跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 19:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林正藍
研究生(外文):Cheng-Lan Lin
論文名稱:新型態金屬有機骨架高分子整體成形管柱在層析及微萃取技術之應用
論文名稱(外文):Novel hybrid Metal-Organic Framework-Polymeric Monoliths for Chromatographic and Microextraction Applications
指導教授:黃悉雅
指導教授(外文):Hsi-Ya Huang
學位類別:博士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:192
中文關鍵詞:固相微萃取奈升級液相層析毛細管層析整體成形管柱金屬有機骨架
外文關鍵詞:nano liquid chromatographysolid phase microextractioncapillary electrochromatographymetal organic frameworkmonolithic column
相關次數:
  • 被引用被引用:0
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以開發新型態整體成形管柱,應用於毛細管電層析(capillary electrochromatography, CEC)與奈升級液相層析(nano liquid chromatography, nano-LC)之靜相及固相微萃取(solid phase microextraction, SPME)技術之吸附劑,將分為三部分探討。
在本研究的第一部分,以單體三烯丙基異三聚氰酸酯(triallyl isocyanurate, TAIC)、二甲基丙烯酸乙酯(ethylene dimethacrylate, EDMA)、十八烷基甲基丙烯酸酯(stearyl methacrylate, SMA)及2-丙烯醯胺基-2-甲基丙烷磺酸(2-acrylamido-2-methylpropanesulfonic acid, AMPS)聚合形成整體成形管柱,應用在奈升級液相層析進行酚酸之分離。藉由動相梯度沖提可在90分鐘內使分析物分離,並以van Deemter曲線探討管柱之效能,在0.1 - 1.0 μL/min的線性流速下其理論板高仍小於20 μm,顯示其良好的管柱效能。實驗最後與常見親水性整體成形管柱相比較,顯示poly(TAIC-EDMA-AMPS)管柱對酚酸分離有顯著的效果。
第二部分為金屬有機骨架(metal-organic framework, MOF)在層析靜相之研究,研究首先以MIL-101(Cr)材料填充至毛細管柱中,並應用在毛細管電層析系統上,由於填充式管柱產生較高的背壓使得無法應用在奈升級液相層析中,因此,本研究首次開發金屬有機骨架高分子整體成形管柱,以解決填充式管柱背壓高的缺點。實驗中將MIL-101(Cr)與單體丁基甲基丙烯酸酯(butyl methacrylate, BMA)及二甲基丙烯酸乙酯,以離子液體1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4])為溶劑混合均勻,並結合微波輔助加熱法可成功快速製備MIL-101(Cr)高分子整體成形管柱,與填充式管柱相比較其管柱通透率大幅提升約20倍。此外,藉由掃描式電子顯微鏡、X光繞射儀、表面積測定儀及紅外線光譜儀完成靜相相關性質的鑑定。
此新型態MIL-101(Cr)高分子整體成形管柱成功應用於毛細管電層析、奈升級液相層析系統中,針對多種芳香環化合物進行分離,顯示其良好的分離效果及管柱再現性。此外,MIL-101(Cr)高分子整體成形管柱也應用在蛋白質水解胜肽的分析,在牛血清蛋白水解胜肽成功鑑定出46個胜肽片段及其胜肽覆蓋率(sequence coverage)為64 %。
實驗最後一部分,以第二部分開發之MOF高分子整體成形管柱應用在固相微萃取技術中,針對盤尼西林分析物進行萃取,並以毛細管電層析方法檢測其萃取效果。實驗中首先在25 wt% (0.04 mg/μL)的MOF含量下,以MIL-101(Cr)高分子為吸附劑,探討脫附溶劑種類及體積、平衡溶液體積、清洗溶液種類、樣品進樣流速、樣品pH值等條件對盤尼西林萃取效果之影響,並由貫穿曲線(breakthrough curve)得知,MIL-101(Cr)對盤尼西林的最大吸附量為9.1 - 11.1 μg/mg。
比較不同系列MOF材料對盤尼西林萃取之差異,結果顯示在25 wt% (0.04 mg/μL)的MOF含量下,MIL-101(Cr)顯示其有最好的回收率範圍在63.0 % - 96.2 %;而同為籠狀型的MIL-100(M)回收率範圍分別是MIL-100(Cr):23.9 % - 78.4 %、MIL-100(Fe):7.0 % - 22.5 %、MIL-100(Al):15.6 % - 81.5 %。通道型結構的MIL-53(Al)回收率範圍是54.7 % - 67.7 %,而將MIL-53(Al)含量提高至37.5 wt% (0.06 mg/μL)後,回收率範圍可提升至76.4 % - 94.0 %,與MIL-101(Cr)的效果相當。在分析物濃度0.01 - 1.0 μg/mL範圍內,MIL-101(Cr)高分子萃取所得檢量線之R2值範圍在0.9982 - 0.9993,及其LOD與LOQ範圍分別在1.2 - 4.5 ng/mL與4.0 - 14.8 ng/mL。將此方法應用至河水樣品中,添加0.05 μg/mL及0.10 μg/mL濃度至河水中,所得到的回收率範圍分別是67.9 % - 91.2 %與62.5 % - 90.8 %,最後在重複使用之探討,結果顯示MIL-101(Cr)高分子可重複使用至少45次,顯示其耐用性佳。本實驗證明MOF-polymer在SPME技術之可行性。
In this dissertation, novel monolithic columns were developed and were applied as stationary phases for capillary electrochromatography (CEC), nano liquid chromatography (nano-LC) and sorbents for solid phase microextraction (SPME).
In the first part, triallyl isocyanurate (TAIC), ethylene dimethacrylate (EDMA), stearyl methacrylate (SMA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were polymerized to produce poly(TAIC-EDMA-AMPS) monolithic column and applied in nano-LC for the separation of phenolic acids. The phenolic acids were successfully separated using gradient elution for 90 min. The column efficiency was determined by using the van Deemter curve and results indicated that the plate heights was lower than 20 μm at linear flow rate of 0.1-1.0 μL/min. In comparison with the common hydrophilic monolithic column, the poly(TAIC-EDMA-AMPS) revealed more efficient in separating the phenolic acids.
In the second part, metal-organic framework (MOF) (MIL-101(Cr)) was studied as chromatographic stationary phases. At first, the MIL-101(Cr) was packed into capillary and applied in CEC system. However, due to high back pressure of MIL-101(Cr) column, attempts in applying for nano-LC system was deemed impossible. Thus, in this case, novel MOF-polymer monolith was successfully developed with improved effectiveness against high back pressure problems caused by packing. For the preparation of MOF-polymer, MIL-101(Cr), butyl methacrylate (BMA) and EDMA were homogeneously mixed in [C6mim][BF4] ionic liquid solvent via microwave assisted heating. In comparison with MOF packed column, the permeability of MOF-polymer was increased approximately to 20-fold. The MOF-polymer monoliths were characterized by scanning electron microscope (SEM), powder x-ray diffraction (PXRD), surface area analyzer and fourier transform infrared spectroscopy (FTIR).
The novel MOF-polymer monolithic columns were successfully applied for CEC, and nano-LC for several aromatic compounds, and revealed a good column efficiency and column reproducibility, respectively. Moreover, MIL-101(Cr)-polymer monolithic column was also applied in peptides analyses, the result showed that 46 peptides were identified with sequence coverage of 64 % from tryptic digest of Bovine Serum Albumin (BSA).
For the last part, MOF-polymer monoliths were applied to SPME technique for penicillins extraction, and quantitatively analyzed by CEC method to determine extraction efficiency. Using 25 wt% MOF, the desorption solvent and volume, condition solution volume, washing solution type, sample flow rate, and sample pH were optimized in the extraction of penicillin using MIL-101(Cr)-polymer as sorbent. The maximun penicillins adsorption for MIL-101(Cr) were 9.1 - 11.1 μg/mg obtained from breathrough curve.
At 25 wt%, different MOFs (cage and tunnel type) were also used to expore their extraction efficiencies. The result revealed that the recovery for cage type MIL-101(Cr) was 63.0 % - 96.2 %, while with the same cage structure MIL-100(M), the recoveries for MIL-100(Cr), MIL-100(Fe) and MIL-100(Al) were 23.9 % - 78.4 %, 7.0 % - 22.5 % and 15.6 % - 81.5 %, respectively. Meanwhile, for the tunnel type MOF, the recovery for MIL-53(Al) was 54.7 % - 67.7 %. With the results, it suggests that MIL-101(Cr) and MIL-53(Al) have greater adsorption capacities in extracting the penicillin. Further studies have conducted on MIL-101(Cr) and MIL-53(Al) by increasing the MOF wt% to 37.5. Based on the results, the recovery for MIL-53(Al) further increased to 76.4 % - 94.0 % and was comparable to MIL-101(Cr).
For MIL-101(Cr)-polymer SPME, the fabricated method exhibited a good linearity (with R2 between 0.9982 and 0.9993) from 0.01 - 1.0 μg/mL, low limits of detection (1.2 - 4.5 ng/mL), and limit of quantification (4.0 - 14.8 ng/mL). The MOF-polymer SPME was applied in river sample and the recovery ranges from 67.9 % - 91.2 % and 62.5 % - 90.8 % at spiked 0.05 μg/mL and 0.10 μg/mL concentration, respectively. Finally, the MIL-101(Cr)-polymer can be re-used at least 45 times which shows high column life-time. With these results, it showed the potential application of MOF-polymer SPME.
目錄
摘要 I
Abstract III
謝誌 VI
目錄 VIII
圖目錄 XIII
表目錄 XVII
英文縮寫對照表 XX
1. 緒論 1
1-1. 有機整體成形管柱簡介 1
1-1-1. 聚丙烯醯胺類整體成形管柱(polyacrylamide-based monolithic column) 1
1-1-2. 聚甲基丙烯酸酯類整體成形管柱(polymethacrylate-based monolithic column) 2
1-1-3. 聚苯乙烯類整體成形管柱(polystyrene-based monolithic column) 3
1-1-4. 聚三烯丙基異三聚氰酸酯類整體成形管柱(polytriallyl isocyanurate-based monolithic column) 4
1-2. 微波輔助加熱法製備有機整體成形管柱 5
1-3. 填充式管柱製備方法 7
1-4. 毛細管電層析簡介 8
1-5. 奈升級液相層析法簡介 9
1-5-1. van Deemter方程式 9
1-6. 固相微萃取技術簡介 11
1-6-1. Fiber SPME簡介 12
1-6-2. SBSE簡介 13
1-6-3. In-tube SPME簡介 13
1-6-4. Syringe SPME簡介 14
1-6-5. In-tip SPME簡介 14
1-7. PMME萃取管柱發展現況 15
1-8. 金屬有機骨架簡介 26
1-8-1. mesoMOF之有機配位基 28
1-8-2. mesoMOF孔洞形態 30
1-9. 金屬有機骨架於層析靜相的應用 34
1-10. 金屬有機骨架在萃取技術的應用 40
1-11. 盤尼西林 48
2. 奈升級液相層析在親水性物質分離之應用 53
2-1. 研究動機 53
2-2. 實驗簡介 54
2-2-1. 儀器設備及裝置 54
2-2-2. 實驗藥品 54
2-2-3. 毛細管壁改質前處理 57
2-2-4. 高分子整體成形管柱製備 59
2-2-4-1. 高分子共聚物聚合溶液製備 59
2-2-4-2. 整體成形管柱製備方法 59
2-3. 結果與討論 62
2-3-1. Poly(TAIC-EDMA-SMA-AMPS)管柱於逆相層析機制之探討 62
2-3-2. Poly(TAIC-EDMA-SMA-AMPS)與poly(TAIC-EDMA-AMPS)管柱在奈升級液相層析對酚酸化合物之分離 63
2-3-3. TAIC管柱在奈升級液相層析效能之探討 70
2-3.4. 不同靜相種類於奈升級液相層析中對酚酸分離之比較 71
2-4. 結論 72
3. 金屬有機骨架整體成形管柱之開發 73
3-1. 研究動機 73
3-2. 實驗簡介 74
3-2-1. 儀器設備及裝置 74
3-2-2. 實驗藥品 75
3-2-3. 金屬有機骨架之製備 80
3-2-4. 毛細管壁改質前處理 80
3-2-5. 填充式管柱製備 80
3-2-6. MOF整體成形管柱之製備 82
3-3. 結果與討論 83
3-3-1. MIL-101(Cr)-polymer與MIL-101(Cr)填充式管柱之鑑定 83
3-3-2. MOF填充式管柱在毛細管電層析的應用 90
3-3-3. MOF整體成形管柱在毛細管電層析的應用 92
3-3-4. MOF整體成形管柱應用於奈升級液相層析 101
3-3-5. MOF整體成形管柱再現性及效能 105
3-3-6. MOF整體成形管柱於蛋白質水解胜肽之分離應用 106
3-4. 結論 108
4. 金屬有機骨架高分子整體成形管柱於微萃取技術之開發 109
4-1. 研究動機 109
4-2. 實驗簡介 111
4-2-1. 儀器設備及裝置 111
4-2-2. 實驗藥品 112
4-2-3. 毛細管壁改質前處理 113
4-2-4. MOF-polymer SPME整體成形管柱製備 113
4-2-5.實驗裝置介紹 114
4-2-6. MOF-polymer SPME實驗操作流程 114
4-2-7. 盤尼西林檢測方法 115
4-2-7-1. Poly(SMA-DVB-VBTA)管柱製備 115
4-2-7-2. 儀器操作參數 116
4-2-7-3. 回收率計算 116
4-3. 結果與討論 117
4-3-1. 萃取管柱內徑影響 117
4-3-2. 萃取管中MOF對盤林西林吸附之差異性 117
4-3-3. 脫附溶劑之影響 119
4-3-4. 清洗溶液種類的影響 120
4-3-5. 平衡溶液體積之影響 123
4-3-6. 樣品溶液在不同流速下之影響 125
4-3-7. 脫附溶劑體積之探討 127
4-3-8. 樣品pH值不同對萃取效果之影響 130
4-3-9. 樣品體積及不同樣品濃度之吸附效果 133
4-3-10. 不同MOF材料對盤尼西林萃取之影響 139
4-3-11. 不同MOF含量對盤尼西林吸附之影響 143
4-3-12. MOF-polymer SPME萃取效能評估 145
4-3-13. 檢量曲線及偵測極限 146
4-3-14. 實際樣品之應用 146
4-3-15. MOF-polymer SPME重複萃取次數之探討 149
4-4. 結論 151
5. 參考文獻 152
作者簡歷 164
附錄I. 166
附錄II. 168
附錄III. 169

圖目錄
圖1-1 不同種類離子液體對整體成形高分子聚合之變化 6
圖1-2 毛細管填充式管柱製備示意圖 7
圖1-3 (a)壓力驅動與(b)電動驅動效應示意圖 8
圖1-4 SPME方法之分類及其裝置示意圖 12
圖1-5 PMME使用裝置示意圖 15
圖1-6 石墨烯與石墨烯氧化物鍵結在poly(GMA-EDMA)機制示意圖 17
圖1-7 近年來MOF及coordination polymer文獻發表數 26
圖1-8 MOF材料構建示意圖 27
圖1-9 MOF應用於藥物分子示意圖 28
圖1-10 合成mesoMOF之常見有機配位基結構 29
圖1-11 MIL-100(Cr)與MIL-101(Cr)結構示意圖 31
圖1-12 IRMOF-n結構示意圖 32
圖1-13 不同比例BDC/BTB合成之MOF 33
圖1-14 UMCM-1結構示意圖 33
圖1-15 MIL-101(Cr) coated管柱之SEM圖 35
圖1-16 Silica-MOF之SEM圖 36
圖1-17 MOF-199 SPME fiber之SEM圖 40
圖1-18 ZIF-90共價鍵結在探針之示意圖 41
圖1-19 MALDI-MS分析不同MOF對胜肽分子濃縮之結果 42
圖1-20 MIL-101(Cr) on-line SPE HPLC裝置圖 44
圖2-1 毛細管內壁改質示意圖 57
圖2-2 自由基反應聚合示意圖 59
圖2-3 防腐劑分析物在不同ACN比例對log k 62
圖2-4 Poly(TAIC-EDMA-SMA-AMPS)分離酚酸之層析圖 65
圖2-5 Poly(TAIC-EDMA-SMA-AMPS)管柱在不同ACN動相條件下分離酚酸之電層析圖 66
圖2-6 不同流速下之管柱背壓 67
圖2-7 Poly(TAIC-EDMA-AMPS)分離酚酸之層析圖 68
圖2-8 Poly(TAIC-EDMA-AMPS)在不同流速下對酚酸分離之層析圖 69
圖2-9 Poly(TAIC-EDMA-AMPS)與poly(TAIC-EDMA-SMA-AMPS)管柱之van Deemter曲線比較 70
圖2-10 常見親水性靜相對酚酸化合物分離之層析圖 71
圖3-1 [C6mim][BF4]之1H NMR圖譜 77
圖3-2 填充式管柱製備流程 81
圖3-3 MOF整體成形管柱合成示意圖 82
圖3-4 (a) MIL-101(Cr) packed column、(b)MIL-101(Cr)-polymer與(c) neat poly(BMA-EDMA)管柱之SEM圖 84
圖3-5 (a) MIL-101(Cr)-polymer與(b) neat poly(BMA-EDMA)之光學顯微鏡照片 85
圖3-6 MIL-101(Cr)、MIL-101(Cr)-polymer及neat polymer之PXRD圖 85
圖3-7 MIL-101(Cr)、MIL-101(Cr)-polymer及neat polymer之氮氣等溫吸附圖 86
圖3-8 MIL-101(Cr)、MIL-101(Cr)-polymer及neat polymer之孔洞分佈 87
圖3-9 MIL-101(Cr)、MIL-101(Cr)-polymer及neat polymer之FTIR光譜圖 88
圖3-10 SEM-EDS mapping (a) MIL-101(Cr)-polymer、(b) neat polymer 89
圖3-11 MOF填充管柱分離位置異構物之電層析圖 91
圖3-12 文獻中以MIL-101(Cr)在GC(左圖)與HPLC(右圖)分離xylene之層析圖 91
圖3-13 MOF整體成形管柱分離位置異構物之電層析圖 93
圖3-14 Neat polymer管柱分離位置異構物之電層析圖 94
圖3-15 文獻中以MIL-53分離cymene之層析圖 95
圖3-16 MOF整體成形管柱分離cymene異構物之電層析圖 96
圖3-17 MOF整體成形管柱在不同pH值動相之影響 97
圖3-18 不同ACN比例動相對xylene分離之影響 98
圖3-19 不同ACN比例動相對chlorotoluene分離之影響 99
圖3-20 不同ACN比例動相對cymene分離之影響 100
圖3-21 有無MOF之整體成形管柱對PAHs分離之影響 102
圖3-22 有無MOF之整體成形管柱對aromatic acids分離之影響 103
圖3-23 MOF整體成形管柱之van Deemter曲線比較 (a) aromatic acids (b) ethylbenzene 104
圖4-1 以SBSE方法吸附及脫附盤尼西林之效果 110
圖4-2 各種MOF-polymer管柱 113
圖4-3 SPME裝置示意圖 114
圖4-4 MOF-polymer SPME實驗流程示意圖 114
圖4-5 MOF-polymer SPME對盤尼西林吸附之效果 118
圖4-6 脫附溶劑之影響 119
圖4-7 清洗溶液之影響 120
圖4-8 不同清洗溶液影響之電層析圖 121
圖4-9 不同清洗溶液下所得之回收率 122
圖4-10 平衡溶液體積之影響 123
圖4-11 以不同體積pH2 PBS緩衝液作平衡溶液之電層析圖 124
圖4-12 樣品流速變化對萃取效果之影響 125
圖4-13 不同樣品流速之電層析圖 126
圖4-14 脫附溶劑體積之影響 127
圖4-15 脫附溶劑體積之電層析圖 128
圖4-16 不同脫附溶劑體積之樣品回收率 129
圖4-17 樣品pH值不同對萃取效果之影響 130
圖4-18 樣品pH值不同之電層析圖 131
圖4-19 不同樣品pH值之回收率 132
圖4-20 樣品體積之影響 134
圖4-21 樣品體積變化之電層析圖 135
圖4-22 不同樣品體積之回收率 136
圖4-23 MOF-polymer SPME對盤尼西林吸附之貫穿曲線 137
圖4-24 不同MOF-polymer SPME對盤尼西林萃取效果之影響 140
圖4-25 提高MOF含量對盤尼西林吸附之回收率 142
圖4-26 不同含量MIL-101(Cr)對盤尼西林回收率之影響 143
圖4-27不同含量MIL-53(Al)對盤尼西林回收率之影響 144
圖4-28不同含量DUT-5(Al)對盤尼西林回收率之影響 144
圖4-29 MOF-polymer SPME對實際樣品之處理 147
圖4-30 MIL-101(Cr)-polymer SPME重複萃取之結果 149
圖4-31 MOF-polymer萃取前後之SEM圖 150

表目錄
表1-1 液相層析系統於不同流速等級之主要應用 9
表1-2 Poly(MAA-EGDMA)於PMME技術之應用 18
表1-2續 Poly(MAA-EGDMA)於PMME技術之應用 19
表1-2續 Poly(MAA-EGDMA)於PMME技術之應用 20
表1-2續 Poly(MAA-EGDMA)於PMME技術之應用 21
表1-3 Poly(GMA-EDMA)於PMME技術之應用 22
表1-4 其他高分子於PMME技術之應用 23
表1-4續 其他高分子於PMME技術之應用 24
表1-5 高分子結合奈米粒子於PMME技術之應用 25
表1-6 MOF應用在GC靜相中文獻整理 37
表1-7 MOF應用在HPLC靜相中文獻整理 38
表1-7續 MOF應用在HPLC靜相中文獻整理 39
表1-8 MOF於SPME方法中之文獻整理 45
表1-9 MOF應用於吸附劑之文獻整理 46
表1-10 MOF於SPE方法中之文獻整理 47
表1-11 歐盟對盤尼西林藥物之法規 48
表1-12 以SPE方法對盤尼西林檢測之文獻 (2005 - 2013年) 50
表1-12續 以SPE方法對盤尼西林檢測之文獻 (2005 - 2013年) 51
表1-12續 以SPE方法對盤尼西林檢測之文獻 (2005 - 2013年) 52
表2-1 儀器設備名稱及廠牌規格 54
表2-2 常用試藥之名稱 54
表2-3 製備高分子靜相所需試藥 55
表2-4 酚酸標準品 56
表2-5 Poly(TAIC-EDMA-AMPS)及poly(TAIC-EDMA-SMA-AMPS)聚合溶液比例 61
表2-6 Poly(EDMA-BMA)及poly(EDMA-SMA)聚合溶液比例 61
表3-1 儀器設備名稱及廠牌規格 74
表3-1續 儀器設備名稱及廠牌規格 75
表3-2 常用試藥之名稱 75
表3-3製備高分子靜相所需試藥 76
表3-4 標準品介紹 78
表3-4 續 標準品介紹 79
表3-5 Poly(S-DVB)檔板之聚合溶液比例 80
表3-6 MOF整體成形管柱聚合溶液配製 82
表3-7 不同管柱之表面積、孔洞尺寸及通透率 86
表3-8 MOF整體成形管柱在CEC遷移時間、面積再現性及管柱效能 105
表3-9 MOF整體成形管柱在nano-UHPLC遷移時間、面積再現性及管柱效能 106
表3-10 不同管柱對牛血清蛋白水解胜肽分離之效果 107
表4-1儀器設備名稱及廠牌規格 111
表4-2 盤尼西林標準品介紹 112
表4-3 MOF-polymer聚合溶液比例 113
表4-4 MOF-polymer SPME實驗最佳化條件 115
表4-5 Poly(SMA-DVB-VBTA)聚合溶液配製 115
表4-6 不同脫附溶劑體積之回收率 129
表4-7 MOF對盤尼西林之吸附量(μg/mg MOF) 138
表4-8 不同MOF對盤尼西林吸附之回收率 141
表4-9 各種MOF-polymer表面積 141
表4-10提高MOF含量對盤尼西林吸附之回收率值 142
表4-11 MIL-101(Cr)-polymer SPME對盤尼西林萃取再現性 145
表4-12 MIL-53(Al)-polymer SPME對盤尼西林萃取再現性 145
表4-13 MIL-101(Cr)-polymer SPME方法之檢量曲線及偵測極限 146
表4-14 河水樣品之回收率 148
參考文獻
A. B. Prevot, M. Gulmini, V. Zelano, E. Pramauro, Microwave-assited extraction of polycyclic aromatic hydrocarbons from marine sediments using nonionic surfactant solutions, Anal. Chem. 73 (2001) 3790.
A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, BioMOFs: Metal-organic frameworks for biological and medical applications, Angew. Chem. Int. Ed. 2010 (49) 6260.
A. Junza, R. Amatya, D. Barrón, J. Barbosa, Comparative study of the LC-MS/MS and UPLC-MS/MS for the multi-residue analysis of quinolones, penicillins and cephalosporins in cow milk, and validation according to the regulation 2002/657/EC, J. Chromatogr. B 879 (2011) 2601.
A. Kabir, K. G. Furton, A. Malik, Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry, Trends Anal. Chem. 45 (2013) 197.
A. Matsumoto, F. Hirai, Y. Sumiyama, H. Aota, Y. Takayama, A. Kameyama, T. Nakanishi, Further discussion of steric effect on the radical polymerization of triallylisocyanurate as compared with its isomer triallyl cyanurate: Polymerization and copolymerization of corresponding trimethallyl compounds, Eur. Poly. J. 35 (1998) 195.
A. Matsumoto, K. Watanabe, H. Aota, Y. Takayama, A. Kameyama, T. Nakanishi, Nonterminal units effect on the cyclopolymerization of triallyl isocyanurate, Polymer J. 41 (2000) 3883.
A. Premstaller, H. Oberacher, W. Walcher, A. M. Timperio, L. Zolla, J. P. Chervet, N. Cavusoglu, A. van Dorsselaer, C. G. Huber, High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies, Anal. Chem. 73 (2001) 2390.
A. S. Barreto, R. L. da Silva, S. C. G. dos Santos, M. O. Rodrigues, C. A. de Simone, G. F. de Sá, S. A. Júnior, S. Navickiene, M. E. de Mesquita, Potential of a metal-organic framework as a new material for solid-phase extraction of pesticides from lettuce (Lactuca sativa), with analysis by gas chromatography-mass spectrometry, J. Sep. Sci. 33 (2010) 3811.
A. S. Münch, F. O. R. L. Mertens, HKUST-1 as an open metal site gas chromatographic stationary phase-capillary preparation, separation of small hydrocarbons and electron donating compounds, determination of thermodynamic data, J. Mater. Chem. 22 (2012) 10228.
A. S. Münch, J. Seidel, A. Obst, E. Weber, F. O. R. L. Mertens, High-separation performance of chromatographic capillaries coated with MOF-5 by the controlled SBU approach, Chem. Eur. J. 17 (2011) 10958.
B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai, A microporous metal-organic framework for gas-chromatographic separation of alkanes, Angew. Chem. Int. Ed. 45 (2006) 1390.
B. Singco, C.-L. Lin, Y.-J. Cheng, Y.-H. Shih, H.-Y. Huang, Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application, Anal. Chim. Acta 746 (2012) 123.
C. A. Macarov, L. Tong, M. Martínez-Huélamo, M. P. Hermo, E. Chirila, Y. X. Wang, D. Barrón, J. Barbosa, Multi residue determination of the penicillins regulated by the European Union, in bovine, porcine and chicken muscle, by LC-MS/MS, Food Chem. 135 (2012) 2612.
C. Ericson, J. L. Liao, K. Nakazato, S. Hjertèn, Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds, J. Chromatogr. A 767 (1997) 33.
C.-T. He, J.-Y. Tian, S.-Y. Liu, G. Ouyang, J.-P. Zhang, X.-M. Chen, A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds, Chem. Sci. 4 (2013) 351.
C. Janiak, J. K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks, N. J. Chem. 34 (2010) 2366.
C. K. Fagerquist, A. R. Lightfield, S. J. Lehotay, Confirmatory and quantitative analysis of β-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry, Anal. Chem. 77 (2005) 1473.
C. Legido-Quigley, N. D. Marlin, V. Melin, A. Manz, N. W. Smith, Advances in capillary electrochromatography and micro-high performance liquid chromatography monolithic columns for separation science, Electrophoresis 24 (2003) 917.
C. Legido-Quigley, N. W. Smith, Study of short polystyrene monolith-fritted micro-liquid chromatography columns for analysis of neutral and basic compounds, J. Chromatogr. A 1042 (2004) 61.
C.-L. Lin, B. Singco, C.-Y. Wu, P.-Z. Liang, Y.-J. Cheng, H.-Y. Huang, Poly(triallyl isocyanurate-co-ethylene dimethacrylate-co-alkyl methacrylate) stationary phases in the chromatographic separation of hydrophilic solutes, J. Chromatogr. A 1272 (2013) 65.
C. M. Doherty, E. Knystautas, D. Buso, L. Villanova, K. Konstas, A. J. Hill, M. Takahashi, P. Falcaro, Magnetic framework composites for polycyclic aromatic hydrocarbon sequestration, J. Mater. Chem. 22 (2012) 11470.
C. O. Kappe, Controlled microwave heating in modern organic synthsis, Angew. Chem. Int. Ed. 43 (2004) 6250.
C.-X. Yang, S.-S. Liu, H.-F. Wang, S.-W. Wang, X.-P. Yan, High-performance liquid chromatographic separation of position isomers using metal–organic framework MIL-53(Al) as the stationary phase, Analyst 137 (2012) 133.
C.-X. Yang, Y.-J. Chen, H.-F. Wang, X.-P. Yan, High-performance separation of fullerenes on metal-organic framework MIL-101(Cr), Chem. Eur. J. 17 (2011) 11734.
C.-X. Yang, X.-P. Yan, Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics, Anal. Chem. 83 (2011) 7144.
C.-X. Yang, X.-P. Yan, Selective adsorption and extraction of C70 and higher fullerenes on a reusable metal-organic framework MIL-101(Cr), J. Mater. Chem. 22 (2012) 17833.
C. Yu, M. H. Davey, F. Svec, J. M. J. Fréchet, Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device, Anal. Chem. 73(2001) 5088.
D. Ge, H. K. Lee, Zeolite imidazolate frameworks 8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water samples, J. Chromatogr. A 1257 (2012) 19.
D. Liu, Z.-J. Lv, J.-L. Zhang, Q. Jia, W.-P. Liao, Polymer monolith microextraction coupled to microwave plasma torch-atomic emission spectrometry for the determination of Nd, Eu and Yb in tea samples, Anal. Methods 4 (2012) 2970.
D. Luo, F. Chen, K. Xiao, Y.-Q. Feng, Rapid determination of Δ9-Tetrahydrocannabinol in saliva by polymer monolith microextraction combined with gas chromatography-mass spectrometry, Talanta 77 (2009) 1701.
D. N. Heller, M. L. Smith, O. A. Chiesa, LC/MS/MS measurement of penicillin G in bovine plasma, urine, and biopsy samples taken from kidneys of standing animals, J. Chromatogr. B 830 (2006) 91.
E. Benito-Peña, A. I. Partal-Rodera, M. E. León-González, M. C. Moreno-Bondi, Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection, Anal. Chim. Acta 556 (2006) 415.
F. Svec, J. M. J. Fréchet, Continuous rods of macroporous polymer as high-performance liquid chromatography separation media, Anal. Chem. 64 (1992) 820.
F. Wei, M. Zhang, Y.-Q. Feng, Application of poly(methacrylic acid-ethylene glycol dimethacrylate) monolith microextraction coupled with capillary zone electrophoresis to the determination of opiates in human urine, Electrophoresis 27 (2006) 1939.
F. Wei, M. Zhang, Y.-Q. Feng, Combining poly (methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction and on-line pre-concentration-capillary electrophoresis for analysis of ephedrine and pseudoephedrine in human plasma and urine, J. Chromatogr. B 850 (2007) 38.
F. Wiesbrock, R. Hoogenboom, U. S. Schubert, Microwave-assisted polymer synthesis: State-of-the-art and future perspectives, Macromol. Rapid Commun. 25 (2004) 1739.
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040.
G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction, Angew. Chem. Int. Ed. 43 (2004) 6296.
H.-B. He, X.-X. Lv, Q.-W. Yu, Y.-Q. Feng, Multiresidue determination of (fluoro)quinolone antibiotics in chicken by polymer monolith microextraction and field-amplified sample stacking procedures coupled to CE-UV, Talanta 82 (2010) 1562.
H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, C.-H. Lin, Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography, Anal. Chim. Acta 779 (2013) 96.
H. Kataoka, Current developments and future trends in solid-phase microextraction techniques for pharmaceutical and biomedical analyses, Anal. Sci. 27 (2011) 893.
H. R. Moon, D.-W. Lim, M. P. Suh, Fabrication of metal nanoparticles in metal-organic frameworks, Chem. Soc. Rev. 42 (2013) 1807.
H.-J. Zhang, J.-F. Huang, B. Lin, Y.-Q. Feng, Polymer monolith microextraction with in situ derivatization and its application to high-performance liquid chromatography determination of hexanal and heptanal in plasma, J. Chromatogr. A 1160 (2007) 114.
H.-J. Zhang, J.-F. Huang, H. Wang, Y.-Q. Feng, Determination of low-aliphatic aldehyde derivatizatives in human saliva using polymer monolith microextraction coupled to high-performance liquid chromatography, Anal. Chim. Acta 565 (2006) 129.
H.-J. Zhang, J.-S. Li, H. Wang, Y.-Q. Feng, Determination of aspartate and glutamate in rabbit retina using polymer monolith microextraction coupled to high-performance liquid chromatography with fluorescence detection, Anal. Bioanal. Chem. 386 (2006) 2035.
H. Zhang, K. Hong, J. W. Mays, Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids, Macromolecules 35 (2002) 5738.
I. Gusev, X. Huang, C. Horvath, Capillary columns with in situ formed porous monolithic packed for micro high-performance liquid chromatography and capillary electrochromatography, J. Chromatogr. A 855 (1999) 273.
J. A. Crifasi, M. F. Bruder, C. W. Long, K. Janssen, Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS, J. Anal. Toxicol. 30 (2006) 581.
J. Hernández-Borges, Z. Aturki, A. Rocco, S. Fanali, Recent applications in nanoliquid chromatography, J. Sep. Sci. 30 (2007) 1589.
J.-F. Huang, H.-J. Zhang, B. Lin, Q.-W. Yu, Y.-Q. Feng, Multiresidue analysis of β-agonists in pork by coupling polymer monolith microextraction to electrospray quadrupole time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 21 (2007) 2895.
J.-F. Huang, H.-J. Zhang, Y.-Q. Feng, Chloramphenicol extraction from honey, milk, and eggs using polymer monolith microextraction followed by liquid chromatographymass spectrometry determination, J. Agric. Food Chem. 54 (2006) 9279.
J. L. Liao, N. Chen, C. Ericson, S. Hjertèn, Preparation of continuous beds derivatized with alkyl and sulfonate groups for capillary electrochromatography, Anal. Chem. 68 (1996) 3468.
J. Li, H. Chen, H. Chen, Y. Ye, Selective determination of trace thiamphenicol in milk and honey by molecularly imprinted polymer monolith microextraction and high-performance liquid chromatography, J. Sep. Sci. 35 (2012) 137.
J.-R. Li, R. J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477.
J. M. Serrano, M. Silva, Use of SDS micelles for improving sensitivity, resolution, and speed in the analysis of β-lactam antibiotics in environmental waters by SPE and CE, Electrophoresis 28 (2007) 3242.
J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 404 (2000) 982.
J.-Y. Wu, Z.-G. Shi, Y.-Q. Feng, Determination of 5-hydroxymethylfurfural using derivatization combined with polymer monolith microextraction by high-performance liquid chromatography, J. Agric. Food Chem. 57 (2009) 3981.
J. Yin, B. Hu, M. He, M. Zheng, Y.-Q. Feng, Polymer monolith microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace Cd, Tl, and Pb in human serum and urine, J. Anal. At. Spectrom. 24 (2009) 76.
J. Zhou, C. Ma, S. Zhou, P. Ma, F. Chen, Y. Qi, H. Chen, Preparation, evaluation and application of molecularly imprinted solid-phase microextraction monolith for selective extraction of pirimicarb in tomato and pear, J. Chromatogr. A 1217 (2010) 7478.
K. E. Karlsson, M. Novotny, Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters, Anal. Chem. 60 (1988) 1662.
K.-J. Huang, M. Zhang, W.-Z. Xie, H.-S. Zhang, Y.-Q. Feng, H. Wang, Determination of nitric oxide in hydrophytes using poly(methacrylic acid-ethylene glycol dimethacrylate) monolith microextraction coupled to high-performance liquid chromatography with fluorescence detection, J. Chromatogr. B 854 (2007) 135.
K.-J. Huang, M. Zhang, W.-Z. Xie, H.-S. Zhang, Y.-Q. Feng, H. Wang, Sensitive determination of nitric oxide in some rat tissues using polymer monolith microextraction coupled to high-performance liquid chromatography with fluorescence detection, Anal. Bioanal. Chem. 388 (2007) 939.
K.-J. Huang, M. Zhang, W.-Z. Xie, H.-S. Zhang, Y.-Q. Feng, H. Wang, Sensitive determination of ultra-trace nitric oxide in blood using derivatization-polymer monolith microextraction coupled with reversed-phase high-performance liquid chromatography, Anal. Chim. Acta 591 (2007) 116.
K. Koh, A. G. Wong-Foy, A. J. Matzger, A crystalline mesoporous coordination copolymer with high microporosity, Angew. Chem. Int. Ed. 47 (2008) 677.
K. Tanaka, T. Muraoka, D. Hirayama, A. Ohnish, Highly efficient chromatographic resolution of sulfoxides using a new homochiral MOF-silica composite, Chem. Commun. 48 (2012) 8577.
L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. F. M. Denayer, D. E. De Vos, Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47, Angew. Chem. Int. Ed. 46 (2007) 4293.
L. Alaerts, M. Maes, L. Giebeler, P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock, D. E. De Vos, Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53, J. Am. Chem. Soc. 130 (2008) 14170.
L. Alaerts, M. Maes, P. A. Jacobs, J. F. M. Denayer, D. E. De Vos, Activation of the metal-organic framework MIL-47 for selective adsorption of xylenes and other difunctionalized aromatics, Phys. Chem. Chem. Phys. 10 (2008) 2979.
L. Kantiani, M. Farré, M. Sibum, C. Postigo, M. López de Alda, D. Barceló, Fully automated analysis of β-Lactams in bovine milk by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry, Anal. Chem. 81 (2009) 4285.
L. Liu, J. Cheng, G. Matsadiq, J.-K. Li, Novel polymer monolith microextraction using a poly-(methyl methacrylate-co-ethylene dimethacrylate) monolith and its application to the determination of polychlorinated biphenyls in water samples, Chemosphere 83 (2011) 1307.
L. Rieux, E. J. Sneekes, R. Swart, M. Swartz, Nano LC: principles, evolution, and state-of-the-art of the technique, LCGC North America 29 (2011) 926.
L.-Q. Yu, X.-P. Yan, Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction, Chem. Commun 49 (2013) 2142.
L.-F. Zhou, X.-G. He, J.-Q. Qiao, H.-Z. Lian, X. Ge, H.-Y. Chen, A practical interface designed for on-line polymer monolith microextraction: Synthesis and application of poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) monolith, J. Chromatogr. A 1256 (2012) 15.
M. Abdel-Rehim, New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications I. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry, J. Chromatogr. B 801 (2004) 317.
M. Chen, Y. Lu, Q. Ma, L. Guo, Y.-Q. Feng, Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins, Analyst 134 (2009) 2158.
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (2002) 469.
M. Gros, S. Rodríguez-Mozaz, D. Barceló, Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, J. Chromatogr. A 1292 (2013) 173.
M. I. Bailón-Pérez, A. M. García-Campaña, C. Cruces-Blanco, M. del Olmo Iruela, Large-volume sample stacking for the analysis of seven β-lactam antibiotics in milk samples of different origins by CZE, Electrophoresis 28 (2007) 4082.
M. I. Bailón-Pérez, A. M. García-Campaña, M. del Olmo-Iruela, L. Gámiz-Gracia, C. Cruces-Blanco, Trace determination of 10 β-lactam antibiotics in environmental and food samples by capillary liquid chromatography, J. Chromatogr. A 1216 (2009) 8355.
M. Kato, M. T. Dulay, B. D. Bennett, J. P. Quirino, R. N. Zare, Photopolymerized sol-gel frits for packed columns in capillary electrochromatography, J. Chromatogr. A 924 (2001) 187.
M. Martínez-Huelamo, E. Jiménez-Gámez, M. P. Hermo, D. Barrón, J. Barbosa, Determination of penicillins in milk using LC-UV, LC-MS and LC-MS/MS, J. Sep. Sci. 32 (2009) 2385.
M. R. Sohrabi, Z. Matbouie, A. A. Asgharinezhad, A. Dehghani, Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS, Microchim. Acta 180 (2013) 589.
M.-M. Zheng, M.-Y. Zhang, G.-Y. Peng, Y.-Q. Feng, Monitoring of sulfonamide antibacterial residues in milk and egg by polymer monolith microextraction coupled to hydrophilic interaction chromatography/mass spectrometry, Anal. Chim. Acta 625 (2008) 160.
M.-M. Zheng, M.-Y. Zhang, Y.-Q. Feng, Polymer monolith microextraction online coupled to hydrophilic interaction chromatography/mass spectrometry for analysis of β2-agonist in human urine, J. Sep. Sci. 32 (2009) 1965.
M.-M. Zheng, R. Gong, X. Zhao, Y.-Q. Feng, Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples, J. Chromatogr. A 1217 (2010) 2075.
M. Zhang, F. Wei, Y.-F. Zhang, J. Nie, Y.-Q. Feng, Novel polymer monolith microextraction using a poly(methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin II receptor antagonists in human urine by capillary zone electrophoresis, J. Chromatogr. A 1102 (2006) 294.
N. Chang, X.-P. Yan, Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation, J. Chromatogr. A 1257 (2012) 116.
N. Chang, Z.-Y. Gu, H.-F. Wang, X.-P. Yan, Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes, Anal. Chem. 83 (2011) 7094.
N. Chang, Z.-Y. Gu, X.-P. Yan, Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes, J. Am. Chem. Soc. 132 (2010) 13645.
N. W. Smith, M. B. Evans, The analysis of pharmaceutical compounds using electrochromatography, Chromatographia 38 (1994) 649.
O. K. Farha, J. T. Hupp, Rational design, synthesis, purification, and activation of metal-organic framework materials, Acc. Chem. Res. 43 (2010) 1166.
O. M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc. 117 (1995) 10401.
O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials, Nature 423 (2003) 705.
P. Aggarwal, H. D. Tolley, M. L. Lee, Monolithic bed structure for capillary liquid chromatography, J. Chromatogr. A 1219 (2012) 1.
P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater. 9 (2010) 172.
P. Xiao, C. Bao, Q. Jia, R. Su, W. Zhou, J. Jia, Determination of nitroanilines in hair dye using polymer monolith microextraction coupled with HPLC, J. Sep. Sci. 34 (2011) 675.
Q. C. Wang, F. Svec, J. M. J. Fréchet, Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography, Anal. Chem. 65 (1993) 2243.
Q. Ma, J. Xu, Y. Lu, Z.-G. Shi, Y.-Q. Feng, Preparation of a mixed-mode of hydrophobic/cation-exchange polymer monolith and its application to analysis of six antidepressants in human plasma, Anal. Methods, 2 (2010) 1333.
R. Ahmad, A. G. Wong-Foy, A. J. Matzger, Microporous coordination polymers as selective sorbents for liquid chromatography, Langmuir, 25 (2009) 11977.
R. Ameloot, A. Liekens, L. Alaerts, M. Maes, A. Galarneau, B. Coq, G. Desmet, B. F. Sels, J. F. M. Denayer, D. E. DeVos, Silica-MOF composites as a stationary phases in liquid chromatography, Eur. J. Inorg. Chem. (2010) 3735.
R. D. Arrua, A. Nordborg, P. R. Haddad, E. F. Hilder, Monolithic cryopolymers with embedded nanoparticles. I. Capillary liquid chromatography of proteins using neutral embedded nanoparticles, J. Chromatogr. A 1273 (2013) 26.
R. H. C. Queiroz, C. Bertucci, W. R. Malfara, S. A. C. Dreossi, A. R. Chaves, D. A. R. Valerio, M. E. C. Queiroz, Quantification of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples by stir bar-sorptive extraction and liquid chromatography, J. Pharm. Biomed. Anal. 48 (2008) 428.
R. Su, X. Zhao, Z. Li, Q. Jia, P. Liu, J. Jia, Poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance liquid chromatography for the determination of phthalate esters in cosmetics, Anal. Chim. Acta 676 (2010) 103.
S. Eeltink, L. Geiser, F. Svec, J. M. J. Fréchet, Optimization of the porous structure and polarity of polymethacrylate-based monolithic capillary columns for the LC-MS separation of enzymatic digests, J. Sep. Sci. 30 (2007) 2814.
S. Grujić, T. Vasiljević, M. Laušević, Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry, J. Chromatogr. A 1216 (2009) 4989.
S.-H. Huo, X.-P. Yan, Facile magnetization of metal–organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples, Analyst 137 (2012) 3445.
S.-H. Huo, Y.-P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution, J. Mater. Chem. 22 (2012) 7449.
S. Hjertèn, J. L. Liao, High-performance liquid chromatography on continuous polymer beds, J. Chromatogr. 473 (1989) 273.
S.-S. Liu, C.-X. Yang, S.-W. Wang, X.-P. Yan, Metal–organic frameworks for reverse-phase high-performance liquid chromatography, Analyst 137 (2012) 816.
S. Shukushima, H. Hayami, T. Ito, S. Nishimoto, Modification of radiation cross-linked polypropylene, Radiation Phys. Chem. 60 (2001) 489.
S. Tong, Q. Liu, Y. Li, W. Zhou, Q. Jia, T. Duan, Preparation of porous polymer monolithic column incorporated with graphene nanosheets for solid phase microextraction and enrichment of glucocorticoids, J. Chromatogr. A 1253 (2012) 22.
S. Tong, X. Zhou, C. Zhou, Y. Li, W. Li, W. Zhou, Q. Jia, A strategy to decorate porous polymer monoliths with graphene oxide and graphene nanosheets, Analyst 138 (2013) 1549.
S. Yang, C. Chen, Z. Yan, Q. Cai, S. Yao, Evaluation of metal-organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters, J. Sep. Sci. 36 (2013) 1283.
T. Li, Q. Jia, L. Song, R. Su, Y. Lei, W. Zhou, H. Li, Coupling poly-(methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction to capillary electrophoresis for the determination of phenols in water samples, Talanta 78 (2009) 1497.
T. Li, Z.-G. Shi, M.-M. Zheng, Y.-Q. Feng, Multiresidue determination of sulfonamides in chicken meat by polymer monolith microextraction and capillary zone electrophoresis with field-amplified sample stacking, J. Chromatogr. A 1205 (2008) 163.
V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R. L. Musselman, S. Ma, Immobilization of MP-11 into a mesoporous metal organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis, J. Am. Chem. Soc. 133 (2011) 10382.
V. Strehmel, A. Laschewsky, H. Wetzel, E. Görnitz, Free radical polymerization of n-butyl methacrylate in ionic liquids, Macromolecules 39 (2006) 923.
V. Tomer, Separations combined with mass spectrometry, Chem. Rev. 101 (2001) 297.
W. Lei, L.-Y. Zhang, L. Wan, B.-F. Shi, Y.-Q. Wang, W.-B. Zhang, Hybrid monolithic columns with nanoparticles incorporated for capillary electrochromatography, J. Chromatogr. A 1239 (2012) 64.
W.-L. Liu, C.-Y. Wu, Y.-T. Li, H.-Y. Huang, Penicillin analyses by capillary electrochromatography-mass spectrometry with different charged poly(stearyl methacrylate-divinylbenzene) monoliths as stationary phases, Talanta 101 (2012) 71.
W. Liu, J. Qi, L. Yan, Q. Jia, C. Yu, Application of poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance liquid chromatography to the determination of polycyclic aromatic hydrocarbons in smoked meat products, J. Chromatogr. B 879 (2011) 3012.
W. Walcher, H. Oberacher, S. Troiani, G. Holzl, P. Oefner, L. Zolla, C. G. Huber, Monolithic capillary columns for liquid chromatography-electrospray ionization mass spectrometry in proteomic and genomic research, J. Chromatogr. B 782 (2002) 111.
W. Xuan, C. Zhu, Y. Liu, Y. Cui, Mesoporous metal-organic framework materials, Chem. Soc. Rev. 41 (2012) 1677.
X.-F. Chen, H. Zang, X. Wang, J.-G. Cheng, R.-S. Zhao, C.-G. Cheng, X.-Q. Lu, Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry, Analyst 137 (2012) 5411.
X. Huang, L. Chen, M. Chen, D. Yuan, S. Nong, Sensitive monitoring of penicillin antibiotics in milk and honey treated by stir bar sorptive extraction based on monolith and LC-electrospray MS detection, J. Sep. Sci. 36 (2013) 907.
X. Huang, S. Zhang, G. A. Schultz, J. Henion, Surface-alkylated polystyrene monolithic columns for peptide analysis in capillary liquid chromatography-electrospray ionization mass spectrometry, Anal. Chem. 74 (2002) 2336.
X.-T. Peng, Z.-G. Shi, Y.-Q. Feng, Rapid and high-throughput determination of cationic surfactants in environmental water samples by automated on-line polymer monolith microextraction coupled to high performance liquid chromatography-mass spectrometry, J. Chromatogr. A 1218 (2011) 3588.
X.-Y. Cui, Z.-Y. Gu, D.-Q. Jiang, Y. Li, H.-F. Wang, X.-P. Yan, Solid-phase microextraction of gaseous benzene homologues, Anal. Chem. 81 (2009) 9771.
X.-Z. Hu, J.-X. Wang, Y.-Q. Feng, Determination of benzimidazole residues in edible animal food by polymer monolith microextraction combined with liquid chromatography-mass spectrometry, J. Agric. Food Chem. 58 (2010) 112.
Y. Fan, Y.-Q. Feng, S.-L. Da, Z.-G. Shi, Poly (methacrylic acid–ethylene glycol dimethacrylate) monolithic capillary for in-tube solid phase microextraction coupled to high performance liquid chromatography and its application to determination of basic drugs in human serum, Anal. Chim. Acta 523 (2004) 251.
Y.-Y. Fu, C.-X. Yang, X.P. Yan, Control of the coordination status of the open metal sites in metal-organic frameworks for high performance separation of polar compounds, Langmuir 28 (2012) 6794.
Y.-Y. Fu, C.-X. Yang, X.-P. Yan, Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules, Chem. Commun. 49 (2013) 7162.
Y.-Y. Fu, X.-X. Yang, X.-P. Yan, Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography, J. Chromatogr. A 1274 (2013) 137.
Y. Hu, C. Song, J. Liao, Z. Huang, G. Li, Water stable metal-organic framework packed microcolumn for online sorptive extraction and direct analysis of naproxen and its metabolite from urine sample, J. Chromatogr. A 1294 (2013) 17.
Y. Hu, Z. Huang, J. Liao, G. Li, Chemical bonding approach for fabrication of hybrid magnetic metal-organic framework-5: High efficient adsorbents for magnetic enrichment of trace analytes, Anal. Chem. 85 (2013) 6885.
Y. Kawaguchi, M. Tanaka, M. Nakae, K. Funazo, T. Shono, Chemically bonded cyclodextrin stationary phases for liquid chromatographic separation of aromatic compounds, Anal. Chem. 55 (1983) 1852.
Y. S. Qin, Q. W. Ma, X. H. Wang, J. Z. Sun, X. J. Zhao, F. S. Wang, Electron-beam irradiation on poly(propylene carbonate) in the presence of polyfunctional monomers, Polym. Degrada. Stability 92 (2007) 1942.
Y.-H. Shih, B. Singco, W.-L. Liu, C.-H. Hsu, H.-Y. Huang, A rapid synthetic method for organic polymer-based monoliths in a room temperature ionic liquid medium via microwave-assisted vinylization and polymerization, Green Chem. 13 (2011) 296.
Y.-B. Wu, J.-H. Wu, Z.-G. Shi, Y.-Q. Feng, Simultaneous determination of 5-hydroxyindoles and catechols from urine using polymer monolith microextraction coupled to high-performance liquid chromatography with fluorescence detection, J. Chromatogr. B 877 (2009) 1847.
Y. Yu, Y. Sun, Macroporous poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) matrix as an anion-exchange resin for protein adsorption, J. Chromatogr. A 855 (1999) 129.
Y. Zhang, H. Liu, X. Zhang, H. Lei, L. Bai, G. Yang, On-line solid phase extraction using organic-inorganic hybrid monolithic columns for the determination o ftrace β-lactam antibiotics in milk and water samples, Talanta 104 (2013) 17.
Y.-P. Zhang, W. Li, X.-J. Wang, L.-B. Qu, G.-L. Zhao, Y.-X. Zhang, Fast preparation of polystyrene-based monolith using microwave irradiation for micro-column separation, Anal. Bioanal. Chem. 394 (2009) 617.
Z.-Y. Gu, C.-X. Yang, N. Chang, X.-P. Yan, Metal-organic frameworks for analytical chemistry: From sample collection to chromatographic separation, Acc. Chem. Res. 5 (2012) 734.
Z.-Y. Gu, G. Wang, X.-P. Yan, MOF-5 metal-organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde, Anal. Chem. 82 (2010) 1365.
Z.-Y. Gu, J.-Q. Jiang, X.-P. Yan, Fabrication of isoreticular metal-organic framework coated capillary columns for high-resolution gas chromatographic separation of persistent organic pollutants, Anal. Chem. 83 (2011) 5093.
Z.-Y. Gu, Y.-J. Chen, J.-Q. Jiang, X.-P. Yan, Metal-organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples, Chem. Commun. 47 (2011) 4787.
Z.-Y. Gu, X.-P. Yan, Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene, Angew. Chem. Int. Ed. 49 (2010) 1477.
Z. Liu, F. Wei, Y.-Q. Feng, Determination of cytokinins in plant samples by polymer monolith microextraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry, Anal. Methods 2 (2010) 1676.
Z.-Z. Lu, R. Zhang, Y.-Z. Guo, H.-G. Zheng, Solvatochromic behavior of nanotubular metal-organic framework for sensing small molecules, J. Am. Chem. Soc. 133 (2011) 4172.
吳靜宜,中原大學化學研究所碩士論文,中華民國一○○年七月。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top