也發現在血糖調控路徑上的蛋白IRS1 (Insulin receptor substrate 1 )、Akt (Protein Kinase B) 的磷酸化表現量也上升。以上蛋白質的磷酸化表現量上升,表示對於能量活化及血糖的吸收是有幫助的,此外在小鼠的生化研究中,其體重、三酸甘油脂有明顯的下降,口服葡萄糖耐受性試驗中與對照組比起來結果也很顯著,最後犧牲後測量到內臟脂肪的減少,證實具有改善肥胖的現象。因此我們可以推斷懷山藥對於血糖的調控、抗肥胖是非常有效的,未來或許對於改善糖尿病是有幫助的。
The metabolic syndrome has received a great attention in recent years. The diet with high calories is considered as the risking factors for obesity, hypertension, high triglycerides and hyperglycemia. Dioscorea opposita had been reported to have beneficial effects on diabetes in ancient Chinese pharmacopoeia. We screened four hundred herbal extracts and found Dioscorea opposita extract could improve blood sugar level significantly. The purpose of this study was to investigate how Dioscorea opposite to regulate blood sugar. In cell experiments, the phosphorylations of AMPK (AMP-activated protein kinase) and ACC (acetyl-CoA carboxylase) were increased in differentiated C2C12 myotubes that were treated with aqua-extract of Dioscorea opposita. In addition, the phosphorylations of IRS1 (Insulin receptor substrate 1) and Akt (Protein Kinase B) were also up-regulated in cells. In animal study, the extract was shown to lower plasma triglyceride level, visceral fat, and weight in the STZ/Nicotinamide-induced-diabetic mice fed with high-fat diet. Furthermore, the extract also ameliorated hyperglycemia and improved glucose tolerance in mice. In conclusion, Dioscorea opposita could have beneficial effects on anti-hyperglycemic and anti-obesity.
中文摘要 I
Abstract III
目錄 IV
圖目錄 VII
縮寫表 IX
文獻檢索 10
代謝性症候群 (Metabolic syndrome) 10
糖尿病 (Diabetes mellitus) 11
AMP-activated protein kinase (AMPK) 12
Acetyl CoA carboxylase (ACC) 14
Insulin receptor substrate 1 (IRS-1) 16
研究動機和目的 17
實驗方法與材料 18
實驗材料 18
藥品試劑 18
常用儀器 19
常用溶液 21
實驗方法 23
C2C12細胞的培養 23
葡萄糖吸收測定試驗 ( [3H] Glucose uptake) 24
細胞活性測試 24
細胞蛋白質測定 (Protein assay) 25
西方墨點法 (Western blot) 26
動物實驗 (Studies of diabetic animal model) 27
統計方法 (Statistical data) 27
實驗結果 29
淮山藥萃取物對肌肉細胞吸收葡萄糖的影響 29
細胞存活率試驗 (cell viability) 29
淮山藥萃取物對提升胰島素敏感性的影響 30
淮山藥萃取物對AMPK和ACC的磷酸化之影響 30
淮山藥萃取物IRS-1和Akt的磷酸化之影響 31
淮山藥萃取物對糖尿病鼠脂肪堆積及葡萄糖耐受性之影響 32
討論 33
參考文獻 56


Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A., and Wakil, S.J. (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613-2616.
Ahn, J., Lee, H., Kim, S., Park, J., and Ha, T. (2008). The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373, 545-549.
Alberti, K.G., and Zimmet, P.Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15, 539-553.
Belfiore, A., and Malaguarnera, R. (2011). Insulin receptor and cancer. Endocr Relat Cancer 18, R125-147.
Bertrand, L., Ginion, A., Beauloye, C., Hebert, A.D., Guigas, B., Hue, L., and Vanoverschelde, J.L. (2006). AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. Am J Physiol Heart Circ Physiol 291, H239-250.
Cai, D., Dhe-Paganon, S., Melendez, P.A., Lee, J., and Shoelson, S.E. (2003). Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278, 25323-25330.
Cantley, L.C., and Neel, B.G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96, 4240-4245.
Canto, C., and Auwerx, J. (2010). AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 67, 3407-3423.
Chen, W.L., Chen, Y.L., Chiang, Y.M., Wang, S.G., and Lee, H.M. (2012). Fenofibrate lowers lipid accumulation in myotubes by modulating the PPARalpha/AMPK/FoxO1/ATGL pathway. Biochem Pharmacol 84, 522-531.
Cnop, M., Welsh, N., Jonas, J.C., Jorns, A., Lenzen, S., and Eizirik, D.L. (2005). Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54 Suppl 2, S97-107.
Dale, S., Wilson, W.A., Edelman, A.M., and Hardie, D.G. (1995). Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett 361, 191-195.
Del Aguila, L.F., Krishnan, R.K., Ulbrecht, J.S., Farrell, P.A., Correll, P.H., Lang, C.H., Zierath, J.R., and Kirwan, J.P. (2000). Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab 279, E206-212.
Gao, X., Li, B., Jiang, H., Liu, F., Xu, D., and Liu, Z. (2007). Dioscorea opposita reverses dexamethasone induced insulin resistance. Fitoterapia 78, 12-15.
Guan, Y. (2004). Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J Am Soc Nephrol 15, 2801-2815.
Hardie, D.G. (2003). Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144, 5179-5183.
Hardie, D.G., and Pan, D.A. (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30, 1064-1070.
Hawley, S.A., Gadalla, A.E., Olsen, G.S., and Hardie, D.G. (2002). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420-2425.
Horman, S., Browne, G., Krause, U., Patel, J., Vertommen, D., Bertrand, L., Lavoinne, A., Hue, L., Proud, C., and Rider, M. (2002). Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12, 1419-1423.
Lane, M.D., Hu, Z., Cha, S.H., Dai, Y., Wolfgang, M., and Sidhaye, A. (2005). Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. Biochem Soc Trans 33, 1063-1067.
Lee, C.T., Ussher, J.R., Mohammad, A., Lam, A., and Lopaschuk, G.D. (2014). 5'-AMP-activated protein kinase increases glucose uptake independent of GLUT4 translocation in cardiac myocytes. Can J Physiol Pharmacol 92, 307-314.
Manco, M., Calvani, M., and Mingrone, G. (2004). Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 6, 402-413.
Minino, A.M., and Murphy, S.L. (2012). Death in the United States, 2010. NCHS Data Brief, 1-8.
Mitchelhill, K.I., Michell, B.J., House, C.M., Stapleton, D., Dyck, J., Gamble, J., Ullrich, C., Witters, L.A., and Kemp, B.E. (1997). Posttranslational modifications of the 5'-AMP-activated protein kinase beta1 subunit. J Biol Chem 272, 24475-24479.
Olson, A.L. (2012). Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN Molecular Biology 2012, 12.
Roden, M. (2012). [Diabetes mellitus: Definition, classification and diagnosis]. Wien Klin Wochenschr 124 Suppl 2, 1-3.
Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.
Shujun, W., Jinglin, Y., Wenyuan, G., Hongyan, L., and Peigen, X. (2006). New starches from traditional Chinese medicine (TCM)--Chinese yam (Dioscorea opposita Thunb.) cultivars. Carbohydr Res 341, 289-293.
Talchai, C., Xuan, S., Lin, H.V., Sussel, L., and Accili, D. (2012). Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150, 1223-1234.
Turban, S., Stretton, C., Drouin, O., Green, C.J., Watson, M.L., Gray, A., Ross, F., Lantier, L., Viollet, B., Hardie, D.G., et al. (2012). Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J Biol Chem 287, 20088-20099.
White, M.F. (1998). The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182, 3-11.
Yao, X., Wei, D., Soden, C., Jr., Summers, M.F., and Beckett, D. (1997). Structure of the carboxy-terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Biochemistry 36, 15089-15100.
Zimmet, P., Alberti, K.G., and Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature 414, 782-787.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔