跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林峻霆
研究生(外文):Chung-Ting Lin
論文名稱:實驗設計法分析連續微波輔助轉酯化生質柴油程序
論文名稱(外文):Analysis of the continuous microwave-assisted Transesterification process of the Biodiesel by Experimental Design Method
指導教授:鍾財王鍾財王引用關係
指導教授(外文):Tsair-Wang Chung
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:124
中文關鍵詞:大豆油轉酯化反應生質柴油微波反應系統回應曲面法異相觸媒
外文關鍵詞:Soybean oiltransesterificationbiodieselmicrowave processresponse surface methodheterogeneous catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是設計一套新型微波反應系統用來做為大豆油轉酯化製備甲基
酯的實驗,甲基酯的純度96.5%以上的產品,可稱為生質柴油。利用Box–
Behnken 實驗來設計批次實驗參數: 反應時間(X1)、甲醇/油莫耳數比(X2)和
觸媒用量(X3)、連續式實驗參數: 體積流率 (X1)、甲醇/油莫耳數比(X2)和觸
媒用量(X3)。以大豆油為原料,用非均勻相相觸媒K-Pumice 做為催化劑,
並利用回應曲面法來研究批次和微波反應系統製備生質柴油之實驗,除找
出最佳條件以得到高轉化率的製程方法之外,並探討三因子之間的相互影
響關係。實驗結果顯示,反應時間、甲醇/油莫耳數比、觸媒用量和積流率
對轉酯化及轉化率都有重要的影響,批次及連續式實驗的最佳轉化率分別
為97.63%及96.75%。以回應曲面法為基礎,在微波反應系統下反應,實驗
結果在批次及連續式反應的最佳轉化率分別為 : 97.63% (X1=2.36, X2=20.25,
X3=17.58);96.75%(X1=4.8, X2=40, X3=30),我們的研究結果證實,成功發
展以批次或是微波反應系統,能將大豆油轉酯化生產生質柴油是有效率和
節省時間的方法。

A simple continuous process was designed for the transesterification of
Soybean oil to alkyl esters using microwave-assisted method. The product with
purity above 96.5% of alkyl ester is called the biodiesel fuel. The continuous
process variables such as flow rate (irradiation time) (X1), methanol/oil molar
ratio (X2) and amount of catalyst (X3) were discussed and optimized through the
Box–Behnken experimental design. Using response surface methodology, a
series of experiments with three reaction factors at three levels were carried out
to investigate the transesterification reaction in a microwave and conversion of
alkyl ester from Soybean oil with the heterogeneous catalyst of K-Pumice. The
results showed that the ratio of flow rate (irradiation time), methanol to oil, and
amount of catalyst have significant effects on the transesterification and
conversion of alkyl ester. Based on the response surface methodology using the
selected operating conditions, the optimal conversion of batch system and
continuous system were 97.63% (X1=2.36 hr, X2=20.25, X3 =17.58) and 96.75%
(X1=4.8, X2=40, X3 =67.90) respectively. From the above mentioned results,
response surface methodology (RSM) based on Box–Behnken model was
demonstrated to predict the optimum condition for this system. Our findings
confirmed the successful development of continuous process for the
transesterification reaction of Soybean oil with microwave-assisted heating,
which is effective and time-saving for alkyl ester production.

總目錄
中文摘要 ..................................................................................................... I
總目錄 ....................................................................................................... II
圖目錄 ....................................................................................................... V
表目錄 ................................................................................................... VIII
第一章 緒論 .............................................................................................. 1
1-1 前言 .............................................................................................. 1
第二章 文獻回顧 ...................................................................................... 5
2-1 石油危機與耗竭 ........................................................................... 5
2-2 生質能 ........................................................................................... 8
2-3 生質柴油 ..................................................................................... 12
2-3-1 來源、定義 ...................................................................... 12
2-3-2 生質柴油性質 .................................................................. 16
2-3-3 生質柴油合成方法 .......................................................... 24
2-3-4 微波輔助製成生質柴油 .................................................. 41
2-3-5 生質柴油標準與規範 ...................................................... 48
2-3-6 生質柴油檢測方法 .......................................................... 52
2-4 回應曲面法之基本原理 ............................................................ 53
2-4-1 回應曲面模式之適切性統計檢驗 .................................. 58
2-4-2 因子主要效應及交互影響效應之分析 .......................... 60
第三章實驗藥品、原理及分析方法 ...................................................... 62
3-1 實驗藥品 ..................................................................................... 62
3-2 實驗儀器與設備 ......................................................................... 63
3-3 儀器原理 ..................................................................................... 66
3-3-1 氣相層析儀 ...................................................................... 66
3-3-2 掃描式電子顯微鏡 .......................................................... 69
3-3-3 BET 微孔洞及比表面積分析儀 ...................................... 70
3-3-4 燃燒熱值測量儀 .............................................................. 72
3-3-5 動黏度計 .......................................................................... 73
3-3-6 自動冷濾點測試儀 .......................................................... 74
3-3-7 閃火點測試儀 .................................................................. 76
3-3-8 酸價................................................................................... 77
3-4 轉脂化反應 ................................................................................. 79
3-4-1 實驗操作變數 ......................................................................... 79
3-4-2 異相觸媒的製備 ..................................................................... 79
3-4-3 甲基酯檢量線製作 ................................................................. 80
3-4-4 生質柴油轉化率計算 ............................................................. 82
第四章 實驗結果與討論 ........................................................................ 83
4-1 觸媒製備結果 ............................................................................. 83
4-1-1 EDX 檢測 ......................................................................... 83
4-1-2 BET 檢測 ......................................................................... 85
4-2 批次轉酯化實驗 ..................................................................... 86
4-2-1 KOH 濃度對轉化率之影響 ............................................. 86
4-2-2 實驗設計法探討參數影響 .............................................. 87
4-2-3 回應曲面模型之變異數分析 .......................................... 90
4-2-4 回應曲面模型之等高線圖 .............................................. 92
4-3 連續式轉酯化實驗 ................................................................... 97
4-3-1 實驗設計法探討參數影響 .............................................. 97
4-3-2 回應曲面模型之變異數分析 .......................................... 99
4-3-3 回應曲面模型之等高線圖 ............................................ 100
4-4 生質柴油之物理性質 ............................................................. 104
第五章 結論 .......................................................................................... 105
參考文獻 ................................................................................................ 107
圖目錄
圖1-1-1. 2011 年全球各種能源消耗比例 ............................................... 3
圖2-1-1. 2000 年4 月至2014 年4 月國際油價趨勢圖(美金/桶) ......... 7
圖2-2-1. 生物質能源之各領域應用與轉換程序 ................................. 11
圖2-3-1. 油脂水解生成甘油和游離脂肪酸 ......................................... 17
圖2-3-2. 熱裂解之反應機制 ................................................................. 26
圖2-3-3. 轉酯化之反應機制 ................................................................. 27
圖2-3-4. 轉酯化之總反應式 ................................................................. 28
圖2-3-5. 酸觸媒催化轉酯化之反應機制 ............................................. 29
圖2-3-6. 鹼觸媒催化轉酯化之反應機制 ............................................. 31
圖2-3-7. 游離脂肪酸和水對轉酯化反應之影響 ................................. 31
圖2-3-8. 家用微波爐改造成附有回流系統圖 ..................................... 43
圖2-3-9. 連續式微波反應示意圖 ......................................................... 44
圖2-3-10. 改造連續式微波爐系統示意圖 ........................................... 45
圖2-4-1. 回應曲面法的設計概念(Montgomery, 1997) ........................ 53
圖2-4-2. 回應曲面法之流程圖............................................................... 57
圖2-4-3. 回應曲面圖(Montgomery, 1997) ........................................ 58
圖3-2-1. Schematic diagram of continuous microwave-assisted
transesterification reaction system ............................................... 64
圖3-2-2. 連續式微波反應系統 ............................................................. 64
圖3-2-3. 觸媒填充管實體圖 ................................................................. 65
圖3-2-4. 觸媒填充管設計圖 ................................................................. 65
圖3-3-1. 氣相層析儀 ............................................................................. 66
圖3-3-2. 燃燒熱值測量儀 ..................................................................... 72
圖3-3-3. 動黏度計 ................................................................................. 73
圖3-3-4. 自動冷濾點測試儀 ................................................................. 74
圖3-3-5. 閃火點測試儀 ......................................................................... 76
圖3-4-1. GC 分析大豆油脂肪酸甲基酯圖譜 ....................................... 80
圖3-4-2. 總甲基酯檢量線 ..................................................................... 81
圖4-1-1. 1M 濃度KOH 之鉀離子吸附於Pumice stone 表面之SEM 圖
.................................................................................................... 84
圖4-2-1. Influence of the KOH exchanging solution concentration on the
catalyst activity reaction yield ................................................... 87
圖4-2-2. Predicted versus experimental conversions of Soybean biodiesel
.................................................................................................... 89
圖4-2-3. Contour plot of the effect of reaction time and methanol/Oil molar
ratio on biodiesel conversion predicted from the quadratic model at
catalyst amount of 11wt% .......................................................... 93
圖4-2-4. Contour plot of the effect of reactime time and catalyst amount on
biodiesel conversion predicted from the quadratic model at
Methanol/Oil molar ratio of 15 .................................................. 94
圖4-2-5. Contour plot of the effect of mthanol/oil molar ratio and catalyst
amount on biodiesel conversion predicted from the quadratic model
which reaction time at 4 hours ................................................... 94
圖4-2-6. Relationship between the response variable and each parameter96
圖4-3-1. Predicted versus experimental conversions of Soybean biodiesel
.................................................................................................... 99
圖4-3-2. Contour plot of the effect of reaction Flow rate and Methanol/Oil
molar ratio on biodiesel conversion predicted from the quadratic
model at catalyst amount of 30wt% ......................................... 102
圖4-3-3. Contour plot of the effect of Flow rate methanol/Oil molar ratio and
Catalyst amount on biodiesel conversion predicted from the quadratic
model at methanol/Oil molar ratio of 30 ................................. 102
圖4-3-4. Contour plot of the effect of Methanol/Oil molar ratio and Catalyst
amount on biodiesel conversion predicted from the quadratic model at
Flow rate of 5.9 mL/min .......................................................... 103
圖4-3-5. Relationship between the response variable and each
parameter……………………………………………………103
表目錄
表1-1-1. 2013 年全球人口數里程碑及預測 ........................................... 3
表1-1-2 生質柴油(B100、B20)對空氣污染之減量效果 ................ 4
表2-2-1. 廚餘生質能源回收分類、來源及使用例子 ......................... 10
表2-3-1. 常見油脂之脂肪酸組成 ......................................................... 14
表2-3-2. 常見脂肪酸之化學結構 ......................................................... 15
表2-3-3. 比較均勻相觸媒之參數 ......................................................... 34
表2-3-4. 比較非均勻相觸媒之參數 ..................................................... 38
表2-3-5. 各系統所用頻率與波長範圍 ................................................. 41
表2-3-6. 比較微波轉酯化生質柴油之參數 ......................................... 47
表2-3-7. 美國生質柴油標準ASTM D6751 ......................................... 48
表2-3-8. 歐洲生質柴油標準EN 14214 ................................................ 49
表2-3-9. 臺灣生質柴油(脂肪酸甲酯)標準CNS-15072 ................. 50
表3-3-1. GC 操作條件 ............................................................................ 68
表4-1-1. 1M濃度KOH 之鉀離子吸附於Pumice stone 表面之EDX 元素分析
...................................................................................................... 84
表4-1-2. Pumice 和K-Pumice 之表面積和孔徑大小比較 .................. 85
表4-2-1 Selected variables and coded levels of this study used in the
Box-Behnken design ................................................................................ 88
表4-2-2 . The Box–Behnken Design Matrix of the Three Variables in Coded
and Natural Units, and the Response Values ........................................... 89
表4-2-3. Analysis of the Model for the Response .................................. 90
表4-2-4. Analysis of Variances for the Response ................................... 91
表4-2-5. Solution of the Variances for the Response ............................. 96
表4-2-6. Comparing the optimum reaction conditions with reference ... 96
表4-3-1. Selected Variables and Coded Levels of this study used in the
Box-Behnken Design ............................................................................... 97
表4-3-2 . The Box–Behnken Design Matrix of the Three Variables in Coded
and Natural Units, and the Response Values ............................... 98
表4-3-3. Analysis of the Model for the Response .................................. 99
表4-3-4. Analysis of Variances for the Response ................................. 100
表4-4-1. Fuel properties of biodiesel with ASTM D6751 standard ..... 104

參考文獻
[1] 浩君,石油到底出了甚麼問題(2005)
[2] 經濟部能源局國際原油價格趨勢(2000.4~2014.4)
[3] 廚餘生質能源回收技術之展望, 97年度全國廚餘回收再利用業務檢討會
議, 環境督察, 本署全球資訊網
[4] 吳耿東,認識生質能源. Vol. 三十卷4 期: 物理雙月刊(2008)
[5] Ramadhas , S., Jayaraj, C.Muraleesharan., 2005. Biodiesel production from
high FFA rubber seed oil. Fuel 84, 335-340.
[6] Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M., 2012.
Review of biodiesel composition, properties, and specifications. Renewable
and Sustainable Energy Reviews 16, 143-169.
[7] Hanna, Ma, F., M.A., 1999. Biodiesel production: a review. Bioresource
Technology 70, 1-15.
[8] Srivastava,A., Prasad, R., 2000. Triglycerides-based diesel fuels. Renewable
and Sustainable Energy Reviews 4, 111-133.
[9] Wright, H. J., Segur, J. B., Clark, H. V., Coburn, S. K., Langdon,
E. E. and DuPuis, R.N., 1944. A report on ester interchange. Oil and Soap 2,
145-148.
[10] Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin,
J.G., 2005. Synthesis of biodiesel via acid catalysis. Industrial &;
Engineering Chemistry Research 44, 5353-5363.
[11] Al-Widyan. M., I., and Al-Shyoukh. A., O., 2002. Experimental evaluation
of the transesterification of waste palm oil into biodiesel. Bioresource
Technology 85, 253-256
108
[12] Mao, V., Konar, S. K and Boocock, D. G. B., 2004. The
pseudo-single-phase, base-catalyzed transmethylation of soybean oil.
American Oil Chemists' Society 81, 803-808.
[13] Kim M, Yan S, Salley SO, Ng KYS., 2010. Competitive transesterification
of soybean oil with mixed methanol/ethanol over heterogeneous catalysts.
Bioresource Technology 101, 4409–4414.
[14] Ji J, Wang J, Li Y, Yu Y, Xu Z., 2006. Preparation of biodiesel with the help
of ultrasonic and hydrodynamic cavitation. Ultrasonics 44, 411–414.
[15] Moradi, G.R., S. Dehghani, F. Khosravian, A. Arjmandzadeh., 2013. The
optimized operational conditions for biodiesel production from soybean oil
and application of artificial neural networks for estimation of the biodiesel
yield. Renewable Energy 50, 915-920.
[16] Karen Araújo Borges , André Luiz Squissato, Douglas Queiroz
Santos ,Waldomiro Borges Neto, Antônio Carlos Ferreira Batista , Tiago
Almeida Silva, Andressa Tironi Vieira , Marcelo Firmino de
Oliveira ,Manuel Gonzalo Hernández-Terrones., 2014. Homogeneous
catalysis of soybean oil transesterification via methylic and ethylic routes:
Multivariate comparison. Energy 67, 569-574.
[17] Vicente G, Martinez M, Aracil J., 2007. Optimization of integrated biodiesel
production part 1: A study of biodiesel purity and yield. Bioresource
Technology 98, 1724–1733.
[18] Tomasevic AV, Marinkovic SS., 2003. Methanolysis of used frying oils.
Fuel Processing Technology 81, 1–6.
[19] Leung DYC, Guo Y., 2006. Transesterification of neat and used frying oil:
optimization for biodiesel production. Fuel Processing Technology 87, 883–
890.
109
[20] Ahmad M, Zafar M, Khan MA, Hassan A, Sultana S., 2008. Methanolysis
of cottonseed oil for biodiesel: as renewable source of energy. Asian
Chemistry 6, 4565–4570.
[21] Rashid U, Anwar F, Knothe G., 2009. Evaluation of biodiesel obtained from
cottonseed oil. Fuel Processing Technology 9, 1157–1163.
[22] Demirbas A., 2009. Biodiesel from waste cooking oil via base-catalytic and
supercritical methanol transesterification. Energy Convers Manage 50,
923-927.
[23] Borges, M.E., L. Diaz, M.C. Alvarez-Galvan, A. Brito., 2011. High
performance heterogeneous catalyst for biodiesel production from vegetal
and waste oil at low temperature. Applied Catalysis B: Environmental 102,
310–315.
[24] Krisada Noiroj, Pisitpong Intarapong, Apanee Luengnaruemitchai, Samai
Jai-In., 2009. A comparative study of KOH/NaY catalyst for biodiesel
production via transesterification from palm oil. Renewable Energy 34,
1145-1150.
[25] Pisitpong Intarapong, Apanee Luengnaruemitchai , Samai Jai-In., 2011.
Transesterification of palm oil over KOH/NaY zeolite in a packed-bed
reactor. Renewable Energy 1, 271-280.
[26] Pisitpong Intarapong, Sotsanan Iangthanarat, Pitchaya Phanthong, Apanee
Luengnaruemitchai, Samai Jai-In., 2013. Activity and basic properties of
KOH/mordenite for transesterification of palm oil. Energy Chemistry 22,
690-700.
[27] Yang J H, Kim H, Chun D H, Lee H T, Hong J C, Jung H, Yang J I., 2010.
Mass transfer limitations on fixed-bed reactor for Fischer-Tropsch synthesis.
Fuel 91, 285-289.
110
[28] Chien-Chih Liao, Tsair-Wang Chung., 2013. Optimization of process
conditions using response surface methodology for the microwave-assisted
transesterification of jatropha oil with KOH impregnated CaO as catalyst.
Chemical Engineering Research and Design 91, 2457-2464.
[29] Wenlei Xie, Haitao Li., 2006. Alumina-supported potassium iodide as a
heterogeneous catalyst for biodiesel production from soybean oil. Molecular
Catalysis A: Chemical 255, 1-9.
[30] Xuejun Liu, Huayang He, Yujun Wang, Shenlin Zhu, Xianglan Piao., 2008.
Transesterification of soybean oil to biodiesel using CaO as a solid base
catalyst. Fuel 87, 216-221.
[31] Jian-Zhong Yin, Zhen Ma, Zi-Yang Shang, Da-Peng Hu, Zhi-Long Xiu.,
2012. Biodiesel production from soybean oil transesterification in
subcritical methanol with K3PO4 as a catalyst. Fuel 93, 284-287.
[32] Nuttinee Supamathanon, Jatuporn Wittayakun, Sanchai Prayoonpokarach.,
2011. Properties of jatropha seed oil from Northeastern Thailand and its
transesterification catalyzed by potassium supported on NaY zeolite.
Industrial and Engineering Chemistry 17, 182-185.
[33] Kazuhiro Ban, Masaru Kaieda, Takeshi Matsumoto., 2001. Whole cell
biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells
immobilized within biomass support particles. Biochemical Engineering 8,
39-43.
[34] Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., Wang, X., 2009. Synthesis of
biodiesel from waste cooking oil using immobilized lipase in fixed bed
reactor. Energy Conversion and Management 50, 668-673.
[35] Diasakou , M., Louloudi, A and Papayannakos, N., 1998. Kinetics of the
non-catalytic transesterification of soybean oil. Fuel 12, 1297-1302.
111
[36] Cao, W., Han, H., Zhang, J., 2005. Preparation of biodiesel from soybean oil
using supercritical methanol and co-solvent. Fuel 84, 347-351.
[37] 王鵬,環境微波化學技術(2003)
[38] 國科會化學中心綠色/永續化學網路資源共享網-Microwave.
[39] Yuan-Chung Lin, Po-Ming Yang, Shang-Cyuan Chen, Jia-Fang Lin., 2013.
Improving biodiesel yields from waste cooking oil using ionic liquids
ascatalysts with a microwave heating system. Fuel Processing Technology
115, 57–62.
[40] Khemthong . P.,C. Luadthong, W. Nualpaeng, P. Changsuwan, P. Tongprem,
N. Viriya-empikul, K. Faungnawakij., 2012. Industrial eggshell wastes as
the heterogeneous catalysts for microwave-assisted biodiesel production.
Catalysis Today 190, 112– 116.
[41] Lertsathapornsuk, V., Pairintra, R., Aryusuk, K. and Krisnangkura, K., 2008.
Microwave assisted in continuous biodiesel production from waste frying
palm oil and its performance in a 100 kW diesel generator. Fuel Processing
Technology 89, 1330-1336.
[42] 林崇志,「以廢食用油進行微波轉製生質柴油研究」,元智大學化學工程
與材料科學學系,工程論文競賽(2009)
[43] Nezihe, A. and Aysegul, D., 2008. Microwave assisted trans-esterification
of rapeseed oil. Fuel 87, 1781-1788.
[44] Armando T. Quitain, Shunsaku Katoh and Motonobu Goto., 2011.
Microwave-Assisted Synthesis of Biofuels. Biofuel Production-Recent
Developments and Prospects, 596.
[45] Zhang, Su and Yuan-Gang, Zu., 2010. Rapid microwave-assisted
112
transesterification of yellow horn oil to biodiesel using a heteropolyacid
solid catalyst. Bioresource Technology 101, 931-936.
[46] Nezihe Azcan, Aysegul Danisman., 2007. Alkali catalyzed
transesterification of cottonseed oil by microwave irradiation. Fuel 86,
2639-2644.
[47] Perin. G. and G. Alvaro., 2008. Transesterification of castor oil assisted by
microwave irradiation. Fuel 87, 2838-2841.
[48] Ming-Chien Hsiao, Chin-Chiuan Lin, Yung-Hung Chang., 2011.
Microwave irradiation-assisted transesterification of soybean oil to biodiesel
catalyzed by nanopowder calcium oxide. Fuel 90, 1963-1967.
[49] Ming-Chien Hsiao, Chin-Chiuan Lin., 2013. Optimization of the production
of biodiesel assisted by ultrasonic and microwave. Energy and Power
Engineering 2, 54-59.
[50] 陳鴻博,以回應曲面法探討添加陽離子界面活性劑透過溶膠-凝膠法製
備矽膠之影響,中原大學碩士論文(2007)
[51] Montgomery, D. C., 1997. Design and Analysis of Experiments, Wiley,
New York.
[52] Motasemi, F. and F.N. Ani., 2012. A review on microwave-assisted
production of biodiesel. Renewable and Sustainable Energy Reviews 16,
4719–4733.
[53] Standard Test Method for Heat of Combustion of Liquid 189
Hydrocarbon Fuels by Bomb Calorimeter, ASTM D 240
[54] Standard Test Method for Kinematic Viscosity of Transparent and Opaque
Liquids, ASTM D 445
113
[55] Standard Test Method for Cold Filter Plugging Point of Diesel and Heating
Fuels, ASTM D 6371
[56] Standard Test Methods for Flash-Point by Pensky-Martens Closed Cup
Tester, ASTM D 93
[57] Brito. A, F. García , C. Á lvarez , R. Arvelo , J. L. G. Fierro , and C. Díaz.,
2004. High Surface Area Support/Catalyst Derived from Natural Pumice.
Study of Pretreatment Variables. Industrial and Engineering Chemistry
Research 43, 1659-1664.
[58] Sarat, B. I., Veera, V. R. B., Subba, R. S. and Hanumantha, R. G., 2007.
Optimization of medium constituents for the production of citric acid rom
byproduct glycerol using Doehlert experimental design. Enzyme and
Microbial Technology 40, 1367-1372.
[59] Shashikant, V. G. and Hifjur, R., 2006. Process optimization for biodiesel
production from mahua (Madhuca indica) oil using response surface
methodology. Bioresource Technology 97, 379-384.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top