(3.238.99.243) 您好!臺灣時間:2021/05/17 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳榮財
研究生(外文):Jung-Tsai Chen
論文名稱:透明超高阻隔性高分子/石墨烯複合薄膜之研究
論文名稱(外文):Study on transparent and super barrier film based on polymer/graphene nanocomposites
指導教授:胡蒨傑李魁然
指導教授(外文):Chien-Chieh HuKueir-Rarn Lee
學位類別:博士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:186
中文關鍵詞:透明阻隔膜石墨烯複合膜
外文關鍵詞:transparent barrier filmcomposite filmgraphene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前工業應用對阻隔膜的需求與日俱增,高性能阻隔膜之開發備受注目,本研究利用不同技術製備透明、高阻隔性之高分子/石墨烯複合膜,研究成果大幅突破傳統高分子/黏土複合薄膜之性能。考量阻隔膜之性能與製程實用性,氧氣阻隔膜分別利用以下技術製備: (1) 層層自組裝(layer-by-layer self-assembly, LbL)技術製備分支狀聚乙烯亞胺(branched poly(ethylenimine, BPEI)/氧化石墨烯(graphene oxide, GO)複合膜;(2) 結合溶液混摻和恆溫再結晶技術製備聚乙烯醇(poly(vinyl alcohol), PVA)/GO複合膜;(3) 結合溶液混摻和前交聯法製備PVA/GO複合膜。水蒸氣阻隔膜則是先利用溶液混摻法製備環烯烴共聚物(cyclic olefin copolymer, COC)/熱還原石墨烯(thermally-reduced graphene oxide, TRG)複合膜,然後再進行熱處理和表面改質。
文獻指出利用LbL技術可製備出高阻隔和高透明之高分子/黏土薄膜,但卻需要40-70個雙層。為獲得高阻氣性並大幅降低雙層數,我們利用LbL技術製備BPEI/GO透明薄膜,並探討GO溶液pH值對薄膜微結構和氧氣阻隔性之影響。結果指出,在pH=3.5時,薄膜呈現非常緻密且規則之結構;於僅10個雙層條件下,展現出氧氣穿透率< 0.05 cc/m2/day,具有< 2.7 × 10-21 cm3 cm/cm2 /s/Pa的超低透過係數;此數值比傳統的SiOx鍍膜以及高分子-無機多層膜(PML)低了一個級數;比EVOH薄膜低了三個級數;比PVA/MMT混摻薄膜低了5個級數;也比其他LbL-高分子/黏土薄膜低了1~2個級數。此BPEI/GO薄膜展現出比其他複合材料優異許多的性能,可適用於電子產品,例如:液晶顯示器和太陽能電池模組等。
LbL製備之BPEI/GO複合膜雖然成功降低組裝雙層數,LbL製程仍較傳統溶液混摻技術複雜許多,為簡化製程,我們嘗試使用溶液摻混法製備PVA/GO複合膜,但由於溶液混摻薄膜的阻隔性較差。因此,我們發展出簡單結合溶液混摻和恆溫再結晶技術,製備具有超高阻氣性之PVA/GO複合膜。含0.1 wt% (0.07 vol%) GO之PVA/GO複合膜,經過6小時100C恆溫再結晶處理後,展現< 0.005 cc/m2/day的氧氣穿透率以及< 5.0  10-20 cm3 cm/cm2/s/Pa之氧氣透過係數,此數值低於其他高分子/無機粒子複合薄膜1~8個級數;顯示阻氧性遠優於其他混摻之高分子/無機粒子複合薄膜。此優異的氧氣阻隔性能是由特殊之PVA結晶/GO奈米片混成結構所貢獻。在恆溫再結晶過程中,PVA結晶會圍繞著GO生成,並且填充在GO奈米片間的空隙,聯結GO形成可阻擋氧氣透過之超大不可透過區域。本論文所提出之混摻GO結合高分子再結晶技術,提供複合膜改善阻隔性突破性進展。
結合溶液混摻和恆溫再結晶技術相較於LbL而言已簡單許多,但是仍需要進行長時間(100C,6h)的後熱處理,對於工業量產此程序仍有再簡化之需求。因此,我們結合溶液混摻和前交聯法製備PVA/GO複合膜。本研究成功發展出一種控制交聯反應條件使鑄膜溶液適當交聯並且不發生膠化得以進行刮膜的技術,此法在實際應用面較再結晶法更適用於大規模量產程序。同時,此交聯之PVA/GO複合膜展現與再結晶之PVA/GO複合膜相同的超高氧氣阻隔性能(OTR< 0.005 cc/m2/day)。交聯劑所扮演的角色為: (1) 使高分子基質緻密化;(2) 使高分子鏈剛硬化;(3)提升GO和PVA間的界面黏著性;(4)因交聯網絡結構為氣體不可透過區域,他們可聯結GO形成超大之阻隔層,因此氧氣阻隔性能得以大幅提升。溶液混摻結合前交聯技術,可省略長時間的後處理程序,亦可提升大面積複合膜之均勻性並降低能源消耗、投資成本及所需空間;此技術應為目前量產高分子/石墨烯阻隔複合薄膜最可行之方法。
高性能阻隔膜需同時阻隔氧氣與水氣,親水性高分子/GO複合膜阻水性不足,因此我們嘗試混合超微量之TRG進入COC薄膜內製備水氣阻隔薄膜。TRG在0.06wt% (0.009vol%)之添加量下,COC/TRG複合膜有效降低了水蒸氣透過係數22%。基於相近的降低比例下,此含量低於其他高分子/黏土或是高分子/石墨烯複合膜添加量的10-100倍,顯示添加TRG是非常有效的方法。為了更進一步改善阻隔性能,針對COC/TRG-0.06wt%複合膜進行不同溫度的熱處理(annealing),結果顯示,藉由熱處理方式可再大幅降低水蒸氣透過係數50%,這是由高分子鏈剛硬化以及界面黏著性獲得改善所貢獻的。最後,我們使用兩性高分子分別塗佈在COC和COC/TRG薄膜表面上,使其表面親水化。經表面塗布上一層親水層後,水氣的阻隔性可再獲得提升。對於親水層抑制水氣透過,我們首次提出水分子透過具有表面親水層之疏水阻隔膜之特殊傳輸機制。組合傳統與創新概念,本研究發展出阻水性優於所有高分子/無機物複合膜文獻值之高分子/石墨烯阻水氣複合薄膜。
本論文針對阻隔膜內的微結構與阻隔性能間的關聯性進行深入探討,並將氣體透過係數的實驗數據與Nielsen和Cussler模型進行比較,最終,我們對於如何製備具超高阻隔性之透明薄膜,提出深入且獨特的見解。本研究製備之氧氣和水氣阻隔膜皆展現優於其他文獻的性能,阻隔膜之性能遠優於食品與藥物應用之需求,並可適用於電子及能源產業。





The demands for barrier films in industrial applications increase at present; therefore, developing high-performance barrier films has been considered by many researchers. In this study, transparent and high-barrier polymer/graphene composite films were prepared by different techniques. Their performance is superior to other polymer/clay composites. With both the barrier film performance and the process practicability considered, oxygen barrier films were prepared using different techniques: (1) branched poly(ethylenimine) (BPEI)/graphene oxide (GO) composites fabricated by the method of layer-by-layer (LbL) self-assembly; (2) poly(vinyl alcohol) (PVA)/GO composites by the combined methods of solution blending and isothermal crystallization; (3) PVA/GO composites by the combined methods of solution blending and pre-crosslinking. Moreover, water vapor barrier films of cyclic olefin copolymer (COC)/thermally-reduced graphene oxide (TRG) composites were fabricated by solution blending and followed by annealing and surface modification.
Previous research indicated that transparent and high-barrier films, assembled from 40 bilayers to 70 bilayers of polymer/clay, could be prepared by an LbL technique. To obtain ultra-high barrier films with much lower number of bilayers, we used an LbL technique to fabricate BPEI/GO films and to discuss the effect of the GO suspension pH on the nanostructure and the oxygen barrier properties of LbL-BPEI/GO films. Film assemblies with only 10 bilayers, which were prepared at a pH of 3.5, exhibited a very dense and ordered structure and delivered very low oxygen transmission rates (< 0.05 cc/m2/day) (GO/BPEI-3.5)10 and an oxygen permeability of ~2.7 × 10-21 cm3 cm/cm2/s/Pa. This permeability is one order of magnitude lower compared with a typical SiOx nanocoating and polymer multilayer (PML) coatings, three orders of magnitude lower relative to EVOH films, five orders of magnitude lower to a PVA/MMT composite, and two orders of magnitude lower to polymer/clay assemblies. These data indicated that such films had a far superior performance compared with other films; they can be applied for electronics, such as liquid crystal display and photovoltaic modules.
Although a high-barrier LbL film with relatively much lower number of bilayers was prepared successfully, the LbL method is still more complex than the solution blending; hence, we tried to use the solution blending process to make PVA/GO composite films. However, the gas barrier performance of the PVA/GO blend film was insufficient for electronics. Therefore, we developed a simple method that combined solution blending and isothermal crystallization to fabricate PVA/GO composite films with super gas barrier properties. These films with only 0.1 wt% (0.07 vol%) GO, isothermally crystallized at 100C for 6 h, gave an O2 transmission rate < 0.005 cc/m2/day and an O2 permeability < 5.0  10-20 cm3 cm/cm2/Pa/s; they are far superior to other blend polymer/inorganic composites. The excellent O2 barrier properties are attributed to a unique hybrid of PVA crystals and GO nanoplatelets. PVA crystals form around the GO during the isothermal crystallization; the crystals fill in the spaces between the GO nanoplatelets, and together they become ultra-large impermeable regions, which can prevent the passage of O2. The combined methods of blending GO and polymer recrystallization technique proposed in this study, demonstrate a breakthrough in improving barrier properties of barrier films.
The combination of solution blending and isothermal crystallization is much simpler than the LbL method. But these combined methods require a long post-heat treatment (100C for 6h), which is impractical for industrial production processes. Therefore, we develop a method of combining solution blending and in-situ pre-crosslinking to fabricate crosslinked PVA/GO films. We controlled the crosslinking reaction conditions in PVA/GO solutions to avoid the occurrence of gelation. The PVA/GO films also exhibited the same oxygen barrier properties (OTR < 0.005 cc/m2/day) as the crystallized PVA/GO films did. The crosslinker functions were to: (1) densify the polymer matrix; (2) rigidify the polymer chain; (3) improve the interfacial adhesion between GO and PVA; (4) connect the GO sheets to each other to form an ultra-large impermeable region. As a result, the oxygen barrier properties were highly enhanced. The combined methods of solution blending and pre-crosslinking can skip the long post-heat treatment and it can also improve the uniformity of producing large-area composite film and reduce the energy consumption, cost and spaces. This is the most feasible technique for the mass production of polymer/graphene composite film at present.
High-performance barrier films hinder oxygen and water vapor from passing through at the same time, but the hydrophilic polymer/GO composite films lack water vapor barrier performance. Therefore, we prepared a water vapor barrier film by incorporating an ultra-low content of TRG into a hydrophobic COC. This film with only 0.06 wt% (0.009 vol%) TRG reduced the water vapor permeability by 22%. This TRG content is 10 to 100 times lower than that of other polymer/clay or polymer/graphene composites that reduce water vapor permeability at the same percentage. To further improve the barrier performance of the COC/TRG-0.06wt% composite film, it was annealed at different temperatures. Results showed that because of annealing, the permeabilities were greatly reduced; the treatment caused to rigidify the polymer chain and to improve the interfacial adhesion. An amphiphilic polymer was used to modify COC and COC/TRG films to make their surface hydrophilic. This study is the first to propose a special transport mechanism by which water passes through the barrier film with a hydrophilic surface layer. Combining the traditional and the novel aspects, this study develops a polymer/graphene composite film with barrier properties that is superior to other polymer/inorganic composite film.
The relationship between the barrier properties and the barrier film microstructure was thoroughly investigated. Experimental data on gas permeabilities were compared with Nielsen and Cussler models. As shown from analyzing the experimental results, we have given insights into how a transparent film with super gas barrier properties was prepared. The transparent composite film prepared in this study exhibited outstanding barrier performance far superior to other films. These films exhibit high performances that are much better than the requirements of the food packaging and the pharmaceutical; they can be applied to the applications of the electronics and the energy industry.






目錄
中文摘要 I
Abstract IV
致謝 VIII
目錄 XI
圖目錄 XV
表目錄 XXIII
第一章 緒論 1
1-1阻隔膜之應用與發展 1
1-2 阻隔膜之製備技術 4
1-2-1電漿輔助化學氣相沉積法(PECVD) 5
1-2-2分子/原子層沉積法(MLD/ALD) 5
1-2-3 Vitex-system Barix多層膜塗佈技術 6
1-2-4有機/無機混摻結合塗佈技術 6
1-2-5靜電層層自組裝(Layer-by-layer self-assembly) 8
1-3有機/無機複合膜之氣體阻隔預測模型 9
1-3-1 Nielsen model 9
1-3-2 Cussler model 12
1-4 石墨烯(GRAPHENE)之簡介 14
1-4-1 石墨烯的性質 14
1-4-2 石墨烯的製備方法 15
1-4-3 石墨烯之阻隔特性 18
1-5文獻回顧 22
1-5-1阻隔膜之沿革 22
1-5-2 石墨烯/高分子奈米複合材料之製備 25
1-5-3 石墨烯阻隔薄膜 27
1-6動機與目的 30
1-7 研究架構 33
第二章 實驗 34
2-1 實驗藥品與材料 34
2-2 實驗儀器 35
2-3 阻水和阻氧膜之製備 36
2-3-1 合成氧化石墨烯及熱還原氧化石墨烯奈米片 36
2-3-2 層層自組裝製備BPEI/GO阻隔膜 38
2-3-3 再結晶PVA/GO複合膜之製備 39
2-3-4 原位化學交聯PVA/GO複合膜之製備 41
2-3-5 COC/TRG阻水薄膜之製備 44
2-4 薄膜與材料鑑定 44
2-4-1 Graphite、graphite oxide、GO及TRG的鑑定 44
2-4-2 LbL自組裝薄膜厚度成長檢測 45
2-4-3原子力顯微鏡 (Atomic force microscopy)(AFM)鑑定 45
2-4-4 場發射式電子顯微鏡(Field-emission scanning electron microscopy, FE-SEM)鑑定 46
2-4-5廣角X射線繞射儀(Wide-angle X-ray diffraction, WAXD)鑑定 46
2-4-6 低掠角廣角X射線繞射儀(Grazing-incident wide-angle X-ray diffraction, GIWAXD)鑑定 46
2-4-7穿透式小角度X光散射儀(Transmission Small-angel X-ray Scattering)(SAXS)鑑定 47
2-4-8 熱性質分析 47
2-4-9 氧氣穿透率(Oxygen transmission rate, OTR)測試 48
2-4-10 水蒸氣穿透率(Water vapor transmission rate, WVTR) 測試 50
第三章 改變pH值調控GO/BPEI LBL自組裝層微結構製備透明超高阻氣性之薄膜 52
3-1 前言 52
3-2 結果與討論 53
3-2-1 Graphite oxide、GO性質鑑定 53
3-2-1-1 化學結構鑑定 53
3-2-1-2 熱重分析 57
3-2-1-3 GO微結構與尺寸分析 58
3-2-2 LbL薄膜成長機制 61
3-2-3 LbL自組裝薄膜氣體阻隔性和透光性 63
3-2-4 LbL薄膜結構分析 69
3-3 結論 75
第四章 調控高分子結晶結構製備超高阻氣性聚乙烯醇/氧化石墨烯複合膜 76
4-1 前言 76
4-2 結果與討論 78
4-2-1 PVA/GO混摻薄膜之性質鑑定 78
4-2-1-1 PVA/GO混摻薄膜之阻隔性與透明性 78
4-2-1-2 PVA/GO混摻薄膜之結晶型態與微結構分析 80
4-2-2 恆溫再結晶對PVA/GO薄膜性質之影響 83
4-2-2-1 恆溫再結晶對PVA/GO薄膜阻隔性和透明性之影響 83
4-2-2-2 恆溫再結晶對PVA/GO薄膜結構之影響 88
4-3 結論 95
第五章 利用前交聯法製備超高阻氣性聚乙烯醇/氧化石墨烯複合膜 96
5-1 前言 96
5-2 結果與討論 98
5-2-1 交聯劑種類及濃度對阻隔性能之影響 98
5-2-2 交聯時間對阻隔性能之影響 105
5-2-3 交聯PVA/GO薄膜結構分析 109
5-2-4 交聯PVA/GO薄膜之透明性檢測 111
5-3 結論 113
第六章 高阻水氣之COC/Thermally reduced graphene (TRG)複合薄膜之製備 114
6-1 前言 114
6-2 結果與討論 115
6-2-1 TRG的鑑定 115
6-2-2 添加TRG對水氣阻隔性及透明性之影響 121
6-2-3 添加TRG對薄膜結構之影響 124
6-2-4 熱處理對COC/TRG複合膜阻水性之影響 127
6-2-5 表面親水層對COC/TRG薄膜阻水性之影響 129
6-3 結論 135
第七章 總結與未來展望 136
7-1 總結 136
7-2 未來工作與展望 137
第八章 參考文獻 139
第九章 附錄 159
作者簡介 159
著作 160


圖目錄
第一章
Figure 1-1 The requirement of barrier properties for various applications [1]. 2
Figure 1-2 Cross-sectional structure of flexible displays. 2
Figure 1-3 Schematic of categories of microcomposites and nanocomposites. [16] 7
Figure 1-4 Schematic of the layer-by-layer self-assembly process. [19] 9
Figure 1-5 Model for the path of the diffusing molecule through a polymer filled with plate. 11
Figure 1-6 Minimum permeability of gases through a polymer filled with plates of different L/W ratio oriented parallel to the surface of the film. [28] 11
Figure 1-7 Models for barrier membranes. The first drawing is a sketch of the actual membrane. In the second and third drawings, diffusion occurs through regularly spaced slits or pores. In the last, it occurs through randomly spaced slits. 14
Figure 1-8 The crystal structure of graphene—carbon atoms arranged in a honeycomb lattice [42]. 16
Figure 1-9 The ideal structure of graphene oxide [43]. 17
Figure 1-10 Mechanism of chemical reduction for GO by hydrazine [39]. 17
Figure 1-11 Schematic of the synthesis of thermally reduced graphene oxide (TR-GO) from graphite[41]. 17
Figure 1-12 (a) Side view schematic of the graphene sealed microchamber (b) scatter plot of the gas leak rates vs thickness for all the devices measured. [32] 19
Figure 1-13 Graphene lattice structure: sp2 hybridized carbon atoms arranged in a 2D honeycomb lattice. (Bottom) the molecular structure with rough electronic density distribution: while graphene is relatively transparent to electrons, it is practically impermeable to all molecules at room temperature. Geometric pore (0.064 nm) is also small enough not to allow molecules to pass through [44]. 20
Figure 1-14 Structure of montmorillonite (phyllosilicate clay). 25
Figure 1-15 The framework for the study. 33

第二章
Figure 2-1 Homebuilt robotic dipping machine. 39
Figure 2-2 Schematic of preparing GO/BPEI films through layer-by-layer self-assembly. 39
Figure 2-3 The schematic of membrane preparation by solution casting method. 40
Figure 2-4 The crosslinking mechanism between Borax and PVA [102]. 42
Figure 2-5 Crosslinking reaction of borax and GO [101]. 42
Figure 2-6 The crosslinking mechanism between GA and PVA (case A-crosslinking、case B-branching) [104]. 43
Figure 2-7 Schematic of grazing-incident wide-angle X-ray diffraction [108]. 47
Figure 2-8 Mocon OX-TRAN 2/21 for oxygen transmission rate test. 49
Figure 2-9 Schematic of MOCON Coulox oxygen sensor. 50
Figure 2-10 Schematic of MOCON PERMATRAN-W Model 3/61[112]. 51

第三章
Figure 3-1 FTIR spectra of graphite and graphite oxide. 53
Figure 3-2 XPS spectra of graphite and graphite oxide. 55
Figure 3-3 C1s curve fitting result for graphite oxide. 56
Figure 3-4 Structural model proposed by Lerf [125]. 56
Figure 3-5 Zeta potential of GO as a function of pH. 57
Figure 3-6 TGA curves of graphite and graphite oxide. (nitrogen atmosphere, heating rate = 10˚C/min) 58
Figure 3-7 WAXD patterns for graphite and graphite oxide. 59
Figure 3-8 (a) TEM image of GO, (b) the AFM topography of GO, and (c) the height-profile of GO. 59
Figure 3-9 (a) AFM topography of GO nanoplatelets, (b) size distribution of GO nanoplatelets, as analyzed from AFM images. 60
Figure 3-10 Size distribution of GO by DLS. 61
Figure 3-11 Absorbance at a wavelength of 231 nm for (GO/BPEI)n films. (Absorbance was measured from UV-visible spectroscopy) 62
Figure 3-12 Thickness as a function of the number of bilayers. (Thickness was measured from ellipsometry spectroscopy) 62
Figure 3-13 The effect of pH of GO suspension on the oxygen transmission rate of (GO/BPEI -X)5 film. 64
Figure 3-14 The effect of pH of GO suspension on the oxygen transmission rate of (GO/BPEI -X)5 film. 65
Figure 3-15 Thickness and permeability of LbL GO/BPEI films compared with films prepared by means of other technologies ( this work, ●[133], ▲[4], ▼[115], △[134], ▽[87], ◇[114]). MMT = montmorillonite, the most commonly used clay nanoplatelet as a gas barrier; PVA = poly(vinyl alcohol); and EVOH = ethylene vinyl alcohol. Both PVA and EVOH films have higher oxygen barrier properties compared with other polymeric materials. SiOx is a conventional inorganic oxide barrier material;[135] this SiOx film was prepared by the PECVD method. 67
Figure 3-16 (a) Transmittance of (GO/BPEI-3.5)n assemblies on the PET substrate; (b) Transmittance at 550 nm; (c) is a (GO/BPEI-3.5)5 film placed over the image displayed on a cellphone. 68
Figure 3-17 AFM in-phase images (5 × 5 μm) of (GO/BPEI)5 films prepared at different pH values: (a) 2.5, (b) 3.0 (c) 3.5, (d) 4.7, (e) 6.0, and (f) 8.0. (These images were taken in air by using the ScanAsyst mode) 71
Figure 3-18 Schematic of the mechanism of GO deprotonization. 71
Figure 3-19 AFM height-profile images (5 × 5 μm) of the (GO/BPEI)5 films prepared at different pH values: (a) 2.5, (b) 3.0 (c) 3.5, (d) 4.7, (e) 6.0, and (f) 8.0. (These images were taken in air by using ScanAsyst mode) 72
Figure 3-20 Cross-sectional images of (GO/BPEI-3.5)n films. TEM: (a) n = 5 and (b) n = 10. SEM: (c) n = 5 and (d) n = 10. 73
Figure 3-21 WAXD patterns of (GO/BPEI-X)10 films and the GO powder; the pattern of (GO/BPEI-X)10 was obtained using GIWAXD. 74
Figure 3-22 Routes of oxygen passing through the layer-by-layer GO/BPEI film assemblies. 74

第四章
Figure 4-1 Formation of super gas barrier film of PVA/GO with hybrid structure. 78
Figure 4-2 The effect of GO content on the OTR and the transmittance at 550 nm for the PVA/GO blend membrane. 79
Figure 4-3 TEM (a-c) and cross-sectional FE-SEM (d-f) images of PVA/GO blend films; (a,d) GO = 0.1 wt%; (b,e) GO = 0.5 wt%; (c,f) GO = 1.0 wt%. 80
Figure 4-4 XRD patterns for PVA/GO films. 82
Figure 4-5 SAXS patterns for PVA/GO blend films. 82
Figure 4-6 DSC thermogram for PVA. 84
Figure 4-7 The crystallinity of PVA as a function of isothermal crystallization temperature. 85
Figure 4-8 The illustration for explaining the effect of crystallization temperature on the crystallization rate. 85
Figure 4-9 OTR data of crystallized PVA/GO films as a function of crystallization time. (Isothermal crystallization temperature is 100˚C) 86
Figure 4-10 Crystallinity of PVA-GO-0.1wt% and PVA films as a function of crystallization time 86
Figure 4-11 (a) Transmittance at 550 nm for different crystallized PVA/GO films, depending on the isothermal crystallization time; images of crystallized PVA/GO films (b) 0 h; (c) 6 h. 87
Figure 4-12 (b) WAXD patterns of PVA/GO-0.1 wt% film before and after crystallization. 89
Figure 4-13 TEM images for PVA/GO-0.1 wt% films before (a) and after (b) crystallization. 90
Figure 4-14 Plot of O2 relative permeability for PVA, blend PVA/GO film, and hybrid PVA/GO-0.1wt% film obtained by isothermal crystallization at 100˚C for 6 h, in comparison to prediction of permeability by three models. 92
Figure 4-15 The effect of GO content on the aspect ratio. 93
Figure 4-16 The effect of GO content on the glass transition temperature of PVA. 93
Figure 4-17 The effect of isothermal crystallization time on the glass transition temperature of PVA. (GO content = 0.1 wt%) 94
Figure 4-18 Schematic of the probable structure formation of hybrid PVA/GO composite. 94

第五章
Figure 5-1 Schematic of preparing crosslinked PVA/GO nanocomposite with the combining method of pre-crosslinking and solution casting. 98
Figure 5-2 FTIR spectra of the PVA/GO-0.1wt% and the GA-crosslinked PVA/GO-0.1 film. (crosslinking time = 1h) 100
Figure 5-3 FTIR spectra of the PVA/GO-0.1 and the borax-crosslinked PVA/GO-0.1 wt% film. (crosslinking time = 1h) 100
Figure 5-4 Normalized C-O-C/C-H ratio as a function of GA content. (the ratio was normalized by that of the PVA/GO-0.1 film) (crosslinking time = 1h) 102
Figure 5-5 Normalized B-O-C/C-H ratio as a function of borax content. (the ratio was normalized by that of the PVA/GO-0.1 film) (crosslinking time = 1h) 102
Figure 5-6 The effect of crosslinker content on the oxygen transmission rate of the crosslinked PVA/GO nanocomposite film. (crosslinking time = 1h) 103
Figure 5-7 The effect of crosslinker content on the crystallinity of PVA. (crosslinking time = 1h) 103
Figure 5-8 XRD patterns for the PVA, the PVA/GO-0.1 and the GA-crosslinked film. (GA-X, where X represent the content of GA based on PVA) 104
Figure 5-9 XRD patterns for the PVA/GO-0.1wt% and the borax-crosslinked film. (Borax-X, where X represent the content of borax based on PVA) 104
Figure 5-10 FTIR spectra of the PVA/GO-0.1wt% film crosslinked with GA for different period of time. (crosslinker content = 1.0 wt%) 106
Figure 5-11 FTIR spectra of the PVA/GO-0.1wt% film crosslinked with borax for different period of time. (crosslinker content = 1.0 wt%) 107
Figure 5-12 Normalized C-O-C/C-H ratio as a function of GA crosslinking time. (the ratio was normalized by that of the PVA/GO-0.1 film) (crosslinker content = 1.0 wt%) 107
Figure 5-13 Normalized B-O-C/C-H ratio as a function of borax crosslinking time. (the ratio was normalized by that of the PVA/GO-0.1 film) (crosslinker content = 1.0 wt%) 108
Figure 5-14 The effect of crosslinking time on the oxygen transmission rate. (crosslinker content = 1.0 wt%) 108
Figure 5-15 The effect of crosslinking time on the crystallinity. (crosslinker content = 1.0 wt%) 109
Figure 5-16 The effective aspect ratio for crosslinked PVA/GO film as function of crosslinking time. (crosslinker content = 1.0 wt%) 110
Figure 5-17 Schematic of the probable structure formation of crosslinked PVA/GO composite. 110
Figure 5-18 The transmittance at 550 nm for crosslinked film as a function of crosslinker content. 112
Figure 5-19 The transmittance at 550 nm for crosslinked film as a function of crosslinking time. 113

第六章
Figure 6-1 FTIR spectra of GO and TRG. 117
Figure 6-2 XPS spectra of GO and TRG. 117
Figure 6-3 The XPS C1s spectrum of TRG. 118
Figure 6-4 The XRD petterns of GO and TRG. 119
Figure 6-5 The Raman spectra of GO and TRG. 119
Figure 6-6 N2 adsorption and desorption isothermal of (a) GO and (b) TRG. 120
Figure 6-7 The AFM height profile image of TRG. 121
Figure 6-8 The effect of TRG content on the H2O relative permeability (P/Po). (P=permeability of COC/TRG-X composite film and Po=permeability of COC film) 122
Figure 6-9 The UV-visible spectra for the COC and COC/TRG-X composite film. 123
Figure 6-10 The light transmittance at 550 nm as a function of TRG content. 123
Figure 6-11 The glass transition temperature of COC as a function of TRG content. 125
Figure 6-12 The derivative thermal gravimetry curves for the COC/TRG-X composites. 125
Figure 6-13 The XRD patterns of the COC and the COC/TRG composite films. 126
Figure 6-14 The effect of TRG content on the d-spacing of COC crystals. 127
Figure 6-15 The DSC thermogram of COC membrane. 128
Figure 6-16 The schematic for illustrating the mechanism of H2O transport through the COC and the surface-modified COC membrane. 131
Figure 6-17 The correlation between the concentration of amphiphilic agent and the surface density. 132
Figure 6-18 The H2O relative permeability as a function of surface density of hydrophilic layer. 132
Figure 6-19 The relationship between the surface density of hydrophilic layer and the water contact angle. 133



表目錄
第一章
Table 1-1 Minimum property requirements of a polymer substrate for flexible displays [2]. 3
Table 1-2 Properties of base film for polymer substrates [2]. 4
Table 1-3 The kinetic diameter of gas molecule. 21
Table 1-4 The kinetic diameter of liquid molecule. 21

第三章
Table 3-1 Atomic composition of graphite and graphite oxide. 55
Table 3-2 Composition of the chemical groups of graphite oxide. 56
Table 3-3 OTR, O2 permeability, and BIF of PET and GO/BPEI thin film assemblies. 66

第四章
Table 4-1 The effect of GO content on the crystallinity of the PVA/GO blend membrane. (crystallinity was determined from DSC analysis) 81
Table 4-2 Comparison between the hybrid film in this study and the other barrier films. 88

第五章
Table 5-1 Variation modes and band frequencies in PVA, GA and crosslinked PVA/GO. 101
Table 5-2 The Tg of PVA, PVA/GO and crosslinked PVA/GO film. 111

第六章
Table 6-1 The atomic composition of GO and TRG analyzed by XPS. 118
Table 6-2 The maximum decomposition temperature for COC and COC/TRG composites. 126
Table 6-3 The effect of annealing temperature on the H2O permeability of COC/TRG-0.06 composite membrane. 128
Table 6- 4 The Tg of COC/TRG-0.06 membrane as function of annealing temperature. 129
Table 6-5 The water uptake data for two kinds of hydrophilic layer. 132
Table 6-6 The H2O permeability of surface-modified COC/TRG-0.06 after annealing at 120C for 24h. 133
Table 6-7 Comparison of barrier performance of our COC/TRG film with other technologies. 134


[1] B. M. Yoo, H. Jin Shin, H. W. Yoon, H. B. Park, Graphene and graphene oxide and their uses in barrier polymers, Journal of Applied Polymer Science, 131 (2013) 39628.
[2] M.C. Choi, Y. Kim, C.S. Ha, Polymers for flexible displays: From material selection to device applications, Progress in Polymer Science, 33 (2008) 581-630.
[3] K.H.A. Bogart, N.F. Dalleska, G.R. Bogart, E.R. Fisher, Plasma enhanced chemical vapor deposition of SiO2 using novel alkoxysilane precursors, Journal of Vacuum Science &; Technology A, 13 (1995) 476-480.
[4] N. Inagaki, S. Tasaka, H. Hiramatsu, Preparation of oxygen gas barrier poly(ethylene terephthalate) films by deposition of silicon oxide films plasma-polymerized from a mixture of tetramethoxysilane and oxygen, Journal of Applied Polymer Science, 71 (1999) 2091-2100.
[5] M.D. Groner, S.M. George, R.S. McLean, P.F. Carcia, Gas diffusion barriers on polymers using Al2O3 atomic layer deposition, Applied Physics Letters, 88 (2006) 051901-1-3.
[6] A.B. Chwang, M.A. Rothman, S.Y. Mao, R.H. Hewitt, M.S. Weaver, J.A. Silvernail, K. Rajan, M. Hack, J.J. Brown, X. Chu, L. Moro, T. Krajewski, N. Rutherford, Thin film encapsulated flexible organic electroluminescent displays, Applied Physics Letters, 83 (2003) 413-415.
[7] P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M.K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett, M.B. Sullivan, Ultra barrier flexible substrates for flat panel displays, Displays, 22 (2001) 65-69.
[8] 陳良吉, OLED封裝技術介紹, 化工第51卷第2期, (2004).
[9] M. Pramanik, S.K. Srivastava, B.K. Samantaray, A.K. Bhowmick, Rubber–clay nanocomposite by solution blending, Journal of Applied Polymer Science, 87 (2003) 2216-2220.
[10] D. Wang, J. Zhu, Q. Yao, C.A. Wilkie, A Comparison of various methods for the preparation of polystyrene and poly(methyl methacrylate) clay nanocomposites, Chemistry of Materials, 14 (2002) 3837-3843.
[11] T.G. Gopakumar, J.A. Lee, M. Kontopoulou, J.S. Parent, Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites, Polymer, 43 (2002) 5483-5491.
[12] C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L.S. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chemical Physics Letters, 364 (2002) 303-308.
[13] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chemistry of Materials, 22 (2010) 1392-1401.
[14] F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Review article: Polymer-matrix nanocomposites, Processing, Manufacturing, and Application: An Overview, Journal of Composite Materials, 40 (2006) 1511-1575.
[15] H. Kim, Y. Miura, C.W. Macosko, Graphene/Polyurethane Nanocomposites for improved gas barrier and electrical conductivity, Chemistry of Materials, 22 (2010) 3441-3450.
[16] W.J. Boo, L. Sun, J. Liu, E. Moghbelli, A. Clearfield, H.J. Sue, H. Pham, N. Verghese, Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 45 (2007) 1459-1469.
[17] F.J.M. Hoeben, P. Jonkheijm, E.W. Meijer, A.P.H.J. Schenning, About supramolecular assemblies of π-conjugated systems, Chemical Reviews, 105 (2005) 1491-1546.
[18] R.K. Iler, Multilayers of colloidal particles, Journal of Colloid and Interface Science, 21 (1966) 569-594.
[19] G. Decher, Fuzzy Nanoassemblies: Toward layered polymeric multicomposites, Science, 277 (1997) 1232-1237.
[20] M. Schönhoff, Layered polyelectrolyte complexes: physics of formation and molecular properties, Journal of Physics: Condensed Matter, 15 (2003) R1781.
[21] E. Kharlampieva, V. Kozlovskaya, S.A. Sukhishvili, Layer-by-layer hydrogen-bonded polymer films: From fundamentals to applications, Advanced Materials, 21 (2009) 3053-3065.
[22] W.B. Stockton, M.F. Rubner, Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions, Macromolecules, 30 (1997) 2717-2725.
[23] N.A. Kotov, Layer-by-layer self-assembly: The contribution of hydrophobic interactions, Nanostructured Materials, 12 (1999) 789-796.
[24] S. Dodoo, R. Steitz, A. Laschewsky, R. von Klitzing, Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers, Physical Chemistry Chemical Physics, 13 (2011) 10318-10325.
[25] J. Choi, M.F. Rubner, Influence of the degree of ionization on weak polyelectrolyte multilayer assembly, Macromolecules, 38 (2004) 116-124.
[26] M.A. Priolo, K.M. Holder, D. Gamboa, J.C. Grunlan, Influence of clay concentration on the gas barrier of clay–polymer nanobrick wall thin film assemblies, Langmuir, 27 (2011) 12106-12114.
[27] S.T. Dubas, J.B. Schlenoff, Factors controlling the growth of polyelectrolyte multilayers, Macromolecules, 32 (1999) 8153-8160.
[28] L.E. Nielsen, Models for the permeability of filled polymer systems, Journal of Macromolecular Science: Part A - Chemistry, 1 (1967) 929-942.
[29] E.L. Cussler, S.E. Hughes, W.J. Ward Iii, R. Aris, Barrier membranes, Journal of Membrane Science, 38 (1988) 161-174.
[30] A.K. Geim, Graphene: Status and prospects, Science, 324 (2009) 1530-1534.
[31] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[32] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano Letters, 8 (2008) 2458-2462.
[33] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308.
[34] 洪偉修, 世上最薄的材料-石墨烯, 98康熙化學報(康熙文化事業股份有限公司), 11月號 (2009) 980047.
[35] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183-191.
[36] P. Sutter, Epitaxial graphene: How silicon leaves the scene, Nature Materials, 8 (2009) 171-172.
[37] B.C. Brodie, On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, 149 (1859) 249-259.
[38] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958) 1339-1339.
[39] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
[40] Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets, ACS Nano, 4 (2010) 1227-1233.
[41] S.Y. Chee, H.L. Poh, C.K. Chua, F. Sanek, Z. Sofer, M. Pumera, Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide, Physical Chemistry Chemical Physics, 14 (2012) 12794-12799.
[42] K.S. Novoselov, Nobel Lecture: Graphene: Materials in the flatland, Reviews of Modern Physics, 83 (2011) 837-849.
[43] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, 39 (2010).
[44] V. Berry, Impermeability of graphene and its applications, Carbon, 62 (2013) 1-10.
[45] A.G. Erlat, R.J. Spontak, R.P. Clarke, T.C. Robinson, P.D. Haaland, Y. Tropsha, N.G. Harvey, E.A. Vogler, SiOx gas barrier coatings on polymer substrates:  morphology and gas transport considerations, The Journal of Physical Chemistry B, 103 (1999) 6047-6055.
[46] J.B. Faisant, A. Aït-Kadi, M. Bousmina, L. Descheˆnes, Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends, Polymer, 39 (1998) 533-545.
[47] J.M. Torradas, D. Zhang, New laminar oxygen barrier technology for food packaging applicaitons., Proceeding of SPE ANTEC, Montreal, Canada, (1991) 1468-1470.
[48] S. De Petris, P. Laurienzo, M. Malinconico, M. Pracella, M. Zendron, Study of blends of nylon 6 with EVOH and carboxyl-modified EVOH and a preliminary approach to films for packaging applications, Journal of Applied Polymer Science, 68 (1998) 637-648.
[49] C. Citterio, E. Selli, G. Testa, A.M. Bonfatti, A. Seves, Physico-chemical characterization of compatibilized poly(propylene)/aromatic polyamide blends, Die Angewandte Makromolekulare Chemie, 270 (1999) 22-27.
[50] S. Gene, A.L. Brody, A twenty-year retrospective on plastics: oxygen barrier packaging materials., TAPPI Polymers, Laminations and coatings conference proceedings, San Francisco, CA, (1998) 119-140.
[51] J.G. Bonner, U.S. patent 5, 859, 129, (1999).
[52] J.G. Bonner, A.K. Powell, U.S. patent 5, 792, 530, (1998).
[53] Anon, LCP plus PET equals increased barrier property, Packing Innovation, 5 (1999).
[54] G. Flodberg, A. Hellman, M.S. Hedenqvist, E.R. Sadiku, U.W. Gedde, Barrier properties of blends based on liquid crystalline polymers and polyethylene, Polymer Engineering &; Science, 40 (2000) 1969-1978.
[55] J.M. Lagarón, E. Giménez, R. Gavara, J.J. Saura, Study of the influence of water sorption in pure components and binary blends of high barrier ethylene–vinyl alcohol copolymer and amorphous polyamide and nylon-containing ionomer, Polymer, 42 (2001) 9531-9540.
[56] J.H. Yeo, C.H. Lee, C.S. Park, K.J. Lee, J.D. Nam, S.W. Kim, Rheological, morphological, mechanical, and barrier properties of PP/EVOH blends, Advances in Polymer Technology, 20 (2001) 191-201.
[57] J. Lange, Y. Wyser, Recent innovations in barrier technologies for plastic packaging—a review, Packaging Technology and Science, 16 (2003) 149-158.
[58] J. Lange, B. Nicolas, J. Galy, J. Gerard, Influence of structure and chemical composition on oxygen permeability of crosslinked epoxy-amine coatings, Polymer, 43 (2002) 5985-5994.
[59] T.V. Duncan, Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors, Journal of Colloid and Interface Science, 363 (2011) 1-24.
[60] M. Kawasumi, The discovery of polymer-clay hybrids, Journal of Polymer Science Part A: Polymer Chemistry, 42 (2004) 819-824.
[61] K. Yano, A. Usuki, A. Okada, Synthesis and properties of polyimide-clay hybrid films, Journal of Polymer Science Part A: Polymer Chemistry, 35 (1997) 2289-2294.
[62] G. Gorrasi, M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, M. Alexandre, P. Dubois, Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion, Polymer, 44 (2003) 2271-2279.
[63] J.M. Yeh, S.J. Liou, M.C. Lai, Y.W. Chang, C.Y. Huang, C.P. Chen, J.H. Jaw, T.Y. Tsai, Y.H. Yu, Comparative studies of the properties of poly(methyl methacrylate)–clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion, Journal of Applied Polymer Science, 94 (2004) 1936-1946.
[64] D. Pereira, P.P. Losada, I. Angulo, W. Greaves, J.M. Cruz, Development of a polyamide nanocomposite for food industry: Morphological structure, processing, and properties, Polymer Composites, 30 (2009) 436-444.
[65] J.K. Kim, C. Hu, R.S.C. Woo, M.L. Sham, Moisture barrier characteristics of organoclay–epoxy nanocomposites, Composites Science and Technology, 65 (2005) 805-813.
[66] M.A. Osman, J.E.P. Rupp, U.W. Suter, Gas permeation properties of polyethylene-layered silicate nanocomposites, Journal of Materials Chemistry, 15 (2005) 1298-1304.
[67] O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, S.T. Nguyen, Crumpled graphene nanosheets as highly effective barrier property enhancers, Advanced Materials, 22 (2010) 4759-4763.
[68] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282-286.
[69] A.L. Higginbotham, J.R. Lomeda, A.B. Morgan, J.M. Tour, Graphite oxide flame-retardant polymer nanocomposites, ACS Applied Materials &; Interfaces, 1 (2009) 2256-2261.
[70] D. Chen, H. Zhu, T. Liu, In Situ Thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets, ACS Applied Materials &; Interfaces, 2 (2010) 3702-3708.
[71] S. Villar-Rodil, J.I. Paredes, A. Martinez-Alonso, J.M.D. Tascon, Preparation of graphene dispersions and graphene-polymer composites in organic media, Journal of Materials Chemistry, 19 (2009) 3591-3593.
[72] K. Kalaitzidou, H. Fukushima, L.T. Drzal, A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Composites Science and Technology, 67 (2007) 2045-2051.
[73] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Advanced Functional Materials, 19 (2009) 2297-2302.
[74] H.J. Salavagione, M.A. Gómez, G. Martínez, Polymeric Modification of graphene through esterification of graphite oxide and poly(vinyl alcohol), Macromolecules, 42 (2009) 6331-6334.
[75] H.J. Salavagione, G. Martinez, M.A. Gomez, Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties, Journal of Materials Chemistry, 19 (2009) 5027-5032.
[76] C. Bao, Y. Guo, L. Song, Y. Hu, Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism, Journal of Materials Chemistry, 21 (2011) 13942-13950.
[77] P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide, Macromolecular Rapid Communications, 30 (2009) 316-327.
[78] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3 (2009) 3884-3890.
[79] H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization, Chemical Physics Letters, 484 (2010) 247-253.
[80] J.R. Potts, S.H. Lee, T.M. Alam, J. An, M.D. Stoller, R.D. Piner, R.S. Ruoff, Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization, Carbon, 49 (2011) 2615-2623.
[81] Y.X. Pan, Z.Z. Yu, Y.C. Ou, G.H. Hu, A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization, Journal of Polymer Science Part B: Polymer Physics, 38 (2000) 1626-1633.
[82] P. Liu, K. Gong, P. Xiao, M. Xiao, Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite, Journal of Materials Chemistry, 10 (2000) 933-935.
[83] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes, Science, 335 (2012) 442-444.
[84] F. Guo, G. Silverberg, S. Bowers, S.P. Kim, D. Datta, V. Shenoy, R.H. Hurt, Graphene-based environmental barriers, Environmental Science &; Technology, 46 (2012) 7717-7724.
[85] H.D. Huang, P.G. Ren, J. Chen, W.Q. Zhang, X. Ji, Z.M. Li, High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films, Journal of Membrane Science, 409–410 (2012) 156-163.
[86] S. Morimune, T. Nishino, T. Goto, Ecological Approach to Graphene oxide reinforced poly (methyl methacrylate) nanocomposites, ACS Applied Materials &; Interfaces, 4 (2012) 3596-3601.
[87] Y.H. Yang, L. Bolling, M.A. Priolo, J.C. Grunlan, Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films, Advanced Materials, 25 (2013) 503-508.
[88] Q. Zhao, Q.F. An, T. Liu, J.T. Chen, F. Chen, K.R. Lee, C.J. Gao, Bio-inspired polyelectrolyte complex/graphene oxide nanocomposite membranes with enhanced tensile strength and ultra-low gas permeability, Polymer Chemistry, 4 (2013) 4298-4302.
[89] Y. Mao, S. Wen, Y. Chen, F. Zhang, P. Panine, T.W. Chan, L. Zhang, Y. Liang, L. Liu, High performance graphene oxide based rubber composites, Scientific Reports, 3 (2013) 1-7.
[90] C. Xiang, P.J. Cox, A. Kukovecz, B. Genorio, D.P. Hashim, Z. Yan, Z. Peng, C.C. Hwang, G. Ruan, E.L.G. Samuel, P.M. Sudeep, Z. Konya, R. Vajtai, P.M. Ajayan, J.M. Tour, Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances, ACS Nano, 7 (2013) 10380-10386.
[91] J. Wu, G. Huang, H. Li, S. Wu, Y. Liu, J. Zheng, Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content, Polymer, 54 (2013) 1930-1937.
[92] J. Jin, R. Rafiq, Y.Q. Gill, M. Song, Preparation and characterization of high performance of graphene/nylon nanocomposites, European Polymer Journal, 49 (2013) 2617-2626.
[93] H. Kwon, D. Kim, J. Seo, H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromolecular Research, 21 (2013) 987-994.
[94] I.H. Tseng, Y.F. Liao, J.C. Chiang, M.H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property, Materials Chemistry and Physics, 136 (2012) 247-253.
[95] J. Cho, K. Char, J.D. Hong, K.B. Lee, Fabrication of highly ordered multilayer films using a spin self-assembly method, Advanced Materials, 13 (2001) 1076-1078.
[96] D.W. Kim, A. Blumstein, J. Kumar, L.A. Samuelson, B. Kang, C. Sung, Ordered multilayer nanocomposites prepared by electrostatic layer-by-layer assembly between aluminosilicate nanoplatelets and substituted oonic polyacetylenes, Chemistry of Materials, 14 (2002) 3925-3929.
[97] P.Y. Vuillaume, K. Glinel, A.M. Jonas, A. Laschewsky, Ordered polyelectrolyte “Multilayers”. 6. Effect of molecular parameters on the formation of hybrid multilayers based on poly(diallylammonium) salts and exfoliated clay, Chemistry of Materials, 15 (2003) 3625-3631.
[98] M.A. Priolo, D. Gamboa, K.M. Holder, J.C. Grunlan, Super gas barrier of transparent polymer−clay multilayer ultrathin films, Nano Letters, 10 (2010) 4970-4974.
[99] K. Evanoff, A. Magasinski, J. Yang, G. Yushin, Nanosilicon-coated graphene granules as anodes for Li-ion batteries, Advanced Energy Materials, 1 (2011) 495-498.
[100] S.L. Kuo, W.R. Liu, C.P. Kuo, N.L. Wu, H.C. Wu, Lithium storage in reduced graphene oxides, Journal of Power Sources, 244 (2013) 552-556.
[101] Z. An, O.C. Compton, K.W. Putz, L.C. Brinson, S.T. Nguyen, Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films, Advanced Materials, 23 (2011) 3842-3846.
[102] H.L. Lin, Y.F. Liu, T.L. Yu, W.H. Liu, S.P. Rwei, Light scattering and viscoelasticity study of poly(vinyl alcohol)–borax aqueous solutions and gels, Polymer, 46 (2005) 5541-5549.
[103] F. Li, Z. Lu, H. Qian, J. Rui, S. Chen, P. Jiang, Y. An, H. Mi, Preparation and size determination of soluble cross-linked macromolecule of polyurethane, Macromolecules, 37 (2004) 764-768.
[104] K.C.S. Figueiredo, T.L.M. Alves, C.P. Borges, Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions, Journal of Applied Polymer Science, 111 (2009) 3074-3080.
[105] A. O’Neill, U. Khan, P.N. Nirmalraj, J. Boland, J.N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, The Journal of Physical Chemistry C, 115 (2011) 5422-5428.
[106] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, 3 (2008) 101-105.
[107] I. Jung, M. Vaupel, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, J. An, R.S. Ruoff, Characterization of thermally reduced graphene oxide by imaging ellipsometry, The Journal of Physical Chemistry C, 112 (2008) 8499-8506.
[108] 鄭信民, 林麗娟, X光繞射應用簡介, 工業材料雜誌, 181 (2002) 100-108.
[109] R. Ricciardi, F. Auriemma, C. Gaillet, C. De Rosa, F. Lauprêtre, Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques, Macromolecules, 37 (2004) 9510-9516.
[110] ASTM D3985-05 standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor, West Conshohocken, PA 2005.
[111] ASTM-F1249 Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor, (1995).
[112] 陳許峻, 以電漿輔助化學氣相沉積系統製備低溫氮化矽薄膜阻障層在塑膠基材之研究, 中原大學化學工程學系, 碩士論文 (2008).
[113] J.C. Grunlan, A. Grigorian, C.B. Hamilton, A.R. Mehrabi, Effect of clay concentration on the oxygen permeability and optical properties of a modified poly(vinyl alcohol), Journal of Applied Polymer Science, 93 (2004) 1102-1109.
[114] W.S. Jang, I. Rawson, J.C. Grunlan, Layer-by-layer assembly of thin film oxygen barrier, Thin Solid Films, 516 (2008) 4819-4825.
[115] M.A. Priolo, D. Gamboa, J.C. Grunlan, Transparent clay−polymer nano brick wall assemblies with tailorable oxygen barrier, ACS Applied Materials &; Interfaces, 2 (2009) 312-320.
[116] Y.H. Yang, F.A. Malek, J.C. Grunlan, Influence of deposition time on layer-by-layer growth of clay-based thin films, Industrial &; Engineering Chemistry Research, 49 (2010) 8501-8509.
[117] Y.H. Yang, M. Haile, Y.T. Park, F.A. Malek, J.C. Grunlan, Super gas barrier of all-polymer multilayer thin films, Macromolecules, 44 (2011) 1450-1459.
[118] K.M. Holder, M.A. Priolo, K.E. Secrist, S.M. Greenlee, A.J. Nolte, J.C. Grunlan, Humidity-responsive gas barrier of hydrogen-bonded polymer–clay multilayer thin films, The Journal of Physical Chemistry C, 116 (2012) 19851-19856.
[119] M.A. Priolo, K.M. Holder, S.M. Greenlee, J.C. Grunlan, Transparency, gas barrier, and moisture resistance of large-aspect-ratio vermiculite nanobrick Wall thin films, ACS Applied Materials &; Interfaces, 4 (2012) 5529-5533.
[120] Y.H. Yang, L. Bolling, M. Haile, J.C. Grunlan, Improving oxygen barrier and reducing moisture sensitivity of weak polyelectrolyte multilayer thin films with crosslinking, RSC Advances, 2 (2012) 12355-12363.
[121] L.J. Cote, J. Kim, Z. Zhang, C. Sun, J. Huang, Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties, Soft Matter, 6 (2010) 6096-6101.
[122] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44 (2006) 3342-3347.
[123] T. Cassagneau, F. Guérin, J.H. Fendler, Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers, Langmuir, 16 (2000) 7318-7324.
[124] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chemical Physics Letters, 287 (1998) 53-56.
[125] A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited‖, The Journal of Physical Chemistry B, 102 (1998) 4477-4482.
[126] B. Konkena, S. Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements, The Journal of Physical Chemistry Letters, 3 (2012) 867-872.
[127] G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon, 43 (2005) 641-649.
[128] R. Bissessur, P.K.Y. Liu, S.F. Scully, Intercalation of polypyrrole into graphite oxide, Synthetic Metals, 156 (2006) 1023-1027.
[129] C. Chen, Q.H. Yang, Y. Yang, W. Lv, Y. Wen, P.X. Hou, M. Wang, H.M. Cheng, Self-assembled free-standing graphite oxide membrane, Advanced Materials, 21 (2009) 3007-3011.
[130] M.B. Avinash, K.S. Subrahmanyam, Y. Sundarayya, T. Govindaraju, Covalent modification and exfoliation of graphene oxide using ferrocene, Nanoscale, 2 (2010) 1762-1766.
[131] A.P. Roberts, B.M. Henry, A.P. Sutton, C.R.M. Grovenor, G.A.D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, M. Yanaka, Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects, Journal of Membrane Science, 208 (2002) 75-88.
[132] H. Fukuzumi, T. Saito, S. Iwamoto, Y. Kumamoto, T. Ohdaira, R. Suzuki, A. Isogai, Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy, Biomacromolecules, 12 (2011) 4057-4062.
[133] M. Muramatsu, M. Okura, K. Kuboyama, T. Ougizawa, T. Yamamoto, Y. Nishihara, Y. Saito, K. Ito, K. Hirata, Y. Kobayashi, Oxygen permeability and free volume hole size in ethylene–vinyl alcohol copolymer film: temperature and humidity dependence, Radiation Physics and Chemistry, 68 (2003) 561-564.
[134] J.D. Affinito, M.E. Gross, C.A. Coronado, G.L. Graff, I.N. Greenwell, P.M. Martin, A new method for fabricating transparent barrier layers, Thin Solid Films, 290–291 (1996) 63-67.
[135] Y. Leterrier, Durability of nanosized oxygen-barrier coatings on polymers, Progress in Materials Science, 48 (2003) 1-55.
[136] H.M. Kim, J.K. Lee, H.S. Lee, Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites, Thin Solid Films, 519 (2011) 7766-7771.
[137] H. Kim, C.W. Macosko, Morphology and properties of polyester/exfoliated graphite nanocomposites, Macromolecules, 41 (2008) 3317-3327.
[138] H. Kim, C.W. Macosko, Processing-property relationships of polycarbonate /graphene composites, Polymer, 50 (2009) 3797-3809.
[139] D. Lee, M.C. Choi, C.-S. Ha, Polynorbornene dicarboximide/amine functionalized graphene hybrids for potential oxygen barrier films, Journal of Polymer Science Part A: Polymer Chemistry, 50 (2012) 1611-1621.
[140] N. Yousefi, M.M. Gudarzi, Q. Zheng, X. Lin, X. Shen, J. Jia, F. Sharif, J.-K. Kim, Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability, Composites Part A: Applied Science and Manufacturing, 49 (2013) 42-50.
[141] K. Sadasivuni, A. Saiter, N. Gautier, S. Thomas, Y. Grohens, Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites, Colloid and Polymer Science, 291 (2013) 1729-1740.
[142] S. Cheng, X. Chen, Y.G. Hsuan, C.Y. Li, Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites, Macromolecules, 45 (2011) 993-1000.
[143] E.D. Laird, C.Y. Li, Structure and morphology control in crystalline polymer–carbon nanotube nanocomposites, Macromolecules, 46 (2013) 2877-2891.
[144] J.Z. Xu, G.J. Zhong, B.S. Hsiao, Q. Fu, Z.M. Li, Low-dimensional carbonaceous nanofiller induced polymer crystallization, Progress in Polymer Science, In press.
[145] J. Gaume, C. Taviot-Gueho, S. Cros, A. Rivaton, S. Thérias, J.L. Gardette, Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells, Solar Energy Materials and Solar Cells, 99 (2012) 240-249.
[146] T. Ebina, F. Mizukami, Flexible transparent clay films with heat-resistant and high gas-barrier properties, Advanced Materials, 19 (2007) 2450-2453.
[147] P.K. Maji, N.K. Das, A.K. Bhowmick, Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials, Polymer, 51 (2010) 1100-1110.
[148] A.R. SA, M. Shafiee, H. Abedsoltan, A. Shafiee, Gas barrier and mechanical properties of crosslinked ethylene vinyl acetate nanocomposites, Journal of Composite Materials, 47 (2013) 2987-2993.
[149] B.C. Ku, D. Froio, D. Steeves, D.W. Kim, H. Ahn, J.A. Ratto, A. Blumstein, J. Kumar, L.A. Samuelson, Cross‐linked multilayer polymer‐clay nanocomposites and permeability properties, Journal of Macromolecular Science, Part A, 41 (2004) 1401-1410.
[150] H.A. Tsai, W.H. Chen, C.Y. Kuo, K.R. Lee, J.Y. Lai, Study on the pervaporation performance and long-term stability of aqueous iso-propanol solution through chitosan/polyacrylonitrile hollow fiber membrane, Journal of Membrane Science, 309 (2008) 146-155.
[151] P.S. Tin, T.S. Chung, Y. Liu, R. Wang, S.L. Liu, K.P. Pramoda, Effects of cross-linking modification on gas separation performance of Matrimid membranes, Journal of Membrane Science, 225 (2003) 77-90.
[152] H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science and Engineering: C, 28 (2008) 539-548.
[153] G. Socrates, lnfrared characteristic group frequencies: Tables and Charts, 2nd ed, in: Wiley :New York, 1994, pp. Chapter 10.
[154] R. Saeed, S. Masood, Z. Abdeen, Ionic interaction of transition metal salts with polyvinyl alcohol-borax-ethyl acetate mixtures, International Journal of Science and Technology, 3 (2013) 132-142.
[155] J. Saunier, C.A. Chodur, L. Larbes, O. Mrad, N. Yagoubi, Using cycloolefin copolymers as pharmaceutical or cosmetic storage material. I. A study of adjuvant migration and of polymer ageing, Journal of Applied Polymer Science, 104 (2007) 585-593.
[156] T.M. Wu, C.W. Wu, Surface characterization and properties of plasma-modified cyclic olefin copolymer/layered silicate nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 43 (2005) 2745-2753.
[157] M.H. Tsai, I.H. Tseng, Y.F. Liao, J.C. Chiang, Transparent polyimide nanocomposites with improved moisture barrier using graphene, Polymer International, 62 (2013) 1302-1309.
[158] S. Pei, H.M. Cheng, The reduction of graphene oxide, Carbon, 50 (2012) 3210-3228.
[159] C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chemical Society Reviews, 43 (2014) 291-312.
[160] J.Y. Lai, S.J. Huang, S.H. Chen, Poly(methyl methacrylate)/(DMF/metal salt) complex membrane for gas separation, Journal of Membrane Science, 74 (1992) 71-82.
[161] 廖國淞, 正子湮滅技術應用於碳分子篩分離薄膜微結構分析之研究, 中原大學化工系, 博士論文 (2012).
[162] J.W. Patrick, Porosity in carbons: characterization and applications, Halsted Press, 1995.
[163] M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of Materials, 19 (2007) 4396-4404.
[164] H.M. Etmimi, P.E. Mallon, R.D. Sanderson, Polymer/graphite nanocomposites: Effect of reducing the functional groups of graphite oxide on water barrier properties, European Polymer Journal, 49 (2013) 3460-3470.
[165] S.P. Rwei, Y.T. Lin, Y.Y. Su, Investigation on the spinnability of metallocene cyclic olefins copolymer melt, Textile Research Journal, 0 (2011) 1-9.
[166] J. Ahmad, M.B. Hägg, Effect of zeolite preheat treatment and membrane post heat treatment on the performance of polyvinyl acetate/zeolite 4A mixed matrix membrane, Separation and Purification Technology, 115 (2013) 163-171.
[167] M.H.V. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers , The Netherlands, (1996).
[168] B. Alexandre, D. Langevin, P. Médéric, T. Aubry, H. Couderc, Q.T. Nguyen, A. Saiter, S. Marais, Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: Structure and volume fraction effects, Journal of Membrane Science, 328 (2009) 186-204.
[169] C. Freij-Larsson, T. Nylander, P. Jannasch, B. Wesslén, Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: effects on protein adsorption, Biomaterials, 17 (1996) 2199-2207.
[170] Y. Chang, W.L. Chu, W.Y. Chen, J. Zheng, L. Liu, R.C. Ruaan, A. Higuchi, A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces, Journal of Biomedical Materials Research Part A, 93A (2010) 400-408.
[171] J. Ji, H. Zhu, J. Shen, Surface tailoring of poly(dl-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth, Biomaterials, 25 (2004) 1859-1867.
[172] J.E. Wong, F. Rehfeldt, P. Hänni, M. Tanaka, R.v. Klitzing, Swelling behavior of polyelectrolyte multilayers in saturated water vapor, Macromolecules, 37 (2004) 7285-7289.
[173] C. Yoshikawa, A. Goto, Y. Tsujii, T. Fukuda, K. Yamamoto, A. Kishida, Fabrication of high-density polymer brush on polymer substrate by surface-initiated living radical polymerization, Macromolecules, 38 (2005) 4604-4610.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top