跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明翰
研究生(外文):Ming-Han Lin
論文名稱:運用啟發式演算法求解病患轉檢機制之模擬
論文名稱(外文):Applying simulation and metaheuristics to solve patient referral issue
指導教授:陳平舜陳平舜引用關係
指導教授(外文):Ping-Shun Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:啟發式演算法預約安排病患轉檢機制系統模擬
外文關鍵詞:MetaheuristicsSimulationPatient referring mechanismScheduling appointment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醫療資源關係到醫院的服務品質,無法有效的利用醫療資源即表示無法滿足病患之期望和要求,更會造成醫療資源的浪費。因此,醫院如何有效的分配醫療資源為一重要議題。民眾普遍認為大醫院的醫療資源充足,醫護人員之技術較小醫院好,所以病患紛紛投向大醫院,導致大醫院病患數過多無法負荷,病患必須等很長的一段時間才能接受檢查診療,病患等待時間過長會造成錯失醫療的黃金時段,影響醫院的醫療品質。小醫院則因為病患數量少,醫療資源利用率低,造成醫療資源的浪費。
本研究的目的為探討多間醫院之間的轉檢機制,考量因醫院大小而會有病患數量不同,如何有效轉檢病患到其他間醫院。若能有效地轉檢病患到需要的醫院,將可縮短病患的等待時間,進而提升醫院的醫療品質。
本研究利用系統模擬概念及結合啟發式演算法,發展多間醫院之間的三種轉檢機制,以求出較佳的轉檢人數。本研究根據研究情境及結果,分析三種的轉檢機制,以探討其可行性和效果。


Medical resources have impacts on service quality of hospitals. Using the medical resources ineffectively leads to fail to meet patients’ expectations and demands. This will cause to the idleness of medical resources. Therefore, how to allocate medical resources effectively becomes an important topic. In general, people believe that large hospitals have abundant medical resources and their medical staff are better than those of small hospitals. It results that patients go to large hospitals more often. Consequently, patients have to wait longer time to have their treatment in large hospitals. However, since the long waiting time will fail to treat patients timely, it will reduce the quality of healthcare of hospitals. On the contrary, due to small quantities of patients, the medical resource utilization of small hospitals is low, resulting in the idleness of medical resources.
The goal of this study is to investigate referring mechanisms among hospitals, which have different scales and the number of patients. The question is how to transfer excess patients effectively to other referring hospitals. If hospitals can transfer patients to the referring hospital effectively, the patient’s waiting time will be shorten. It will improve the quality of healthcare. In order to determine the better number of referring patients among hospitals, this research uses system simulation with heuristic algorithms to develop three referring mechanisms among hospitals. According to the research scenarios and results, this study analyzes the feasibility and effectiveness of three referring mechanisms.


摘 要 I
Abstract II
目 錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 目的 2
1.3 研究範圍 2
1.4 論文章節概要與架構 2
第二章 文獻探討 4
2.1 預約排程 4
2.2系統模擬 5
2.2.1 醫療模擬 6
2.2.2 模擬最佳化 7
2.3 轉檢 8
2.3.1 轉診 9
2.3.2 轉檢 9
2.4 粒子群演算法 11
2.4.1 背景 11
2.4.2 基本概念 12
2.4.3 流程架構 12
2.4.4 醫療產業應用粒子群演算法 13
2.5 穩健最佳化 14
2.6 小結 14
第三章 研究方法 16
3.1 問題定義 16
3.2 研究步驟 16
3.3 粒子群演算法流程 18
3.4 粒子群演算法結合醫療模擬模型 20
3.5 病患轉檢機制 22
3.6 模擬程式建立 23
3.6.1本研究制定之系統模擬概念流程 23
第四章 分析與討論 25
4.1 個案醫院 25
4.1.1 個案醫院分院現況與位置 25
4.1.2 個案醫院核磁共振攝影病患轉檢機制背景 26
4.1.3 個案醫院資料 27
4.2 病患轉檢機制 29
4.2.1 個案醫院核磁共振攝影病患轉檢機制現況 29
4.2.2 本研究核磁共振攝影病患轉檢機制 30
4.3 模擬程式建立 31
4.3.1 個案醫院核磁共振攝影病患轉檢現況之系統模擬概念流程 31
4.3.2 本研究核磁共振攝影病患轉檢機制之系統模擬概念流程 32
4.4 模擬假設 35
4.5 系統模擬模式驗證 36
4.6 系統模擬 43
4.6.1 目標式、決策變數與參數設定 43
4.7 系統模擬結果 46
4.8 小結 49
第五章 結論 51
5.1 研究貢獻 51
5.2 相關討論 51
5.3 未來研究 52
參考文獻 53

Angeline, &; PeterJ. (1998). Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In V. W. Porto, N. Saravanan, D. Waagen &; A. E. Eiben (Eds.), Evolutionary Programming VII (Vol. 1447, pp. 601-610): Springer Berlin Heidelberg.
Azadivar, F. (1980). Optimization of stochastic simulation models. Mathematics and Computers in Simulation, 22, 231-241.
Bai, D., Carpenter, T., &; Mulvey, J. (1997). Making a case for robust optimization models. Management Science, 43(7), 895-907.
Butler, R. J., Ammons, J. C., &; Sokol, J. (2003). A robust optimization model for strategic production and distribution planning for a new product. A paper to be submitted to Management Science and Operations Research.
Chen, P.-S., &; Juan, K.-L. (2013). Applying simulation optimization for solving a collaborative patient-referring mechanism problem. Journal of Industrial and Production Engineering, 30(6), 405-413.
Deng, G. (2007). Simulation-based optimization. Ph.D. dissertation. USA:University of Wisconsin.
Gupta, D., &; Denton, B. (2008). Appointment scheduling in health care: Challenges and opportunities. IIE Transactions, 40(9), 800-819.
Ho, C. J., &; Lau, H. S. (1992). Minimizing total-cost in scheduling outpatient appointments. Management Science, 38(12), 1750-1764.
Ho, C. J., &; Lau, H. S. (1999). Evaluating the impact of operating conditions on the performance of appointment scheduling rules in service systems. European Journal of Operational Research, 112(3), 542-553.
Inbarani, H. H., Ahmad, T. A. &; Jothi, G. (2014). Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Computer Methods and Programs in Biomedicine, 113(1), 175-185.
Kelton, W. D., &; Sadowski, R. P. (2010). Simulation with Arena. Fifth edtion. New York, USA: McGraw Hill.
Kennedy, J., &; Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 4, 1942-1948.
Klassen, K. J., &; Rohleder, T. R. (2004). Outpatient appointment scheduling with urgent clients in a dynamic, multi-period environment. International Journal of Service Industry Management, 15(2), 167-186.
Klassen, K. J., &; Yoogalingam, R. (2009). Improving performance in outpatient appointment services with a simulation optimization approach. Production and Operations Management, 18(4), 447-458.
LA, M., C, F., &; JR, M. (2010). Using simulation-optimization to construct screening strategies for cervical cancer. Health Care Management Science, 13(4), 294-318.
Law, A., M. (2007). Aimulation modeling and analysis. Fourth edition, Tucson, Arizona,USA:McGraw-Hill.
Molema, J. J. W., &; Groothuis, S. (2007). Healthcare system design and parttime working doctors. Health Care Management Science, 10, 365-371.
Mulvey, J. M., &; Vanderbei, R. (1991). Solving multi-stage stochastic networks: An application of scenario aggregation. Networks, 21, 619-643.
Mulvey, J. M., Vanderbei, R., &; Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264-281.
Peter, M., Vanden, B., &; Dennis, C. D. (1999). Scheduling customer arrivals to a stochastic service system. Naval Research Logistics ,46(5), 549-559.
Ramis, F. J., Baesler, F., Berho, E., Neriz, L., &; Sepulveda, J. A. (2008). A simulator to improve waiting times at a medical imaging center. Proceedings of the 2008 Winter Simulation Conference, 1572-1577.
Rico, F., Salari, E., &; Centeno, G. (2007). Emergency departments nurse allocation to face a pandemic influenza outbreak. Proceedings of the 2007 Winter Simulation Conference, 1292-1298.
Ross, K. S., Carter, H. B., Pearson, J. D., &; Guess, H. A. (2000). Comparative efficiency of prostate-specific antigen screening strategies for prostate cancer detection. Journal of America Medical Association, 284(11), 1399-1405.
Shi, Y., &; Eberhart, R. (1998). A modified particle swarm optimizer. Proceedings of IEEE International Conference on Evolutionary Computation, 69-73.
Shortell, S. M., &; Anderson, O. W. (1971). The physician referral process. Health Services Research, 6(1), 39-48.
Underwood, D. J., Zhang, J. Y., Denton, B. T., Shah, N. D., &; Inman, B. A. (2012). Simulation optimization of PSA-threshold based prostate cancer screening policies. Health Care Management Science, 15(4), 293-309.
Wijewickrama, A., &; Takakuwa, S. (2005). Simulation analysis of appointment scheduling in an outpatient department of internal medicine. Proceedings of the 2005 Winter Simulation Conference, 2264-2273.
Wijewickrama, A., &; Takakuwa, S. (2006). Simulation analysis of an outpatient department of internal medicine in a university hospital. Proceedings of the 2006 Winter Simulation Conference, 425-432.
Wijewickrama, A., &; Takakuwa, S. (2008). Outpatient appointment scheduling in a multi-facility system. Proceedings of the 2008 Winter Simulation Conference, 1563-1571.
Yang, K. K., Lau, M. L., &; Quek, S. A. (1998). A new appointment rule for a single-server, multiple-customer service system. Department of Decision Sciences, National University of Singapore.
Yanga, M., Allenb, T. T., Fryc, M. J., &; Keltonc, W. D. (2013). The call for equity: simulation optimization models to minimize the range of waiting times. IIE Transactions, 45(7), 781-795.
Yokouchi, M. (2012). Operations Analysis And Appointment Scheduling For An Outpatient Chemotherapy Department. Proceedings of the 2012 Winter Simulation Conference, 1(12), 9-12.
Yurtkuran, A., &; Emel, E. (2008). Simulation based decision-making for hospital pharmacy management. Proceedings of the 2008 Winter Simulation Conference, 1539-1546.
Zeltyn, S., Marmor, Y. N., Mandelbaum, A., Carmeli, B., Greenshpan, O., Mesika, Y., Wasserkrug, S., Vortman, P., Shtub, A., Lauterman, T., Schwartz, D., Moskovitch, K., Tzafrir, S., &; Basis, F. (2011). Simulation-based models of emergency departments: Operational, tactical, and strategic staffing. ACM Transactions on Modeling and Computer Simulation, 21(4), Article 24.
中央健康保險局:全民健康保險法. (2009). 資料來源:http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&;menu_id=660&;webdata_id=2091&;WD_ID=672.
吳淑女,(2003),牙醫門診總額制度專科轉診加成作業之現況分析研究,高雄醫學大學口腔衛生科學研究所,碩士論文。
卓儒君,(2012),以精實管理及模擬最佳化求解醫學中心急診室流程設計問題,製造資訊與系統研究所,碩士論文。
林尚達,(2006),具可靠度及穩健考量的新產品全球運籌模式之探討,碩士論文。
張淑真,(2008),急診病患轉診機制之研究:城鄉差異之研究,國立東華大學公共行行政研究所,碩士論文。
張馨予,郭美宏,劉佩芬,康春梅,(2012),改善心臟科門診病人跨院際轉診檢查之時效,長庚護理,23(4),488-501。
楊淳懿,(2011),運用系統模擬探討醫院協同環境之轉院機制,中原大學工業與系統工程學系,碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top