[1] B. M. Yoo, H. Jin Shin, H. W. Yoon, H. B. Park, Graphene and graphene oxide and their uses in barrier polymers, Journal of Applied Polymer Science, 131 (2013) 39628.
[2] M.C. Choi, Y. Kim, C.S. Ha, Polymers for flexible displays: From material selection to device applications, Progress in Polymer Science, 33 (2008) 581-630.
[3] K.H.A. Bogart, N.F. Dalleska, G.R. Bogart, E.R. Fisher, Plasma enhanced chemical vapor deposition of SiO2 using novel alkoxysilane precursors, Journal of Vacuum Science &; Technology A, 13 (1995) 476-480.
[4] N. Inagaki, S. Tasaka, H. Hiramatsu, Preparation of oxygen gas barrier poly(ethylene terephthalate) films by deposition of silicon oxide films plasma-polymerized from a mixture of tetramethoxysilane and oxygen, Journal of Applied Polymer Science, 71 (1999) 2091-2100.
[5] M.D. Groner, S.M. George, R.S. McLean, P.F. Carcia, Gas diffusion barriers on polymers using Al2O3 atomic layer deposition, Applied Physics Letters, 88 (2006) 051901-1-3.
[6] A.B. Chwang, M.A. Rothman, S.Y. Mao, R.H. Hewitt, M.S. Weaver, J.A. Silvernail, K. Rajan, M. Hack, J.J. Brown, X. Chu, L. Moro, T. Krajewski, N. Rutherford, Thin film encapsulated flexible organic electroluminescent displays, Applied Physics Letters, 83 (2003) 413-415.
[7] P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M.K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett, M.B. Sullivan, Ultra barrier flexible substrates for flat panel displays, Displays, 22 (2001) 65-69.
[8] 陳良吉, OLED封裝技術介紹, 化工第51卷第2期, (2004).[9] M. Pramanik, S.K. Srivastava, B.K. Samantaray, A.K. Bhowmick, Rubber–clay nanocomposite by solution blending, Journal of Applied Polymer Science, 87 (2003) 2216-2220.
[10] D. Wang, J. Zhu, Q. Yao, C.A. Wilkie, A Comparison of various methods for the preparation of polystyrene and poly(methyl methacrylate) clay nanocomposites, Chemistry of Materials, 14 (2002) 3837-3843.
[11] T.G. Gopakumar, J.A. Lee, M. Kontopoulou, J.S. Parent, Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites, Polymer, 43 (2002) 5483-5491.
[12] C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L.S. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chemical Physics Letters, 364 (2002) 303-308.
[13] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chemistry of Materials, 22 (2010) 1392-1401.
[14] F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Review article: Polymer-matrix nanocomposites, Processing, Manufacturing, and Application: An Overview, Journal of Composite Materials, 40 (2006) 1511-1575.
[15] H. Kim, Y. Miura, C.W. Macosko, Graphene/Polyurethane Nanocomposites for improved gas barrier and electrical conductivity, Chemistry of Materials, 22 (2010) 3441-3450.
[16] W.J. Boo, L. Sun, J. Liu, E. Moghbelli, A. Clearfield, H.J. Sue, H. Pham, N. Verghese, Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 45 (2007) 1459-1469.
[17] F.J.M. Hoeben, P. Jonkheijm, E.W. Meijer, A.P.H.J. Schenning, About supramolecular assemblies of π-conjugated systems, Chemical Reviews, 105 (2005) 1491-1546.
[18] R.K. Iler, Multilayers of colloidal particles, Journal of Colloid and Interface Science, 21 (1966) 569-594.
[19] G. Decher, Fuzzy Nanoassemblies: Toward layered polymeric multicomposites, Science, 277 (1997) 1232-1237.
[20] M. Schönhoff, Layered polyelectrolyte complexes: physics of formation and molecular properties, Journal of Physics: Condensed Matter, 15 (2003) R1781.
[21] E. Kharlampieva, V. Kozlovskaya, S.A. Sukhishvili, Layer-by-layer hydrogen-bonded polymer films: From fundamentals to applications, Advanced Materials, 21 (2009) 3053-3065.
[22] W.B. Stockton, M.F. Rubner, Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions, Macromolecules, 30 (1997) 2717-2725.
[23] N.A. Kotov, Layer-by-layer self-assembly: The contribution of hydrophobic interactions, Nanostructured Materials, 12 (1999) 789-796.
[24] S. Dodoo, R. Steitz, A. Laschewsky, R. von Klitzing, Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers, Physical Chemistry Chemical Physics, 13 (2011) 10318-10325.
[25] J. Choi, M.F. Rubner, Influence of the degree of ionization on weak polyelectrolyte multilayer assembly, Macromolecules, 38 (2004) 116-124.
[26] M.A. Priolo, K.M. Holder, D. Gamboa, J.C. Grunlan, Influence of clay concentration on the gas barrier of clay–polymer nanobrick wall thin film assemblies, Langmuir, 27 (2011) 12106-12114.
[27] S.T. Dubas, J.B. Schlenoff, Factors controlling the growth of polyelectrolyte multilayers, Macromolecules, 32 (1999) 8153-8160.
[28] L.E. Nielsen, Models for the permeability of filled polymer systems, Journal of Macromolecular Science: Part A - Chemistry, 1 (1967) 929-942.
[29] E.L. Cussler, S.E. Hughes, W.J. Ward Iii, R. Aris, Barrier membranes, Journal of Membrane Science, 38 (1988) 161-174.
[30] A.K. Geim, Graphene: Status and prospects, Science, 324 (2009) 1530-1534.
[31] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[32] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano Letters, 8 (2008) 2458-2462.
[33] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308.
[34] 洪偉修, 世上最薄的材料-石墨烯, 98康熙化學報(康熙文化事業股份有限公司), 11月號 (2009) 980047.
[35] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183-191.
[36] P. Sutter, Epitaxial graphene: How silicon leaves the scene, Nature Materials, 8 (2009) 171-172.
[37] B.C. Brodie, On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, 149 (1859) 249-259.
[38] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958) 1339-1339.
[39] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
[40] Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets, ACS Nano, 4 (2010) 1227-1233.
[41] S.Y. Chee, H.L. Poh, C.K. Chua, F. Sanek, Z. Sofer, M. Pumera, Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide, Physical Chemistry Chemical Physics, 14 (2012) 12794-12799.
[42] K.S. Novoselov, Nobel Lecture: Graphene: Materials in the flatland, Reviews of Modern Physics, 83 (2011) 837-849.
[43] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, 39 (2010).
[44] V. Berry, Impermeability of graphene and its applications, Carbon, 62 (2013) 1-10.
[45] A.G. Erlat, R.J. Spontak, R.P. Clarke, T.C. Robinson, P.D. Haaland, Y. Tropsha, N.G. Harvey, E.A. Vogler, SiOx gas barrier coatings on polymer substrates: morphology and gas transport considerations, The Journal of Physical Chemistry B, 103 (1999) 6047-6055.
[46] J.B. Faisant, A. Aït-Kadi, M. Bousmina, L. Descheˆnes, Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends, Polymer, 39 (1998) 533-545.
[47] J.M. Torradas, D. Zhang, New laminar oxygen barrier technology for food packaging applicaitons., Proceeding of SPE ANTEC, Montreal, Canada, (1991) 1468-1470.
[48] S. De Petris, P. Laurienzo, M. Malinconico, M. Pracella, M. Zendron, Study of blends of nylon 6 with EVOH and carboxyl-modified EVOH and a preliminary approach to films for packaging applications, Journal of Applied Polymer Science, 68 (1998) 637-648.
[49] C. Citterio, E. Selli, G. Testa, A.M. Bonfatti, A. Seves, Physico-chemical characterization of compatibilized poly(propylene)/aromatic polyamide blends, Die Angewandte Makromolekulare Chemie, 270 (1999) 22-27.
[50] S. Gene, A.L. Brody, A twenty-year retrospective on plastics: oxygen barrier packaging materials., TAPPI Polymers, Laminations and coatings conference proceedings, San Francisco, CA, (1998) 119-140.
[51] J.G. Bonner, U.S. patent 5, 859, 129, (1999).
[52] J.G. Bonner, A.K. Powell, U.S. patent 5, 792, 530, (1998).
[53] Anon, LCP plus PET equals increased barrier property, Packing Innovation, 5 (1999).
[54] G. Flodberg, A. Hellman, M.S. Hedenqvist, E.R. Sadiku, U.W. Gedde, Barrier properties of blends based on liquid crystalline polymers and polyethylene, Polymer Engineering &; Science, 40 (2000) 1969-1978.
[55] J.M. Lagarón, E. Giménez, R. Gavara, J.J. Saura, Study of the influence of water sorption in pure components and binary blends of high barrier ethylene–vinyl alcohol copolymer and amorphous polyamide and nylon-containing ionomer, Polymer, 42 (2001) 9531-9540.
[56] J.H. Yeo, C.H. Lee, C.S. Park, K.J. Lee, J.D. Nam, S.W. Kim, Rheological, morphological, mechanical, and barrier properties of PP/EVOH blends, Advances in Polymer Technology, 20 (2001) 191-201.
[57] J. Lange, Y. Wyser, Recent innovations in barrier technologies for plastic packaging—a review, Packaging Technology and Science, 16 (2003) 149-158.
[58] J. Lange, B. Nicolas, J. Galy, J. Gerard, Influence of structure and chemical composition on oxygen permeability of crosslinked epoxy-amine coatings, Polymer, 43 (2002) 5985-5994.
[59] T.V. Duncan, Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors, Journal of Colloid and Interface Science, 363 (2011) 1-24.
[60] M. Kawasumi, The discovery of polymer-clay hybrids, Journal of Polymer Science Part A: Polymer Chemistry, 42 (2004) 819-824.
[61] K. Yano, A. Usuki, A. Okada, Synthesis and properties of polyimide-clay hybrid films, Journal of Polymer Science Part A: Polymer Chemistry, 35 (1997) 2289-2294.
[62] G. Gorrasi, M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, M. Alexandre, P. Dubois, Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion, Polymer, 44 (2003) 2271-2279.
[63] J.M. Yeh, S.J. Liou, M.C. Lai, Y.W. Chang, C.Y. Huang, C.P. Chen, J.H. Jaw, T.Y. Tsai, Y.H. Yu, Comparative studies of the properties of poly(methyl methacrylate)–clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion, Journal of Applied Polymer Science, 94 (2004) 1936-1946.
[64] D. Pereira, P.P. Losada, I. Angulo, W. Greaves, J.M. Cruz, Development of a polyamide nanocomposite for food industry: Morphological structure, processing, and properties, Polymer Composites, 30 (2009) 436-444.
[65] J.K. Kim, C. Hu, R.S.C. Woo, M.L. Sham, Moisture barrier characteristics of organoclay–epoxy nanocomposites, Composites Science and Technology, 65 (2005) 805-813.
[66] M.A. Osman, J.E.P. Rupp, U.W. Suter, Gas permeation properties of polyethylene-layered silicate nanocomposites, Journal of Materials Chemistry, 15 (2005) 1298-1304.
[67] O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, S.T. Nguyen, Crumpled graphene nanosheets as highly effective barrier property enhancers, Advanced Materials, 22 (2010) 4759-4763.
[68] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282-286.
[69] A.L. Higginbotham, J.R. Lomeda, A.B. Morgan, J.M. Tour, Graphite oxide flame-retardant polymer nanocomposites, ACS Applied Materials &; Interfaces, 1 (2009) 2256-2261.
[70] D. Chen, H. Zhu, T. Liu, In Situ Thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets, ACS Applied Materials &; Interfaces, 2 (2010) 3702-3708.
[71] S. Villar-Rodil, J.I. Paredes, A. Martinez-Alonso, J.M.D. Tascon, Preparation of graphene dispersions and graphene-polymer composites in organic media, Journal of Materials Chemistry, 19 (2009) 3591-3593.
[72] K. Kalaitzidou, H. Fukushima, L.T. Drzal, A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Composites Science and Technology, 67 (2007) 2045-2051.
[73] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Advanced Functional Materials, 19 (2009) 2297-2302.
[74] H.J. Salavagione, M.A. Gómez, G. Martínez, Polymeric Modification of graphene through esterification of graphite oxide and poly(vinyl alcohol), Macromolecules, 42 (2009) 6331-6334.
[75] H.J. Salavagione, G. Martinez, M.A. Gomez, Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties, Journal of Materials Chemistry, 19 (2009) 5027-5032.
[76] C. Bao, Y. Guo, L. Song, Y. Hu, Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism, Journal of Materials Chemistry, 21 (2011) 13942-13950.
[77] P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide, Macromolecular Rapid Communications, 30 (2009) 316-327.
[78] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3 (2009) 3884-3890.
[79] H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization, Chemical Physics Letters, 484 (2010) 247-253.
[80] J.R. Potts, S.H. Lee, T.M. Alam, J. An, M.D. Stoller, R.D. Piner, R.S. Ruoff, Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization, Carbon, 49 (2011) 2615-2623.
[81] Y.X. Pan, Z.Z. Yu, Y.C. Ou, G.H. Hu, A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization, Journal of Polymer Science Part B: Polymer Physics, 38 (2000) 1626-1633.
[82] P. Liu, K. Gong, P. Xiao, M. Xiao, Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite, Journal of Materials Chemistry, 10 (2000) 933-935.
[83] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes, Science, 335 (2012) 442-444.
[84] F. Guo, G. Silverberg, S. Bowers, S.P. Kim, D. Datta, V. Shenoy, R.H. Hurt, Graphene-based environmental barriers, Environmental Science &; Technology, 46 (2012) 7717-7724.
[85] H.D. Huang, P.G. Ren, J. Chen, W.Q. Zhang, X. Ji, Z.M. Li, High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films, Journal of Membrane Science, 409–410 (2012) 156-163.
[86] S. Morimune, T. Nishino, T. Goto, Ecological Approach to Graphene oxide reinforced poly (methyl methacrylate) nanocomposites, ACS Applied Materials &; Interfaces, 4 (2012) 3596-3601.
[87] Y.H. Yang, L. Bolling, M.A. Priolo, J.C. Grunlan, Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films, Advanced Materials, 25 (2013) 503-508.
[88] Q. Zhao, Q.F. An, T. Liu, J.T. Chen, F. Chen, K.R. Lee, C.J. Gao, Bio-inspired polyelectrolyte complex/graphene oxide nanocomposite membranes with enhanced tensile strength and ultra-low gas permeability, Polymer Chemistry, 4 (2013) 4298-4302.
[89] Y. Mao, S. Wen, Y. Chen, F. Zhang, P. Panine, T.W. Chan, L. Zhang, Y. Liang, L. Liu, High performance graphene oxide based rubber composites, Scientific Reports, 3 (2013) 1-7.
[90] C. Xiang, P.J. Cox, A. Kukovecz, B. Genorio, D.P. Hashim, Z. Yan, Z. Peng, C.C. Hwang, G. Ruan, E.L.G. Samuel, P.M. Sudeep, Z. Konya, R. Vajtai, P.M. Ajayan, J.M. Tour, Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances, ACS Nano, 7 (2013) 10380-10386.
[91] J. Wu, G. Huang, H. Li, S. Wu, Y. Liu, J. Zheng, Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content, Polymer, 54 (2013) 1930-1937.
[92] J. Jin, R. Rafiq, Y.Q. Gill, M. Song, Preparation and characterization of high performance of graphene/nylon nanocomposites, European Polymer Journal, 49 (2013) 2617-2626.
[93] H. Kwon, D. Kim, J. Seo, H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromolecular Research, 21 (2013) 987-994.
[94] I.H. Tseng, Y.F. Liao, J.C. Chiang, M.H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property, Materials Chemistry and Physics, 136 (2012) 247-253.
[95] J. Cho, K. Char, J.D. Hong, K.B. Lee, Fabrication of highly ordered multilayer films using a spin self-assembly method, Advanced Materials, 13 (2001) 1076-1078.
[96] D.W. Kim, A. Blumstein, J. Kumar, L.A. Samuelson, B. Kang, C. Sung, Ordered multilayer nanocomposites prepared by electrostatic layer-by-layer assembly between aluminosilicate nanoplatelets and substituted oonic polyacetylenes, Chemistry of Materials, 14 (2002) 3925-3929.
[97] P.Y. Vuillaume, K. Glinel, A.M. Jonas, A. Laschewsky, Ordered polyelectrolyte “Multilayers”. 6. Effect of molecular parameters on the formation of hybrid multilayers based on poly(diallylammonium) salts and exfoliated clay, Chemistry of Materials, 15 (2003) 3625-3631.
[98] M.A. Priolo, D. Gamboa, K.M. Holder, J.C. Grunlan, Super gas barrier of transparent polymer−clay multilayer ultrathin films, Nano Letters, 10 (2010) 4970-4974.
[99] K. Evanoff, A. Magasinski, J. Yang, G. Yushin, Nanosilicon-coated graphene granules as anodes for Li-ion batteries, Advanced Energy Materials, 1 (2011) 495-498.
[100] S.L. Kuo, W.R. Liu, C.P. Kuo, N.L. Wu, H.C. Wu, Lithium storage in reduced graphene oxides, Journal of Power Sources, 244 (2013) 552-556.
[101] Z. An, O.C. Compton, K.W. Putz, L.C. Brinson, S.T. Nguyen, Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films, Advanced Materials, 23 (2011) 3842-3846.
[102] H.L. Lin, Y.F. Liu, T.L. Yu, W.H. Liu, S.P. Rwei, Light scattering and viscoelasticity study of poly(vinyl alcohol)–borax aqueous solutions and gels, Polymer, 46 (2005) 5541-5549.
[103] F. Li, Z. Lu, H. Qian, J. Rui, S. Chen, P. Jiang, Y. An, H. Mi, Preparation and size determination of soluble cross-linked macromolecule of polyurethane, Macromolecules, 37 (2004) 764-768.
[104] K.C.S. Figueiredo, T.L.M. Alves, C.P. Borges, Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions, Journal of Applied Polymer Science, 111 (2009) 3074-3080.
[105] A. O’Neill, U. Khan, P.N. Nirmalraj, J. Boland, J.N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, The Journal of Physical Chemistry C, 115 (2011) 5422-5428.
[106] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, 3 (2008) 101-105.
[107] I. Jung, M. Vaupel, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, J. An, R.S. Ruoff, Characterization of thermally reduced graphene oxide by imaging ellipsometry, The Journal of Physical Chemistry C, 112 (2008) 8499-8506.
[108] 鄭信民, 林麗娟, X光繞射應用簡介, 工業材料雜誌, 181 (2002) 100-108.[109] R. Ricciardi, F. Auriemma, C. Gaillet, C. De Rosa, F. Lauprêtre, Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques, Macromolecules, 37 (2004) 9510-9516.
[110] ASTM D3985-05 standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor, West Conshohocken, PA 2005.
[111] ASTM-F1249 Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor, (1995).
[112] 陳許峻, 以電漿輔助化學氣相沉積系統製備低溫氮化矽薄膜阻障層在塑膠基材之研究, 中原大學化學工程學系, 碩士論文 (2008).[113] J.C. Grunlan, A. Grigorian, C.B. Hamilton, A.R. Mehrabi, Effect of clay concentration on the oxygen permeability and optical properties of a modified poly(vinyl alcohol), Journal of Applied Polymer Science, 93 (2004) 1102-1109.
[114] W.S. Jang, I. Rawson, J.C. Grunlan, Layer-by-layer assembly of thin film oxygen barrier, Thin Solid Films, 516 (2008) 4819-4825.
[115] M.A. Priolo, D. Gamboa, J.C. Grunlan, Transparent clay−polymer nano brick wall assemblies with tailorable oxygen barrier, ACS Applied Materials &; Interfaces, 2 (2009) 312-320.
[116] Y.H. Yang, F.A. Malek, J.C. Grunlan, Influence of deposition time on layer-by-layer growth of clay-based thin films, Industrial &; Engineering Chemistry Research, 49 (2010) 8501-8509.
[117] Y.H. Yang, M. Haile, Y.T. Park, F.A. Malek, J.C. Grunlan, Super gas barrier of all-polymer multilayer thin films, Macromolecules, 44 (2011) 1450-1459.
[118] K.M. Holder, M.A. Priolo, K.E. Secrist, S.M. Greenlee, A.J. Nolte, J.C. Grunlan, Humidity-responsive gas barrier of hydrogen-bonded polymer–clay multilayer thin films, The Journal of Physical Chemistry C, 116 (2012) 19851-19856.
[119] M.A. Priolo, K.M. Holder, S.M. Greenlee, J.C. Grunlan, Transparency, gas barrier, and moisture resistance of large-aspect-ratio vermiculite nanobrick Wall thin films, ACS Applied Materials &; Interfaces, 4 (2012) 5529-5533.
[120] Y.H. Yang, L. Bolling, M. Haile, J.C. Grunlan, Improving oxygen barrier and reducing moisture sensitivity of weak polyelectrolyte multilayer thin films with crosslinking, RSC Advances, 2 (2012) 12355-12363.
[121] L.J. Cote, J. Kim, Z. Zhang, C. Sun, J. Huang, Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties, Soft Matter, 6 (2010) 6096-6101.
[122] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44 (2006) 3342-3347.
[123] T. Cassagneau, F. Guérin, J.H. Fendler, Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers, Langmuir, 16 (2000) 7318-7324.
[124] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chemical Physics Letters, 287 (1998) 53-56.
[125] A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited‖, The Journal of Physical Chemistry B, 102 (1998) 4477-4482.
[126] B. Konkena, S. Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements, The Journal of Physical Chemistry Letters, 3 (2012) 867-872.
[127] G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon, 43 (2005) 641-649.
[128] R. Bissessur, P.K.Y. Liu, S.F. Scully, Intercalation of polypyrrole into graphite oxide, Synthetic Metals, 156 (2006) 1023-1027.
[129] C. Chen, Q.H. Yang, Y. Yang, W. Lv, Y. Wen, P.X. Hou, M. Wang, H.M. Cheng, Self-assembled free-standing graphite oxide membrane, Advanced Materials, 21 (2009) 3007-3011.
[130] M.B. Avinash, K.S. Subrahmanyam, Y. Sundarayya, T. Govindaraju, Covalent modification and exfoliation of graphene oxide using ferrocene, Nanoscale, 2 (2010) 1762-1766.
[131] A.P. Roberts, B.M. Henry, A.P. Sutton, C.R.M. Grovenor, G.A.D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, M. Yanaka, Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects, Journal of Membrane Science, 208 (2002) 75-88.
[132] H. Fukuzumi, T. Saito, S. Iwamoto, Y. Kumamoto, T. Ohdaira, R. Suzuki, A. Isogai, Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy, Biomacromolecules, 12 (2011) 4057-4062.
[133] M. Muramatsu, M. Okura, K. Kuboyama, T. Ougizawa, T. Yamamoto, Y. Nishihara, Y. Saito, K. Ito, K. Hirata, Y. Kobayashi, Oxygen permeability and free volume hole size in ethylene–vinyl alcohol copolymer film: temperature and humidity dependence, Radiation Physics and Chemistry, 68 (2003) 561-564.
[134] J.D. Affinito, M.E. Gross, C.A. Coronado, G.L. Graff, I.N. Greenwell, P.M. Martin, A new method for fabricating transparent barrier layers, Thin Solid Films, 290–291 (1996) 63-67.
[135] Y. Leterrier, Durability of nanosized oxygen-barrier coatings on polymers, Progress in Materials Science, 48 (2003) 1-55.
[136] H.M. Kim, J.K. Lee, H.S. Lee, Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites, Thin Solid Films, 519 (2011) 7766-7771.
[137] H. Kim, C.W. Macosko, Morphology and properties of polyester/exfoliated graphite nanocomposites, Macromolecules, 41 (2008) 3317-3327.
[138] H. Kim, C.W. Macosko, Processing-property relationships of polycarbonate /graphene composites, Polymer, 50 (2009) 3797-3809.
[139] D. Lee, M.C. Choi, C.-S. Ha, Polynorbornene dicarboximide/amine functionalized graphene hybrids for potential oxygen barrier films, Journal of Polymer Science Part A: Polymer Chemistry, 50 (2012) 1611-1621.
[140] N. Yousefi, M.M. Gudarzi, Q. Zheng, X. Lin, X. Shen, J. Jia, F. Sharif, J.-K. Kim, Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability, Composites Part A: Applied Science and Manufacturing, 49 (2013) 42-50.
[141] K. Sadasivuni, A. Saiter, N. Gautier, S. Thomas, Y. Grohens, Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites, Colloid and Polymer Science, 291 (2013) 1729-1740.
[142] S. Cheng, X. Chen, Y.G. Hsuan, C.Y. Li, Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites, Macromolecules, 45 (2011) 993-1000.
[143] E.D. Laird, C.Y. Li, Structure and morphology control in crystalline polymer–carbon nanotube nanocomposites, Macromolecules, 46 (2013) 2877-2891.
[144] J.Z. Xu, G.J. Zhong, B.S. Hsiao, Q. Fu, Z.M. Li, Low-dimensional carbonaceous nanofiller induced polymer crystallization, Progress in Polymer Science, In press.
[145] J. Gaume, C. Taviot-Gueho, S. Cros, A. Rivaton, S. Thérias, J.L. Gardette, Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells, Solar Energy Materials and Solar Cells, 99 (2012) 240-249.
[146] T. Ebina, F. Mizukami, Flexible transparent clay films with heat-resistant and high gas-barrier properties, Advanced Materials, 19 (2007) 2450-2453.
[147] P.K. Maji, N.K. Das, A.K. Bhowmick, Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials, Polymer, 51 (2010) 1100-1110.
[148] A.R. SA, M. Shafiee, H. Abedsoltan, A. Shafiee, Gas barrier and mechanical properties of crosslinked ethylene vinyl acetate nanocomposites, Journal of Composite Materials, 47 (2013) 2987-2993.
[149] B.C. Ku, D. Froio, D. Steeves, D.W. Kim, H. Ahn, J.A. Ratto, A. Blumstein, J. Kumar, L.A. Samuelson, Cross‐linked multilayer polymer‐clay nanocomposites and permeability properties, Journal of Macromolecular Science, Part A, 41 (2004) 1401-1410.
[150] H.A. Tsai, W.H. Chen, C.Y. Kuo, K.R. Lee, J.Y. Lai, Study on the pervaporation performance and long-term stability of aqueous iso-propanol solution through chitosan/polyacrylonitrile hollow fiber membrane, Journal of Membrane Science, 309 (2008) 146-155.
[151] P.S. Tin, T.S. Chung, Y. Liu, R. Wang, S.L. Liu, K.P. Pramoda, Effects of cross-linking modification on gas separation performance of Matrimid membranes, Journal of Membrane Science, 225 (2003) 77-90.
[152] H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science and Engineering: C, 28 (2008) 539-548.
[153] G. Socrates, lnfrared characteristic group frequencies: Tables and Charts, 2nd ed, in: Wiley :New York, 1994, pp. Chapter 10.
[154] R. Saeed, S. Masood, Z. Abdeen, Ionic interaction of transition metal salts with polyvinyl alcohol-borax-ethyl acetate mixtures, International Journal of Science and Technology, 3 (2013) 132-142.
[155] J. Saunier, C.A. Chodur, L. Larbes, O. Mrad, N. Yagoubi, Using cycloolefin copolymers as pharmaceutical or cosmetic storage material. I. A study of adjuvant migration and of polymer ageing, Journal of Applied Polymer Science, 104 (2007) 585-593.
[156] T.M. Wu, C.W. Wu, Surface characterization and properties of plasma-modified cyclic olefin copolymer/layered silicate nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 43 (2005) 2745-2753.
[157] M.H. Tsai, I.H. Tseng, Y.F. Liao, J.C. Chiang, Transparent polyimide nanocomposites with improved moisture barrier using graphene, Polymer International, 62 (2013) 1302-1309.
[158] S. Pei, H.M. Cheng, The reduction of graphene oxide, Carbon, 50 (2012) 3210-3228.
[159] C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chemical Society Reviews, 43 (2014) 291-312.
[160] J.Y. Lai, S.J. Huang, S.H. Chen, Poly(methyl methacrylate)/(DMF/metal salt) complex membrane for gas separation, Journal of Membrane Science, 74 (1992) 71-82.
[161] 廖國淞, 正子湮滅技術應用於碳分子篩分離薄膜微結構分析之研究, 中原大學化工系, 博士論文 (2012).[162] J.W. Patrick, Porosity in carbons: characterization and applications, Halsted Press, 1995.
[163] M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of Materials, 19 (2007) 4396-4404.
[164] H.M. Etmimi, P.E. Mallon, R.D. Sanderson, Polymer/graphite nanocomposites: Effect of reducing the functional groups of graphite oxide on water barrier properties, European Polymer Journal, 49 (2013) 3460-3470.
[165] S.P. Rwei, Y.T. Lin, Y.Y. Su, Investigation on the spinnability of metallocene cyclic olefins copolymer melt, Textile Research Journal, 0 (2011) 1-9.
[166] J. Ahmad, M.B. Hägg, Effect of zeolite preheat treatment and membrane post heat treatment on the performance of polyvinyl acetate/zeolite 4A mixed matrix membrane, Separation and Purification Technology, 115 (2013) 163-171.
[167] M.H.V. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers , The Netherlands, (1996).
[168] B. Alexandre, D. Langevin, P. Médéric, T. Aubry, H. Couderc, Q.T. Nguyen, A. Saiter, S. Marais, Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: Structure and volume fraction effects, Journal of Membrane Science, 328 (2009) 186-204.
[169] C. Freij-Larsson, T. Nylander, P. Jannasch, B. Wesslén, Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: effects on protein adsorption, Biomaterials, 17 (1996) 2199-2207.
[170] Y. Chang, W.L. Chu, W.Y. Chen, J. Zheng, L. Liu, R.C. Ruaan, A. Higuchi, A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces, Journal of Biomedical Materials Research Part A, 93A (2010) 400-408.
[171] J. Ji, H. Zhu, J. Shen, Surface tailoring of poly(dl-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth, Biomaterials, 25 (2004) 1859-1867.
[172] J.E. Wong, F. Rehfeldt, P. Hänni, M. Tanaka, R.v. Klitzing, Swelling behavior of polyelectrolyte multilayers in saturated water vapor, Macromolecules, 37 (2004) 7285-7289.
[173] C. Yoshikawa, A. Goto, Y. Tsujii, T. Fukuda, K. Yamamoto, A. Kishida, Fabrication of high-density polymer brush on polymer substrate by surface-initiated living radical polymerization, Macromolecules, 38 (2005) 4604-4610.