跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/06 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卓英均
研究生(外文):Ying-Jun Zhuo
論文名稱:旋轉盤反應器熱傳特性之探討
論文名稱(外文):Characteristics of Heat Transfer in a Spinning Disk Reactor
指導教授:陳昱劭
指導教授(外文):Yu-Shao Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:242
中文關鍵詞:熱傳旋轉盤反應器
外文關鍵詞:SDRHeat transfer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於旋轉盤反應器具有良好的熱交換效果的特點,因此本研究以理論分析盤面液膜之流場特性及熱傳效應。在假設液膜流動型態為層流後,將液膜流場劃分為停滯區、邊界層區及層流發展區,並以Similarity solution、Momentum integral method以及Nusselt Thoery耦合滲透理論的方法分別計算上述三個流場區域內液膜的速度分布、溫度分布、邊界層厚度及熱傳係數。此外以商用軟體CFD模擬得到盤面液膜流在高轉速條件下不存在亂流區域,因而證實在本研究之操作條下液膜流動型態皆為層流。之後與CFD模擬得到的結果互相對照,發現兩者在層流發展區之熱傳結果不吻合,推測是因為理論方法忽略熱損失因此高估了接近盤外側位置之液膜對流熱傳係數。
另一方面,本研究以旋轉盤反應器做為熱交換器,以實驗量測熱水及冷卻水溫度的變化來計算反應器總熱傳係數。同時探討改變轉盤材質、進料流率、冷卻水流率及轉速等操作變因對總熱傳係數的影響。由實驗結果得知,使用高熱傳導係數之轉盤可提高熱傳效果。提高熱水進料流率、冷卻水流率及轉速亦可增加反應器總熱傳係數。此結果與與理論分析得到之趨勢相同。
本研究也以旋轉盤反應器進行快速放熱反應,發現在轉速為500 rpm,冷卻水溫度為20℃的條件下可得到主產物的最佳產率為83.4%。將此數據與文獻之微反應器在相同操作條件下的結果相比較後,得到兩種反應器之主產物產率幾乎相同,皆比批次攪拌反應器之產率13.5%高出許多,證明旋轉盤反應器具有良好的混合及熱交換效果的特性且適合用來進行此類快速且高放熱的反應。


Based on the high heat transfer rates in Spinning Disk Reactor, we developed a theoretical model to analyze the hydrodynamics and the heat transfer of liquid film on the disk. The film flow was assumed laminar and was divided into a stagnation region, a boundary layer region with surface velocity equal to jet speed, and a region where boundary layer completely engulfs the liquid film. Similarity solution, Momentum integral method and Nusselt Theory coupled with Penetration theory was used to calcaulte the velocity and temperature profile of liquid film, the thickness of boundary layer and the heat transfer coefficients. Furthermore, CFD is used to simulate the flow behavior in the liquid film. CFD showed that no turbulent transition region appeared in the film even at high spinning speeds. Besides, the results of local heat transfer coefficients based on model analysis were in poor agreement with CFD results in laminar developing region because the heat loss was not considered in the theoretical analysis.
In addition, we examines the overall heat transfer coefficients by measuring the inlet and the oulet temperatue of hot and cold water streams in SDR. The experiments were performed for different flow rates of hot and cold water, spinning speeds and the materials of disk. From the experimental results, overall heat transfer coefficients increase with the increment of the flow rate of hot and cold water, and spinning speeds. The overall heat transfer coefficients were also significantly affected by the materials of disk. The trend of the experimental overall heat transfer coefficients are similar to those predicted by model analysis.
Moreover, a rapid exothermic reaction was conducted in a SDR and the results were compared with those in a batch reactor and a micro-reactor. From the experiments, a 83.4% yield of bromobenzene was achieved at a spinning speed of 500 rpm and at room temperature. The yield is similar with the results of a micro-rector and is much better than the results (13.5% yield) of a batch ractor. It indicates an SDR, which has high heat transfer and mixing efficiency, is believed to be capable of performing rapid exothermic reactions.


摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 X
表目錄 XVII
第一章 緒論 1
第二章 文獻回顧 2
2.1 盤面上液膜流場分析 2
2.1.1 停滯區 4
2.1.2 層流發展區 7
2.1.2.1 Approximate Model 7
2.1.2.1.1 垂直平板 7
2.1.2.1.2 旋轉盤 10
2.1.2.2 Rigorous Model 18
2.1.2.2.1 二維方向 20
2.1.2.2.2 三維方向 24
2.1.3 層流至亂流轉換區 28
2.2 熱傳係數分析 30
2.2.1 固定平板上液膜流動之熱傳係數 30
2.2.2 旋轉盤面上液膜熱傳係數 32
2.3 熱傳係數量測方法 35
2.3.1 熱電偶 36
2.3.2 紅外線影像 38
第三章 實驗方法 40
3.1 實驗裝置 40
3.2 快速放熱反應 48
3.2.1 實驗藥品與儀器 48
3.2.2 鹵素-金屬置換反應原理 50
3.2.3 批次反應 53
3.2.4 連續式操作 56
3.2.5 氣相層析儀(Gas Chromatography)之設置 59
3.2.6 轉化率及產率計算方式 61
3.3 熱傳係數實驗 63
3.3.1 實驗儀器 63
3.3.2 實驗裝置與流程 64
3.3.3 總熱傳係數計算 66
第四章 理論分析 70
4.1 停滯區 72
4.2 邊界層區 76
4.3 層流發展區 85
第五章 CFD設置 91
5.1 幾何體建立 91
5.2 網格劃分 93
5.3 多相流模型 96
5.4 亂流模型 98
第六章 結果與討論 100
6.1 轉盤上液膜理論分析 100
6.1.1 停滯區 100
6.1.1.1 進料流率對流場的影響 101
6.1.1.2 轉速對流場的影響 104
6.1.1.3 Prandtl number對熱邊界層的影響 106
6.1.1.4 進料流率及轉速與邊界層範圍之探討 107
6.1.1.5 進料流率及轉速與熱傳係數之探討 110
6.1.2 邊界層區 112
6.1.2.1 進料流率及轉速與邊界層範圍之探討 112
6.1.3 層流發展區 114
6.1.3.1 進料流率及轉速對液膜溫度分布的影響 114
6.1.3.2 進料流率及轉速與熱傳係數之探討 118
6.1.4 三個區域之綜合探討 121
6.1.4.1 進料流率及轉速與流場分布之探討 121
6.1.4.2 進料流率及轉速與熱傳係數之探討 124
6.2 CFD對液膜的分析 129
6.2.1 Y plus 129
6.2.2 液膜厚度 131
6.2.3 液膜速度分布 134
6.2.4 液膜溫度分布 136
6.2.5 Intermittency factor 139
6.2.6 表面摩擦係數 140
6.2.7 液膜對流熱傳係數 144
6.2.8 與理論分析之比較 147
6.2.8.1 液膜厚度 147
6.2.8.2 液膜對流熱傳係數 149
6.3 熱傳實驗結果 151
6.3.1 操作參數對總熱傳係數的影響 151
6.3.1.1 熱水流率對總熱傳係數的影響 151
6.3.1.2 轉速對總熱傳係數的影響 153
6.3.1.3 冷卻水流率對總熱傳係數的影響 155
6.3.1.4 轉盤材質對總熱傳係數的影響 158
6.3.2 實驗結果與理論分析及CFD之比較 162
6.3.2.1 實驗結果與理論分析之比較 162
6.3.2.2 CFD與實驗結果的比較 167
6.3.3 旋轉盤反應器與其他熱交換器總熱傳係數的比較 170
6.4 快速放熱反應 172
6.4.1 產物分析 172
6.4.1.1 FTIR 174
6.4.1.2 GC 176
6.4.2 批次操作 178
6.4.2.1 操作溫度及時間對產物分布的影響 178
6.4.2.2 批次操作與微反應器的比較 180
6.4.3 連續式操作 181
6.4.3.1 操作溫度與轉速對產物分布及系統溫度的影響 181
6.4.3.2 連續式操作與批次操作之比較 186
6.4.3.3 旋轉盤反應器與微反應器的比較 189
第七章 結論 192
參考文獻 195
符號表 201
附錄A 快速放熱反應-批次操作之產物濃度 209
附錄B 快速放熱反應-連續式操作之產物濃度 210
附錄C 熱傳係數實驗之溫度數據 212

圖目錄
Figure 2.1 固定平板上液膜流場區域分布之示意圖(Liu et al., 1991) 2
Figure 2.2 停滯區之流場分布圖(Liu et al., 1993) 4
Figure 2.3冷凝程序垂直平板之示意圖 7
Figure 2.4 旋轉盤之示意圖 10
Figure 2.5 液膜徑向平均速度對半徑作圖,理論與實驗結果之對照(Wood and Watts, 1973) 13
Figure 2.6 雷諾數對液膜厚度作圖(Espig and Hoyle, 1965) 14
Figure 2.7 不同操作條件下之液膜厚度,理論與實驗結果之對照(Leneweit et al., 1999) 15
Figure 2.8以探針測量液膜厚度之旋轉盤系統(Leshev and Peev, 2003) 16
Figure 2.9 理論與實驗結果之液膜厚度的比值對Ekman number作圖(Burns et al., 2003) 19
Figure 2.10理論方法與實驗結果之比較(Wood and Watts, 1973) 22
Figure 2.11 不同轉速下使用Pigford model之徑向速度分布(Burns et al., 2003) 23
Figure 2.12 理論方法與實驗結果之對照(Matsumoto et al., 1973) 25
Figure 2.13 不同理論方法之液膜厚度計算結果的對照(Munjal et al., 1989) 27
Figure 2.14 層流與亂流Nusselt number預測值之對照(Liu et al, 1991) 28
Figure 2.15 液-固接觸面之對流熱傳係數:進料流率為52.5 cm3s-1,轉速為60s-1(Anoune and Ramshaw, 1999) 33
Figure 2.16 以熱電偶法測量液膜溫度(Anoune and Ramshaw, 1999) 37
Figure 2.17以熱電偶法測量液膜溫度(Ozar et al., 2004) 37
Figure 2.18 紅外線影像裝置(Ghiasy et al., 2012) 39
Figure 2.19 紅外線影像法之原理(Ghiasy et al., 2012) 39
Figure 3.1旋轉盤反應器之結構圖…………………………………………………..41
Figure 3.2旋轉盤反應器實體圖 42
Figure 3.3旋轉盤反應器之外蓋 43
Figure 3.4旋轉盤反應器之上蓋 44
Figure 3.5上蓋之構造圖 44
Figure 3.6噴嘴之構造圖(a)快速放熱反應(b)熱傳係數實驗 45
Figure 3.7轉盤與冷水通道之構造圖 46
Figure 3.8快速放熱反應主反應之示意圖(Nagaki et al., 2007) 51
Figure 3.9 批次操作之示意圖 53
Figure 3.10快速放熱反應主反應之示意圖(Nagaki et al., 2007) 54
Figure 3.11 連續式操作之示意圖 56
Figure 3.12 單一進料入口之旋轉盤反應器 64
Figure 4.1 盤面液膜流場分布之示意圖……………………………………………71
Figure 4.2停滯區之理論方法流程圖 75
Figure 4.3邊界層區之理論方法流程圖 84
Figure 4.4層流發展區之理論方法流程圖 90
Figure 5.1盤面液膜流場之幾何構造示意圖……………………………………….92
Figure 5.2 網格之分布圖 94
Figure 5.3網格之分布圖 95
Figure 6.1比較不同進料流率下徑向速度變化的趨勢……………………………102
Figure 6.2比較不同進料流率下切向速度變化的趨勢 102
Figure 6.3比較不同進料流率下軸向速度變化的趨勢 103
Figure 6.4比較不同轉速下徑向速度變化的趨勢 104
Figure 6.5比較不同轉速下切向速度變化的趨勢 105
Figure 6.6比較不同轉速下軸向速度變化的趨勢 105
Figure 6.7不同的Prandtl number下溫度隨邊界層厚度變化的趨勢 106
Figure 6.8徑向邊界層厚度在不同進料流率及轉速下之對照 108
Figure 6.9切向邊界層厚度在不同進料流率及轉速下之對照 108
Figure 6.10熱邊界層厚度在不同進料流率及轉速下之對照 109
Figure 6.11在不同進料流率及轉速下對流熱傳係數之比較 110
Figure 6.12在不同進料流率及轉速下Nusselt number之比較 111
Figure 6.13邊界層區之終點距離隨操作條件改變而變化之趨勢 113
Figure 6.14進料流率為720 mL/min,轉速為500 rpm,液膜溫度分布圖 115
Figure 6.15進料流率為720 mL/min,轉速為2000 rpm,液膜溫度分布圖 115
Figure 6.16進料流率為250 mL/min,轉速為500 rpm,液膜溫度分布圖 116
Figure 6.17進料流率為720 mL/min,液膜平均溫度隨轉速改變而變化之趨勢 117
Figure 6.18轉速為2000 rpm,液膜平均溫度隨進料流率改變而變化之趨勢 117
Figure 6.19對流熱傳係數隨進料流率改變而變化之分布 119
Figure 6.20 Nusselt number隨進料流率改變而變化之分布 119
Figure 6.21對流熱傳係數隨轉速改變而變化之分布 120
Figure 6.22 Nusselt number隨轉速改變而變化之分布 120
Figure 6.23進料流率為720 mL/min,轉速為2000 rpm,盤面邊界層分布示意圖 122
Figure 6.24進料流率為250 mL/min,轉速為2000 rpm,盤面邊界層分布示意圖 122
Figure 6.25進料流率為720 mL/min,轉速為500 rpm,盤面邊界層分布示意圖 123
Figure 6.26對流熱傳係數隨進料流率改變之分布 125
Figure 6.27 Nusselt number隨進料流率改變之分布 125
Figure 6.28對流熱傳係數隨轉速改變之分布 126
Figure 6.29 Nusselt number隨轉速改變之分布 126
Figure 6.30停滯區之平均對流熱傳係數占整個盤面之熱傳比例 128
Figure 6.31邊界層區之平均對流熱傳係數占整個盤面之熱傳比例 128
Figure 6.32液膜y+值之分布 130
Figure 6.33進料流率為250 mL/min,液膜厚度隨轉速改變之分布 131
Figure 6.34進料流率為430 mL/min,液膜厚度隨轉速改變之分布 132
Figure 6.35進料流率為720 mL/min,液膜厚度隨轉速改變之分布 132
Figure 6.36轉速為2000 rpm,液膜厚度隨進料流率改變之分布 133
Figure 6.37進料流率為720 mL/min,轉速為500 rpm,液膜徑向速度分布 134
Figure 6.38進料流率為720 mL/min,轉速為500 rpm,液膜切向速度分布 135
Figure 6.39進料流率為720 mL/min,轉速為500 rpm,旋轉盤系統之溫度分布 137
Figure 6.40進料流率為720 mL/min,轉速為2000 rpm,旋轉盤系統之溫度分布 137
Figure 6.41進料流率為720 mL/min,轉速為2000 rpm,液膜之溫度分布 138
Figure 6.42 Intermittency factor隨進料流率及轉速改變的分布 139
Figure 6.43 實驗與理論方法所得之表面摩擦係數的比較(Cebeci and Douglas, 1974) 140
Figure 6.44進料流率為250 mL/min,表面摩擦係數隨轉速改變的趨勢 141
Figure 6.45進料流率為430 mL/min,表面摩擦係數隨轉速改變的趨勢 142
Figure 6.46進料流率為720 mL/min,表面摩擦係數隨轉速改變的趨勢 142
Figure 6.47轉速為2000 rpm,表面摩擦係數隨進料流率改變的趨勢 143
Figure 6.48進料流率為250 mL/min,對流熱傳係數隨轉速改變之分布 145
Figure 6.49進料流率為430 mL/min,對流熱傳係數隨轉速改變之分布 145
Figure 6.50進料流率為720 mL/min,對流熱傳係數隨轉速改變之分布 146
Figure 6.51轉速為2000 rpm,對流熱傳係數隨進料流率改變之分布 146
Figure 6.52 進料流率為720 mL/min,CFD與理論分析預測之液膜厚度隨轉速變化的比較 148
Figure 6.53進料流率為720 mL/min,CFD與理論分析預測之液膜厚度隨轉速變化的比較 148
Figure 6.54 CFD與理論分析之比較 150
Figure 6.55銅轉盤-熱水流率對總熱傳係數之影響 152
Figure 6.56轉速對總熱傳係數之影響 154
Figure 6.57銅轉盤-總熱傳係數隨熱水流率、轉速、冷卻水流率變化之趨勢 156
Figure 6.58總熱傳係數實驗值與迴歸式的比較 157
Figure 6.59銅轉盤-總熱傳係數隨熱水流率、轉速、冷卻水流率變化之趨勢 159
Figure 6.60鋁轉盤-總熱傳係數隨熱水流率、轉速、冷卻水流率變化之趨勢 160
Figure 6.61 SUS 304轉盤-總熱傳係數隨熱水流率、轉速、冷卻水流率變化之趨勢 160
Figure 6.62總熱傳係數實驗值與迴歸式的比較 161
Figure 6.63銅轉盤-理論分析與實驗結果之對照 165
Figure 6.64鋁轉盤-理論分析與實驗結果之對照 165
Figure 6.65 SUS 304轉盤-理論分析與實驗結果之對照 166
Figure 6.66銅轉盤-實驗結果與CFD預測之總熱傳係數之對照 168
Figure 6.67鋁轉盤-實驗結果與CFD預測之總熱傳係數之對照 168
Figure 6.68 SUS 304轉盤-實驗結果與CFD預測之總熱傳係數之對照 169
Figure 6.70 鹵素-金屬置換反應機構 173
Figure 6.71 FTIR之定性分析圖譜 175
Figure 6.72 GC-FID之定量分析圖譜 176
Figure 6.73以微反應器進行快速放熱反應所得溴苯之產率分布圖(Nagaki et al., 2007) 180
Figure 6.74反應物總流率為121 mL/min。溴苯的產率隨冷卻水溫度及轉速變化之分布 183
Figure 6.75反應物總流率為121 mL/min。轉化率隨冷卻水溫度及轉速之分布 183
Figure 6.76連續式操作之轉化率與溴苯產率隨轉速及冷卻水溫度改變的趨勢 184
Figure 6.77反應物總流率為121 mL/min。系統溫度隨轉速變化之分布 185

表目錄
Table 2.1 操作流體流動行為為層流,停滯區內無黏流區之徑向速度梯度(Liu et al., 1993) 6
Table 2.2 操作流體流動行為為層流且Pr > 1,各個流場區域之範圍及Nusselt number之預測 (Liu et al., 1991) 31
Table 3.1噴嘴之詳細規格…………………………………………………………...45
Table 3.2轉盤與冷水通道之詳細規格 46
Table 3.3 轉盤在30℃之熱傳導係數(Geankoplis, 2004) 47
Table 3.4 在批次操作下,p-Dibromobenzene與n-BuLi之溴-鋰置換,使用甲醇做為親電子劑之反應結果與其操作條件(Nagaki et al., 2007) 52
Table 3.5 批次反應之操作條件 55
Table 3.6 連續式操作之操作條件 58
Table 3.7 GC之操作條件 60
Table 3.8 熱傳係數實驗之操作條件 65
Table 3.9 熱交換器之ε關係式(Kays and London, 1984) 68
Table 3.10 熱交換器之NTU關係式(Frank and Dewitt, 1996) 68
Table 3.11熱交換器之NTU關係式(Shah, 2003) 69
Table 5.1 網格的詳細資料…………………………………………………………..95
Table 6.1 Liu et al. (1991)所預測靜止平板之停滯區的範圍………………………113
Table 6.2總熱傳係數與噴嘴雷諾數之冪次關係 152
Table 6.3總熱傳係數與轉盤雷諾數之冪次關係之D值 154
Table 6.4總熱傳係數與噴嘴雷諾數、轉盤雷諾數之冪次關係 156
Table 6.5總熱傳係數與噴嘴雷諾數、轉盤雷諾數之冪次關係 161
Table 6.6 各種熱交換器總熱傳係數的比較 170
Table 6.7產物波峰分布 177
Table 6.8批次操作之操作條件與產物產率 179
Table 6.9連續式操作與批次操作之比較 187
Table 6.10旋轉盤反應器與微反應器的比較 190

Anoune, A., C. Ramshaw, “Process intensification: heat and mass transfer characteristics of liquid films on rotating discs,” Int. J. Heat Mass Transfer, 42, 2543 (1999)
Aroesty, J., J. F. Gross, M. M. Illickal, J. V. Maloney, “Blood oxygenation: a study in bioengineering Mass transfer,” Digest Seventh Int. Conf. on Medical and Biological Engineering, 527 (1967)
Azuma, T., “Laminar-Turbulent Transition in Radial liquid Film Flow on a Stationaryand a Rotating Disk,” Japanese J. Multiphase Flow, 8, 106 (1994)
Azuma, T. and T. Hoshino, “The Radial Flow of a Thin Liquid Film, Part 1:Laminar-Turbulent Transition,” Trans. Japan Soc. Mech. Engrs., 50, 974 (1984a)
Harker, J. H., J. R. Backhurst, J. F. Richardson, Coulson &; Richardson's chemical engineering, Butterworth-Heinemann, NetLibrary (2004)
Bailey, W. F., M. R. Luderer, K. P. Jordan, “Effect of Solvent on the Lithium-Bromine Exchange of Aryl Bromides: Reactions of n-Butyllithium and tert-Butyllithium with 1-Bromo-4-tert-butylbenzene at 0℃,” J. org. Chem., 71, 2825 (2006)
Basu, S., B. M. Cetegen, “Effect of Hydraulic Jump on Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk Analyzed by Integral Method,” J. Heat Transfer, 129, 657 (2007)
Boodhoo, K., “Process Intensification: Spinning Disk Reactor for the Polymerisation of Styrene,” Ph..D. thesis, University of Newcastle upon Tyne (1999)
Burns, J. R., C. Ramshaw, R. J. Jachuck, “Measurements of liquid film thickness andthe determination of spin-up radius on a rotating disk using and electrical resistance technique,” Chem. Eng. Sci., 58, 2245 (2003)
Charwat, A. F., R. E. Kelly, “The flow and stability of thin liquid films on a rotating disk,” J. Fluid Mech., 53, 227 (1972)
Cebeci, T. and D E. Abbott, “Boundary layers on a rotating disk,” Fifth Australasian
Conference on Hydraulics and Fluid Mechanics, 561 (1974)
Espig, H. and R. Hoyle, “Waves in a thin liquid layer on a rotating disk,” J. Fluid Mech., 2, 671 (1965)
Frank, P. I. and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, Wiley, USA (1996)
Geankoplis, C. J., Transport Processes and Seperation Process Principles, Pearson Education Inc., New Jersy (2003)
Ghiasy, D., K. V. K. Boodhoo, M. T. Tham, “Thermographics analysis of thin liquid films on a rotating disc: Approach and Chanllenges,” Appl. Therm. Eng., 44, 39 (2012)
Higbie, R., “The rate of absorption of a pure gas into a still liquid during short periods of exposure,” Trans. Am. Inst. Chem. Eng., 35, 36 (1935)
Homann, F., “Der Einfluss grosser Zahigkeit bei der Strommung um den Zylinder und um die Kugel,” Z. Angew. Math. Mech., 16, 153 (1936)
Kays, W. M. and A. L. London, Compact Heat Exchangers,, McGraw Hill, New York (1984).
Leneweit, G., K G. Roesner, R. Koehler, “Surface Instabilities of thin liquid film flow on a rotating disk,” Exp. Fluids, 26, 75 (1999)
Leshev, I., G. Peev, “Film flow on a horizontal rotating disk,” Chem. Eng. Process, 42 925 (2003)
Liu, X., J. H. Lienhard V, J. S. Lombara, “Convective Heat Transfer by Impingement of Circular Liquid Jets,” J. Heat Transfer, 113, 571 (1991)
Liu, X., L. A. Gabour, J. H. Lienhard V, “Stagnation-Point Heat Transfer During Impingement of Laminar Liquid Jets: Analysis Including Surface Tension,” J. Heat Transfer, 115, 99 (1993)
Matsumoto, S., K. Saito, Y. Takashima, “THE THICKNESS OF A VISCOUS LIQUID FILM ON A ROTATING DISK,” Soc. of Chem. Engrs. Japan, 6, 503 (1973)
Mills, A. F., HEAT AND MASS TRNASFER, IRWIN, USA (1995)
Munjal, S., M. P. Dudukovic, P. Ramchandran, “MASS-TRANSFER IN ROTATING PACKED BEDS-I.DEVELOPMENT OF GAS-LIQUID AND LIQUID-SOLID MASS-TRANSFER CORRELATIONS,” Chem. Eng. Sci., 44, 2245 (1989)
Nagaki, A., Y. Tomida, H. Usutani, H. Kim, N. Takabayashi, T. Nokami, H. Okamoto, J. Yoshida, “Integrated Micro Flow Synthesis Based on Sequential Br-Li Exchanger Reactions of p-, m- and o-Dibromobenzenes,” Chem. Asian J., 2, 1513 (2007)
Nagaki, A., H. Kim, “Aryllithium Compounds Bearing Alkoxycarbonyl Groups: Generation and Reactions Using a Microflow System,” Angew. Chem. Int. Ed., 47, 7833 (2008)
Nusselt, W., “Die oberflächen kondensation des wasserdampfes,” Zeitschrift des Vereines Deutscher Ingenieure, 60, 541 (1916)
Ozar, B., B. M. Cetegen, A. Faghri, “Experiments on Heat Trasfer in a Thin Liquid Film Flowing Over a Rotating Disk,” J. Heat Transfer, 126, 184 (2004)
Perry, R. H., D. W. Green, J. O. Maloney, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York (1997)
Popiel, C. O., L. Boguslawski, “Local Heat Transfer form a Rotating Disk in an Impingin Round Jet,” J. Heat Transfer, 108, 540 (1986)
Ramham, M. M., J. C. Lallave, A. Kumar, “Heat transfer from a spinning disk during semi-confined axial impingement from a rotating nozzle,” Int. J. Heat Mass Transfer, 51,4400 (2008)
Ramham, M. M. and J. C. Lallave, “TRANSIENT CONJUGATE HEAT TRANSFER DURING FREE LIQUID JET IMPINGEMENT ON A ROTATING SOLID DISK,” Numerical Heat Transfer, Part A, 55, 229 (2009)
Rasuscher, J. W., R. E. Kelly, J. D. Cole, “An Asymptotic Solution for the Laminar Flow of a Thin Film on a Rotating Disk,” J. Appl. Mech., 40, 43 (1973)
Salim, M. and S. C. Cheah, “Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows,” IMECS (2009)
Schah, W., “Umlenkung eines kreisförmigen Flussgkeitsstrahles an einer ebenen Platte senkrecht zur Strömungscrichtung,” Ing. Arch., 6, 51 (1935)
Scholtz, M. T. and O. Trass, “Mass Transfer in a Nonuniform Impinging Jet,” AIChE J., 16, 82 (1970)
Shah, R. K., Fundamentals of heat exchanger design, John Wiley &; Sons, New Jersy (2003)
Sharan, A., “Jet-Disc Boiling: Burnout Predictions and Application to Solar Receivers,” Master Thesis in Mechanical Engineering, University of Huston, TX (1984)
Shen, Y. C., “Theoretical Analysis of Jet-Ground Plane Interaction,” IAS Paper, 62-144 (1962)
Shevchuck, I. V., “An Exact Solution for Heat Transfer of a Jet Co-Axially Impinging on a Rotating Disk and Its Comparisons with Stagnation Point Experiments,” J. Thermal Science, 11, 53 (2001)
Shu, J. J. and G. Wilks, “Heat Transfer in the Flow of a Cold, AxisymmetricVertical Liquid Jet Against a Hot, Horizontal Plate,” J. Heat Transfer, 130, 1 (2008)
Stephens, E. B., K. E. Kinsey, J. F. Davis, J. M. Tour, “Synthesis of Soluble Halogenated Polyphenylenes. Mechanism for the Coupling of Halogenated Lithiobenzenes,” Macromolecules, 26, 3519 (1993)
Strand, T., “On the Theory of Normal Ground Impingement of Axisymmetric Jets in Invscid Incompressible Flow,” AIAA Paper, 64-424 (1964)
Tien, C. L. and J. Tsuji, “HEAT TRANSFER BY LAMINAR FORCED FLOW AGAINST A NON-ISOTHERMAL ROTATING DISK,” Int. J. Heat Mass Transfer, 7, 247 (1964)
Watson, E. J., “The radial spread of a liquid jet over a horizontal plane,” J. Fluid Mech., 20, 481 (1964)
Welty, J., C. E. Wicks, G. L. Rorrer, R. E. Wilson, Fundamentals of Momentum, Heat,
and Mass Transfer, Wiley, USA (2008)
White, F. M., Viscous Fluid Flow, McGraw-Hill, New York (1974)
Wood, R. M. and B. E. Watts, “THE FLOW, HEAT AND MASS TRANSFER
CHARACTERISTICS OF LIQUID FILMS ON ROTATING DISCS,” Trans. Instn
Chem. Engrs., 51, 315 (1973)
Woods, W. P., “The Hydrodynamics of Thin Liquid Films Flowing Over a Rotating Disc,”
Ph.D. thesis, University of Newcastle upon Tyne (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top