(3.236.214.19) 您好!臺灣時間:2021/05/09 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭詠隆
研究生(外文):Yung-Lung Cheng
論文名稱:水力發電廠水庫淤泥再利用與永續發展之創新設計
論文名稱(外文):Innovative Reservoir Sediments Reuse and Design for Sustainability of the Hydroelectric Power Plants
指導教授:黃惠民黃惠民引用關係陳平舜陳平舜引用關係
指導教授(外文):Hui-Ming WeePing-Shun Chen
學位類別:博士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:99
中文關鍵詞:DFSS永續存貨水庫淤泥再生能源
外文關鍵詞:inventorysustainableDFSSreservoir sedimentrenewable energy
相關次數:
  • 被引用被引用:5
  • 點閱點閱:321
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
科技與經濟的高度發展及進步,為人類帶來了舒適與便捷的生活品質,人類對電力的高度依賴,已經成為現代生活中不可或缺的能源,相對的電力需求供應也快速地成長。逢此世界能源日漸枯竭之際,世界各國無不竭力積極開發天然能源及研發新替代能源,太陽能、風力、地熱發電等雖可視為永久的能源利用方法,但大規模開發仍有技術性與經濟性之限制,而水力發電屬於自然能源,且技術條件成熟符合經濟原則,對電力系統的品質控制也相當穩定。然而水力發電廠在製造再生能源的過程中,水庫淤泥(Reservoir Sediment)是世界各水庫遭遇的另一類環境問題,淤泥如僅止於清除,而無妥善處理,將對環境生態造成二次公害,故應予以資源化再利用方為上策。
本研究係以DFSS(Design For Six Sigma)綠色設計流程將水庫淤泥及屬於建築事業廢棄物的廢土結合於混凝土中,加上混凝土固化劑,免燒結(Sintering)經高壓成型,自然養護28天後,即成為高強度之免燒結固化磚,該產品是環保、節能、利廢的新型牆體材料,符合國家發展循環經濟、保護自然生態、促進可永續發展的要求。
本研究以製磚業為例,建構在生產過程中多次剔除不良品下,允許及不允許缺貨兩種存貨策略,求得最佳之訂購批量、運送次數、剔除不良品次數,以達買賣雙方之聯合總存貨成本最低。並在數值範例中說明計算過程外,也對一些參數做敏感度分析,以瞭解參數變動對最佳解結果之影響。



The development and improvement of technology and economy has brought comfort and convenience to people, resulting in improved quality of life. People’s reliance on electricity has made its sources essential, and the demand for it has risen rapidly. While the world faces dwindling supplies of energy, every nation in the world is actively developing natural energy sources and new alternative energy sources. Although solar power, wind power, and geothermal power can be seen as sustainable ways to produce energy, large scale production of these resources has both technical and financial limitations. Hydroelectricity is considered a natural resource and is a mature, cost-effective technology. In the process of producing renewable hydroelectric energy, plants all over the world are facing the problem of reservoir sediment. If this sediment is removed but not properly disposed of, it can become a secondary pollutant. This study proposes a way to resolve this problem through reuse and recycling.
In the case study, using a green design based on the Design for Six Sigma (DFSS) process, reservoir sediment and the masonry waste from the construction industry are combined with cement and a curing agent. The resulting mixture is not sintered, but is molded under high pressure. After 28 days of natural curing, the result is a high strength, non-sintered cured brick. This product is a new walling material that fulfills the objectives of environmental protection, energy conservation, and waste recycling. It also meets the need to develop a circular economy, protect ecosystems, and promote sustainable development.
In this study, two integrated vendor-buyer inventory models with and without backordering for the brick production case study are also presented. A random fraction of defective items is produced by the vendor who implements a 100% inspection to screen and scrap defective units by multiple disposals during the production period. We derive the optimal production batch, the number of shipments and the number of defective item disposed in order to minimize the integrated inventory cost. The examples illustrate the solution procedure and analyze the sensitivity of the optimal policies with respect to changes in some system parameters.


摘要I
AbstractII
誌 謝III
目錄 IV
圖目錄 VI
表目錄 VII
第一章、緒 論 1
1.1研究背景與動機 1
1.2研究目的與範圍 4
1.3研究方法與步驟 5
1.4研究流程與架構 6
1.5研究貢獻 8
1.6論文章節概要 8
第二章、文獻探討 11
2.1再生能源 11
2.2水庫淤泥資源化 13
2.3綠色創新設計 15
2.4六標準差管理 18
2.5不良品存貨系統 19
2.6整合型存貨系統 22
第三章、DFSS綠色設計過程與創新應用 26
3.1產品開發實現 27
3.2產品開發設計 29
3.3創新應用 32
3.4產品設計驗證 35
第四章、考慮不良品多次剔除之整合型存貨模式 40
4.1符號說明及假設 40
4.2模式推導 42
4.3數值範例說明 49
第五章、考慮缺貨及不良品多次剔除之整合型存貨模式 55
5.1符號說明及假設 55
5.2模式推導 55
5.3數值範例說明 63
第六章、管理意涵與結論 68
6.1 管理意涵 68
6.2 結論與未來研究方向 71
參考文獻 73
附錄A 85
附錄B 88
附錄C 90
作者簡介 92

圖 目錄
頁次
圖 1-1 研究背景與動機關連圖 4
圖 1-2 研究流程架構圖 7
圖 3-1 設計開發階段與DFSS的關連圖 27
圖 3-2 生產流程圖 33
圖 4-1 n=8及nM=3下製造商及代理商之存貨水準 42
圖 4-2 n=8及nM=3下製造商之累積存貨及累積交貨量 43
圖 4-3 範例 4.3.14.3.1 4.3.1之總相對存貨成本圖形 51
圖 5-1 n=8及nM=3下製造商及代理商之存貨水準 56
圖 5-2 範例5.3.1之總相對存貨成本圖形 66


表 目錄
頁次
表 1-1 全世界前十個水庫最多的國家 3
表 3-1 密度等級 35
表 3-2 抗壓強度 36
表 3-3 最大吸水率 36
表 3-4 乾燥收縮率和相對含水率 37
表 3-5 抗凍性 38
表 3-6 外觀品質規格 39
表 4-1 不同不良率下範例4.3.3之最佳解 54
表 5-1 不同補缺貨成本下範例5.3.2之最佳解 67
一、中文部分:
1.王和源、張書銓、方聖棻、黃文亮,2010,“高溫作用對水庫淤泥輕質骨材混凝土耐久性之影響”,工程科技與教育學刊,7-2,275-283。
2.自由時報,2013,8月8日。
3.旺e報,2013,11月6日。
4.林嘉玲,2011,“摻配都會下水污泥與廢玻璃燒製水庫淤泥骨材研究”,南亞技術學院,碩士論文。
5.侯文田,2005,“企業運用創新創造價值以提升競爭力之研究”,中山大學,碩士論文。
6.陳文卿,2010,“建築廢棄物資源化再利用技術研究”,工業技術研究院。
7.陳淑君,2006,“情境因素對環保產品購買意願之影響”,南台科技大學,碩士論文。
8.陳豪吉,2004,“台灣地區輕質骨材混凝土之發展與研究”,21世紀混凝土工程研討會,中壢,萬能科技大學土木系。
9.葉樺姿,2007,“水庫淤泥應用於流填料之探討”,中華大學,碩士論文。
10.鄒智純,2011,“我國再生能源發展條例立法過程與法案內容之研究”,臺灣大學,碩士論文。
11.傅建璋,2009,“升溫速率對石門水庫淤泥製備輕質骨材之影響”,成功大學,碩士論文。
12.張超海,2012,“綠色能源:第二代生質酒精的發展評估”,長庚大學,碩士論文。
13.趙文衡、黃慧文,2009,“綠色能源產業的商機與挑戰”,震旦月刊,第458期,頁8-11。
14.遲慎玉,2011,“美國再生能源推動政策與法規範之研究-以再生能源強制配比中心”,雲林科技大學,碩士論文。
15.顏聰,2003,“水庫淤泥輕質骨材混凝土產製及規範研討會”,內政部建築研究所,台北。
16.鄭苗英,2008,“石門水庫淤泥燒結粗骨材混凝土界面性質之研究”,中華大學,博士論文。

二、英文部分
1.ACI Committee 213, (1987), Guide for Structural Lightweight Aggregate Concrete (ACI 213R-87Reapproved 1999). American Concrete Institute, Farmington Hills. Mich., pp 2.
2.Antony, J., Banuelas R., (2002), “Key ingredients for the effective implementation of Six Sigma program”, Measuring Business Excellence, 6(4), 20-27.
3.Azis, Yudi, Hiroshi Osada., (2011), "An empirical study of new value creation in financial service companies using design for Six Sigma approach." International Journal of Productivity and Quality Management 7(1), 104 - 124.
4.Banerjee, A., (1986), “A joint economic-lot-size model for purchaser and vender”, Decision Sciences, 17, 292-311.
5.Ben-Daya, M., (2002), “The economic production lot-sizing problem with imperfect production and imperfect maintenance”, International Journal of Production Economics, 76, 257-264.
6.Ben-Daya, M., Rami As’ad, Seliaman M., (2013),“An integrated production inventory model with raw material replenishment considerations in a three layer supply chain”, International Journal of Production Economics, 143(1), 53-61.
7.Bessler, S.A., Veinott, A.J., (1966), “Optimal policy for a multi-echelon inventory model”, Naval Research Logistics Quarterly, 13, 355-389.
8.Carter, Craig R., Kale, Rahul, Grimm, Curtis M., (2000), “Environmental purchasing and firm performance:an empirical investigation”, Transportation Research Part E:Logistics and Transportation Review, 36(3), 219-228.
9.Chang, H.C., (2004), “An application of fuzzy sets theory to the EOQ model with imperfect quality items”, Computer &; Operations Research, 31, 2079-2092.
10.Chen, J.H., Huang, J.S., Chang, Y.W., (2009), “A preliminary study of reservoir sludge as a raw material of inorganic polymers”, Construction and Building Materials, 23(10), 3264-3269.
11.Chiang, K.Y., Chieng, K.L., Hwang, S.J., (2008), “Study on the characteristics of building bricks produced from reservoir sediment”, Journal of Hazardous Materials, 159, 499-504.
12.Christina Maria Dües, Kim Hua Tan, Ming Lim, (2013), “Green as the new lean:how to use lean practice as a catalyst to greening your supply chain”, Journal of Cleaner Production, 40, 93-100.
13.Chung, K. J., Hou, K. L., (2003), “An optimal production run time with imperfect production process and allowable shortages”, Computers and Operations Research, 30, 483-490.
14.Clark, A.J., Scarf, H., (1960), “Optimal policy for a multi-echelon inventory problem”, Management Science, 6, 475-490.
15.Dem, H., Singh, S.R., (2012), “A two-warehouse production model with quality consideration”, Procedia Engineering, 38, 3242-3259.
16.Eroglu, A., Ozdemir, G. (2007), “An economic order quantity model with defective items and shortages”, International Journal of Production Economics, 106 (2), 544-549.
17.Franza, Richard M., and Chakravorty Satya S., (2007), “Design for Six Sigma (DFSS): A Case Study,” PICMET ’07 - 2007 Portland International Conference on Management of Engineering &; Technology, Portland, OR, 1982-1989.
18.Freimer, M., Thomas, D., Tyworth, J., (2006), “The value of setup cost reduction and process improvement for the economic production quality model with defects”, European Journal of Operational Research, 185, 170-194.
19.Gang L., Zhu, J.G., Guo, Y.G., Hu, J.F., Wei X., Shao, K.R., (2013) Magnetics, IEEE Transactions on 49(7), 3953- 3956.
20.Gary Hamel and Prahalad , C.K., “Competing for the Future”, Harvard Business School Publishing.
21.Gerhorst, F., Gromping, U., Lloyd-Thomas, D. and Khalaf, F., (2006), “Design for Six Sigma in product development at Ford Motor Company in a case study on robust exhaust manifold design”, International Journal of Product Development, 3(3/4), 278-291.
22.Goyal, S. K., (1988), “A joint economic-lot-size model for purchaser and vendor : a comment”, Decision Sciences, 19, 236-241.
23.Goyal, S. K., (1995), “A one-vendor multi-buyer integrated inventory model: a comment”, European Journal of Operational Research, 82(1), 209-210.
24.Goyal, S. K., (1976), “An integrated inventory model for a single supplier-single customer problem”, International Journal of Production Research, 15(1), 107-111.
25.Goyal, S.K., (2000), “On improving the single-vendor single-buyer integrated production–inventory model with a generalized policy”, European Journal of Operational Research, 125, 429-430.
26.Goyal, S.K., Nebebe, F., (2000), “Determination of economic production-shipment policy for a single-vendor-single-buyer system”, European Journal of Operational Research, 121, 175-178.
27.Glock, C.H., (2011), “A multiple-vendor single-buyer integrated inventory model with a variable number of vendors”, Computers &; Industrial Engineering, 60, 173-182.
28.Ha, D., Kim, S.L., (1997), “Implementation of JIT purchasing:an integrated approach”, Production Planning and Control, 8(2), 152-157.
29.Harry, M., (1998), “Six Sigma: A Breakthrough Strategy for Profitability”, Quality Progress, 31(5), 60-64.
30.Hasenkamp, T. and Olme, A., (2008), “Introducing design for Six Sigma at SKF”, International Journal of Six Sigma and Competitive Advantage, 4(2), 172-189.
31.Haught, M., Kovach, J. V., &; Tiwari, V., (2012), Redesigning the SKU creation process using design for six sigma., IIE Annual Conference., Proceedings, 1-10. Retrieved from http://search.proquest.com/docview/1151083733?accountid=10089
32.Hill, R.M., (1997), “The single-vendor single-buyer integrated production-inventory model with a generalized policy”, European Journal of Operational Research, 97, 493-499.
33.Hoffert, M.I. et al., 2002, “Advanced Technology Paths to Global Climate Stability : Energy for a Greenhouse Planet”, Science, 298, 981-987.
34.Hoque, M.A., (2008), “Synchronization in the single-Manufacturer multi-buyer integrated inventory supply chain”, European Journal of Operational Research, 188, 811-825.
35.Huang, C.K., (2004), “An Optimal Policy for a Single-Vendor Single-Buyer Integrated Production-Inventory Problem with Process Unreliability Consideration”, International Journal of Production Economics, 91(1), 91-98.
36.Hu, A.J., Hsu, C.W., (2006), “Empirical Study in the Critical Factors of Green Supply Chain Management (GSCM) Practice in the Taiwanese Electrical and Electronics Industries”, IEEE International Conference on Management of Innovation and Technology, Singapore, China.
37.Jayaraman, Vaidyanathan, (2006), “Production planning for closed-loop supply chains with product recovery and reuse:an analytical approach”, International Journal of Production Research, 44(5), 981-998.
38.Johnstone, N., Hascic, I., Popp, D., 2010, Renewable Energy Policies and Technological Innovation :Evidence Based on Patent Counts, Environmental and Resource Economics, 45(1), 133-155.
39.Joseph ADF., Zion B.E., (2002), “Creating strategic change more efficiently with a new Design for Six Sigma process”, Journal of Change Management, 3(1), 60-80.
40.Kammen, D.M., 2006, “The Rise of Renewable Energy”, Scientific American, 294(3), 84-93.
41.Khan, M., Jaber, M.Y., Wahab, M.I.M., (2010), “Economic order quantity model for items with imperfect quality with learning in inspection”, International Journal of Production Economics, 123 (2), 393-402.
42.Kim, S. L., Ha, D., (2003), “A JIT lot-splitting model for supply chain management: enhancing buyer-supplier linkage”, International Journal of production Economics, 86, 1-10.
43.Kim, T., Honga, Y., Chang, S.Y., (2006), “Joint Economic Procurement–Production–Delivery Policy for Multiple Items in a Single-Manufacturer Multiple-Retailer System”, International Journal of Production Economics, 103(1), 199-208.
44.Kumar, S., Gupta, Y., (1993), “Statistical process control at Motorola's Austin assembly plant”, Interface, 23, 84-92.
45.Konstantaras, I., Goyal, S.K., Papachristos, S., (2007), “Economic ordering policy for an item with imperfect quality subject to the in-house inspection”, International Journal of Systems Science, 38 (6), 473-482.
46.Lee, H.L., Rosenblatt, M.J., (1987), “Simultaneous determination of production cycles and inspection schedules in a production system”, Management Science, 33 (9), 1125-1136.
47.Lee, H. L., Rosenblatt, M. J., (1989), “A production and maintenance planning model with restoration cost dependent on detection delay”, IIE Transaction, 21, 368-375.
48.Lee S., Kim D., (2014),“An optimal policy for a single-vendor single-buyer integrated production–distribution model with both deteriorating and defective items”, International Journal of Production Economics, 147(A), 161-170.
49.Liao, Y.C., Huang, C.Y., (2011), “Effects of CaO addition on lightweight aggregates produced from water reservoir sediment”, Construction and Building Materials, 25(6), 2997-3002.
50.Lin, Chieh-Yu., Ho, Yi-Hui., Chiang, (2009), Shu-Hen“Organizational Determinants of Green Innovation Implementation in the Logistics Industry”, International Journal of Organizational, 2(1), 3-12.
51.Lin, R.J., (2013), “Using fuzzy DEMATEL to evaluate the green supply chain management practices”, Journal of Cleaner Production, 40, 32-39.
52.Liu, X., Wang, S., Qiu, J., Zhu, J., Guo, Y. and Lin, Z., (2008), “Robust optimization in HTS cable based on design for Six Sigma”, IEEE Transactions on Magnetics, 44(6), 978-981.
53.Lloréns-Montes, F. J., &; Molina, L. M., (2006) Six sigma and management theory: processes, content and effectiveness, Total Quality Management &; Business Excellence, 17 (4), 485-506.
54.Lu, L., (1995), “A one-vendor multi-buyer integrated inventory model”, European Journal of Operational Research, 81, 312-323.
55.Maddah, B., Jaber M.Y., (2008), “Economic order quantity for items with imperfect quality: Revisited”, International Journal of Production Economics, 112, 808-815.
56.Montgomery, D.C., Woodall W.H., (2008), “International Statistical Review”, 76(3), 329-346.
57.Morteza, R.B., Morteza, J., Mehdi, B., 2011, “Effects of imperfect products on lot sizing with work in process inventory”, Applied Mathematical Modelling, doi:10.1016/j.amc.2011.03.023.
58.Neuhoff, K., 2005, Large-Scale of Deployment of Renewables for Electricity Generation, Oxford Review of Economic Policy, 21(1), 88-110.
59.Patton, F., (2005), “Does Six Sigma Work in Service Industries”, Quality Progress, 38(9), 56-60.
60.Popp, D., 2010, Innovation and Climate Policy, NBER Working Paper 15673, National Bureau of Economic Research.
61.Porteus, E. L., (1986), “Optimal lot sizing, process quality improvement and setup cost reduction”, Operations Research, 34(1), 137-144.
62.Porter, M.E., (1980), Competitive Strategy, New York : Free Press.
63.Raisinghani, M. S., Ette, H., Pierce, R., Cannon, G., &; Daripaly, P., (2005), Six Sigma: concepts, tools, and applications. Industrial Management &; Data Systems, 105 (4), 491-505.
64.Rogol, M., Doi, S., and Wilkinson, A., 2004, “Sun Screen Investment Opportunities in Solar Power”, Solar Power Sector Outlook, CLSA Asia-Pacific Markets.
65.Ron, P., Clint, W., 2007, ”The Clean Tech Revolution”, 5-16, Wikipedia.
66.Rosenblat, M.J., Lee, H.L., (1986), “Economic production cycles with imperfect production processes”, IIE Transactions, 18, 48-55.
67.Roy, M.D., Sana, S.S., Chaudhuri, K., (2012), “An integrated producer–buyer relationship in the environment of EMQ and JIT production systems”, International Journal of Production Research, 50(19), 5597-5614.
68.Salameh, M.K., Jaber, M.Y., (2000), “Economic production quantity model for items with imperfect quality”, International Journal of Production Economics, 64, 59-64.
69.Sarkar, B., (2012), “An inventory model with reliability in an imperfect production process”, Applied Mathematics and Computation, 218, 4881-4891.
70.Sarkar B., Moon I., (2011), “An EPQ model with inflation in an imperfect production system”, Applied Mathematics and Computation, 217, 6159-6167.
71.Shum, K., Watanabe, C., (2009), “An innovation management approach for renewable energy deployment-the case of solar photovoltaic (PV) technology”, Journal of Energy Policy, 37(9), 3535-3544.
72.Su, C.T., Chou, C.J., (2008), “A systematic methodology for the creation of Six Sigma projects: A case study of semiconductor foundry”, Expert Systems with Applications, 34(4), 2693-2703.
73.Tang, C.W., (2010), “Engineering properties of lightweight concrete masonry units made from sedimentary lightweight aggregate”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, 22(1), 429-438.
74.Tilman, A., Anna, P., (2012), “Sustainability-oriented innovation systems – managing the green transformation”, Green and Sustainable Business Article Collection, 2(1), 5-22.
75.Urban, T.L., (1998), “Analysis of production systems when run length influences product quality”, International Journal of Production Research, 36 (11), 3085-3094.
76.Wang, H.Y., (2009), “Durability of self-consolidating lightweight aggregate concrete using dredged silt”, Construction and Building Materials, 23(6), 2332-2337.
77.Wee, H.M., Yu, J., Chen, M.C., (2007), “Optimal inventory model for items with imperfect quality and shortage backordering”, Omega 35 (1), 7-11.
78.Wee, H.M., Wang, W.T., Yang P.C., (2013),“A production quantity model for imperfect quality items with shortage and screening constraint”, International Journal of Production Research, 51(6), 1869-1884.
79.Wee, H.M., Wang, W.T., Kuo, T.C., Cheng, Y.L., Huang, Y.D., (2014),“An economic production quantity model with non-synchronized screening and rework”, Applied Mathematics and Computation, 233, 127-138.
80.Weerawardena, J., (2003b), “The role of marketing capability in innovation-based competitive strategy”, Journal of Strategic Marketing, 11(1), 15-35.
81.Wei, H.C., Hu, A.H., (2008), “Green supply china management in the electronic industry”, International Journal Environment Science Technology, 5(2), 205-216
82.Wei, Y.L., Lin, C.Y., Ko, K.W., Wang, H.P., (2011), “Preparation of low water-sorption lightweight aggregates from harbor sediment added with waste glass”, Marine Pollution Bulletin, 63(5-12), 135-140.
83.Wei, Y.L., Lin, Y.Y., (2009), “Role of Fe compounds in light aggregate formation from a reservoir sediment”, Journal of Hazardous Materials, 171(1-3), 111-115.
84.Yang, J.S., Pan, C-H.J., (2004), “Just-in-time purchasing:An integrated inventory model involving deterministic variable lead time and quality improvement investment”, International Journal of Production Research, 42(5), 853-863.
85.Yassine, A., Maddah, B., Salameh, M., (2012), “Disaggregation and consolidation of imperfect quality shipments in an extended EPQ model”, International Journal of Production Economics, 135, 345-352.
86.Yoo, S.H., Kim, D., Park, M.S., (2009), “Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return”, International Journal of Production Economics, 121(1), 255-265.
87.Zavanella, L., Zanoni, S., (2009), “A one-vendor multi-buyer integrated production-inventory model: the ‘Consignment Stock’ case”, International Journal of Production Economics, 118, 225-232.
88.Zhou, Y-W., Wang, S.-D., (2007), “Optimal production and shipment models for a single-vendor–single-buyer integrated system”, European Journal of Operational Research, 180(1), 309-328.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔