(3.226.72.118) 您好!臺灣時間:2021/05/12 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳令台
研究生(外文):Lin-Tai Wu
論文名稱:以聚甲基丙烯酸烷基酯-二乙烯苯整體成形管柱微萃取結合微乳化電層析分析非類固醇抗發炎藥物
論文名稱(外文):Analyses of non-steroidal anti-inflammatory drugs by poly(methacrylate-divinylbenzene) monolith microextraction coupled with microemulsion electrokinetic chromatographic separation
指導教授:黃悉雅
指導教授(外文):Hsi-Ya Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:101
中文關鍵詞:整體成形管柱微萃取整體成形毛細管柱微乳化電層析非類固醇抗發炎藥物
外文關鍵詞:microemulsion electrokinetic chromatographymonolithic capillarypolymer monolith microextractionnon-steroid anti-inflammatory durgs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要為開發新形態高分子整體成形管柱微萃取(polymer monolith microextraction, PMME)之萃取管柱材料:結合甲基丙烯酸烷基酯單體與二乙烯苯交聯劑並以乙二醇做為擴孔劑,針對水樣中九種非類固醇抗發炎藥物(non-steroid anti-inflammatory durgs, NSAIDs)進行萃取,最後以毛細管微乳化方法檢測其萃取效果。
實驗首先以聚(甲基丙烯酸十八烷基酯-二乙烯苯) (poly(SMA-DVB))整體成形毛細管柱作為萃取管柱,並對活化溶劑的種類及流速、清洗溶劑的種類及流速、萃取與脫附溶劑的流速、萃取管柱中擴孔劑PEG之添加量、萃取管柱長度、高分子材料聚合溶液的單體比例進行最佳化;之後再以不同碳鏈長度之甲基丙烯酸烷基酯類單體合成萃取管柱,藉以不同碳鏈長度來探討不同親疏水性對萃取的影響,最後得到以聚(甲基丙烯酸八烷基酯-二乙烯苯)之整體成形萃取管柱有最佳萃取效能,其回收率達到73.8~99.6 %,以相同管柱重覆萃取之標準偏差(RSD of run-to-run)小於10.7 %,不同批次製備管柱之標準偏差(RSD of column-to-column)小於13.5 %。
In this study, we developed a new monolithic material for polymer monolith microextraction (PMME) that was prepared in the capillary and applied to extract non-steroid anti-inflammatory durgs (NSAIDs) in water solution. Herein microemulsion electrokinetic chromatography (MEEKC) was used to check the extraction efficiency.
At first, poly(stearyl methacrylate-divinylbenzene) (poly(SMA-DVB)) monolithic column was employed, and the extracted parameters were optimized that included solvent type, flow rate, column length and composition of extraction column. Then, different alkyl chain length of alkyl methacrylate monomers have been tested and different extracted efficiency was obtained due to their hydrophobic and hydrophilic interaction. Finally poly(lauryl methacrylate- divinylbenzene) (poly(LMA-DVB)) monolithic column was the best PMME material which has higher extraction efficiency (recovery from 73.8% to 99.6%) and lower RSD% (run to run: < 10.7 %, column to column: < 13.5 %).
目錄
中文摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目標 3
第二章 文獻回顧 4
2-1 非類固醇抗發炎藥物 4
2-1-1非類固醇抗發炎藥物簡介 4
2-1-2 非類固醇抗發炎藥物之危害性 4
2-2 固相萃取 5
2-3 固相微萃取 10
2-3-1 Fiber SPME介紹 11
2-3-2 SBSE介紹 11
2-3-3 In-tube SPME介紹 12
2-3-4 Syringe SPME 12
2-3-5 PMME 介紹 13
2-4 毛細管電泳簡介 18
2-4-1 毛細管電泳原理 18
2-4-2 電滲流 19
2-4-3 微乳化電層析(microemulsion electrokinetic chromatography,MEEKC) 21
2-5 有機高分子整體成形式管柱 23
2-5-1 聚丙烯醯胺類(polyacrylamide-based polymer monoliths) 23
2-5-2 聚甲基丙酸酯類(polymethacrylate-based polymer monoliths) 24
2-5-3 聚苯乙烯類(polystyrene-based polymer monoliths) 24
2-5-4 結合聚甲基丙烯酸酯類與聚苯乙烯類 25
2-6. 實驗方法 26
第三章 實驗介紹 28
3-1 實驗儀器設備 28
3-2 藥品名稱與廠牌介紹 29
3-3 毛細管微乳化電層析分析NSAIDs實驗介紹 33
3-3-1 NSAIDs標準品結構及性質介紹: 33
3-3-2 實驗藥品配置方法 34
3-3-3 NSAIDs藥物分離之實驗條件 35
223-4 PMME高分子整體成形萃取管柱製備 36
3-4-1 毛細管壁改質前處理 36
3-4-2 PMME高分子聚合溶液配置 37
3-4-3 PMME萃取管柱製備 38
3-4-4 高分子共聚物粉末製備 39
3-5 PMME萃取裝置 40
3-6 PMME萃取過程 41
3-7 萃取效能之計算 41
第四章 結果與討論 42
4-1 PMME萃取管柱的最佳化 42
4-1-1 PMME萃取管柱材料的選擇 42
4-1-2 PEG添加量對PMME管柱萃取效果之影響 44
4-1-3 PMME管柱長度對萃取效果之影響 46
4-1-4 改變聚合溶液之單體比例對萃取效果的影響 48
4-2 PMME萃取過程的最佳化 51
4-2-1 清洗溶液的最佳化 51
4-2-2 活化溶液的最佳化 54
4-2-3 流速的初步最佳化 56
4-2-4 以多變數方法探討流速最佳化條件 59
4-3 以不同碳鏈長度之甲基丙烯酸酯類單體合成萃取管柱對NSAIDs萃取效果的影響 64
4-4. poly(LMA-DVB) PMME萃取管柱效能評估 72
4-5. 檢量曲線與偵測極限 73
第五章 結論 74
未來展望 76
參考文獻 77
附錄I. 86
附錄II. 89

圖目錄
圖2-1. SPME方法的分類 10
圖2-2. 毛細管電泳裝置圖 18
圖2-3. 電雙層示意圖 19
圖2-4. 高pH值時油滴移動方向 21
圖2-5. 微乳化電層析在低pH值移動方向 22
圖2-6. 逆向偵測之示意圖 22
圖3-1. 毛細管萃取管柱與針筒連接裝置示意圖 40
圖3-2. PMME萃取裝置 40
圖3-3. PMME萃取過程示意圖 41
圖4-1. poly(SMA-DVB)添加不同比例PEG之影響 45
圖4-2. 不同長度萃取管柱之回收率表示 47
圖4-3.不同單體比例之回收率 49
圖4-4. 不同單體比例之poly(SMA-DVB) (5.8%PEG) SEM圖 49
圖4-5. 清洗溶液對萃取效果之影響 53
圖4-6. 不同條件活化管柱之回收率 55
圖4-7. 不同流速之萃取、清洗和脫附過程的檢測層析圖 57
圖4-8. 多變數方法之實驗設計 60
圖4-9. Idm於多變數中各個因子的影響 62
圖4-10. (a)未最佳化與(b)最佳化流速之回收率比較 63
圖4-11. poly(LMA-DVB)不同PEG添加量之回收率比較 65
圖4-12. poly(OMA-DVB)不同PEG添加量之回收率比較 66
圖4-13. poly(BMA-DVB)添加60.4mg PEG之回收率 67
圖4-14. poly(MMA-DVB)添加75.5mg PEG之回收率 68
圖4-15. 綜合不同AMA單體最佳PEG添加量合成之萃取管柱對萃取效果比較 69
圖4-16. 各最佳條件的poly(AMA-DVB)萃取毛細管之SEM圖 71
圖II-1. 各最佳條件的poly(AMA-DVB)高分子材料接觸角測試 88

表目錄
表2-1. 近五年(2008~2013)以SPE前處理分析NSAIDs水樣之文獻 7
表2-1. 近五年(2008~2013)以SPE前處理分析NSAIDs水樣之文獻 (續) 8
表2-1. 近五年(2008~2013)以SPE前處理分析NSAIDs水樣之文獻 (續) 9
表2-2. 歷年(~2013年)用於PMME管柱的材料與其應用 14
表2-2. 歷年(~2013年)用於PMME管柱的材料與其應用(續) 15
表2-2. 歷年(~2013年)用於PMME管柱的材料與其應用(續) 16
表2-2. 歷年(~2013年)用於PMME管柱的材料與其應用(續) 17
表2-3 可能影響電滲流之因素 21
表3-1.儀器設備名稱及廠牌型號 28
表3-2.實驗藥品 29
表3-3. 萃取用聚合高分子靜相所使用之藥品 30
表3-4.萃取用聚合高分子靜相所使用之藥品結構式與性質 31
表3-4.萃取用聚合高分子靜相所使用之藥品結構式與性質 (續) 32
表3-5.TBC的結構式與性質 32
表3-6. NSAIDs標準品結構及性質介紹 33
表3-6. NSAIDs標準品結構及性質介紹 (續) 34
表3-7. poly(SMA-DVB)添加模板PEG之組成變化 37
表3-8. Poly(AMA-DVB)系列單體組成變化 37
表3-9. PMME萃取最佳條件 41
表4-1 三種管柱條件與背壓之比較 43
表4-2. 添加不同比例PEG之回收率 45
表4-3. 不同萃取管柱長度之回收率 47
表4-4. 不同單體比例之回收率 48
表4-5. 不同單體比例之通透度 50
表4-6. 清洗溶液實驗之萃取過程 52
表4-7.不同活化溶液之條件與過程 54
表4-8. 不同條件活化管柱之回收率 55
表4-9. 多變數因子的設計 60
表4-10. L9直交表 60
表4-11. 九種分析物於各組實驗中的回收率 61
表4-12. Idm於四個因子中三個階層之回收率 61
表4-13. 各分析物在四個過程中的最佳流速 62
表4-14. 流速最佳化與未最佳化之回收率比較 63
表4-15. 所嘗試合成之管柱 64
表4-16. poly(LMA-DVB)不同PEG添加量之回收率 65
表4-17. poly(OMA-DVB)不同PEG添加量之回收率 66
表4-18. poly(BMA-DVB)不同PEG添加量之回收率 67
表4-19. poly(MMA-DVB)不同PEG添加量之回收率 68
表4-20. poly(LMA-DVB) PMME管柱對NSAIDs萃取之回收率及再現性 72
表4-21. Poly(LMA-DVB)以PMME方法之檢量曲線和偵測極限 73
表5-1. 本實驗成果與文獻(2008~2013)比較 75
表II-1. 最佳條件製備的poly(AMA-DVB)高分子材料之接觸角 86
表III-1. 最佳條件製備的poly(AMA-DVB)高分子材料BET數據 89
Abdel-Rehim, M. (2004). New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications: I. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry. Journal of Chromatography B, 801(2), 317-321.
Agüera, A., Perez Estrada, L. A., Ferrer, I., Thurman, E. M., Malato, S., &; Fernández‐Alba, A. R. (2005). Application of time‐of‐flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Journal of mass spectrometry, 40(7), 908-915.
Aguilar-Arteaga, K., Rodriguez, J. A., Miranda, J. M., Medina, J., &; Barrado, E. (2010). Determination of non-steroidal anti-inflammatory drugs in wastewaters by magnetic matrix solid phase dispersion–HPLC. Talanta, 80(3), 1152-1157.
Araujo, L., Wild, J., Villa, N., Camargo, N., Cubillan, D., &; Prieto, A. (2008). Determination of anti-inflammatory drugs in water samples, by in situ derivatization, solid phase microextraction and gas chromatography–mass spectrometry. Talanta, 75(1), 111-115.
Arthur, C. L., &; Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry, 62(19), 2145-2148.
Aydin, E., &; Talinli, I. (2012). Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere, 90(6), 2004-2012.
Azzouz, A., &; Ballesteros, E. (2012). Gas chromatography–mass spectrometry determination of pharmacologically active substances in urine and blood samples by use of a continuous solid-phase extraction system and microwave-assisted derivatization. Journal of Chromatography B, 891, 12-19.
Baranowska, I., &; Kowalski, B. (2009). An analytical procedure for the determination of different therapeutic drugs in surface waters. Water Science and Technology, 60(2), 449-458.
Baranowska, I., &; Kowalski, B. (2011). Using HPLC method with DAD detection for the simultaneous determination of 15 drugs in surface water and wastewater. Polish Journal of Environmental Studies, 20(1), 21-28.
Baranowska, I., &; Wilczek, A. (2010). A RAPID UHPLC METHOD FOR THE SIMULTANEOUS DETERMINATION OF SELECTED B-BLOCKERS, NSAIDS, AND THEIR METABOLITES IN HUMAN URINE AND WATER SAMPLES. Journal of Liquid Chromatography &; Related Technologies, 33(19), 1776-1790.

Busetti, F., Linge, K. L., &; Heitz, A. (2009). Analysis of pharmaceuticals in indirect potable reuse systems using solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1216(31), 5807-5818.
Carson, J. L., &; Willett, L. R. (1993). Toxicity of nonsteroidal anti-inflammatory drugs. An overview of the epidemiological evidence. Drugs, 46, 243.
Chen, H., Li, X., &; Zhu, S. (2012). Occurrence and distribution of selected pharmaceuticals and personal care products in aquatic environments: a comparative study of regions in China with different urbanization levels. Environmental Science and Pollution Research, 19(6), 2381-2389.
Chen, N., Wu, L., Palm, A., Srichaiyo, T., &; Hjertén, S. (1996). High‐performance field inversion capillary electrophoresis of 0.1–23 kbp DNA fragments with low‐gelling, replaceable agarose gels. Electrophoresis, 17(9), 1443-1450.
Chirica, G. S., &; Remcho, V. T. (2001). Novel monolithic columns with templated porosity. Journal of Chromatography A, 924(1), 223-232.
Clive, D. M., &; Stoff, J. S. (1984). Renal syndromes associated with nonsteroidal antiinflammatory drugs. The New England journal of medicine, 310(9), 563.
Dahane, S., García, M. D., Bueno, M. J., Moreno, A., Galera, M. M., &; Derdour, A. (2013). Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. Journal of Chromatography A, 1297(5), 17-28.
Dai, C. M., Zhou, X. F., Zhang, Y. L., Liu, S. G., &; Zhang, J. (2011). Synthesis by precipitation polymerization of molecularly imprinted polymer for the selective extraction of diclofenac from water samples. Journal of hazardous materials, 198, 175-181.
Eriksson, L., Johansson, E., &; Wikström, C. (1998). Mixture design—design generation, PLS analysis, and model usage. Chemometrics and Intelligent Laboratory Systems, 43(1), 1-24.
García, M. D., Culzoni, M. J., Vera-Candioti, L., Siano, G. G., Goicoechea, H. C., &; Galera, M. M. (2009). Chemometric tools improving the determination of anti-inflammatory and antiepileptic drugs in river and wastewater by solid-phase microextraction and liquid chromatography diode array detection. Journal of Chromatography A, 1216(29), 5489-5496.
Gilart, N., Marcé, R. M., Fontanals, N., &; Borrull, F. (2013). A rapid determination of acidic pharmaceuticals in environmental waters by molecularly imprinted solid-phase extraction coupled to tandem mass spectrometry without chromatography. Talanta, 110(15), 196-201.
Gros, M., Petrović, M., &; Barceló, D. (2006). Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review. Analytical and bioanalytical chemistry, 386(4), 941-952.

Hashim, N. H., &; Khan, S. J. (2011). Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples. Journal of Chromatography A, 1218(29), 4746-4754.
He, H. B., Lv, X. X., Yu, Q. W., &; Feng, Y. Q. (2010). Multiresidue determination of (fluoro) quinolone antibiotics in chicken by polymer monolith microextraction and field-amplified sample stacking procedures coupled to CE-UV. Talanta, 82(4), 1562-1570.
Hilder, E. F., Svec, F., &; Frechet, J. M. (2002). Polymeric monolithic stationary phases for capillary electrochromatography. Electrophoresis, 23(22‐23), 3934-3953.
Hsu, C. H., Cheng, Y. J., Singco, B., &; Huang, H. Y. (2011). Analyses of non-steroidal anti-inflammatory drugs by on-line concentration capillary electrochromatography using poly (stearyl methacrylate–divinylbenzene) monolithic columns. Journal of Chromatography A, 1218(2), 350-358.
Huang, H. Y., Cheng, Y. J., &; Lin, C. L. (2010). Analyses of synthetic antioxidants by capillary electrochromatography using poly (styrene–divinylbenzene–lauryl methacrylate) monolith. Talanta, 82(4), 1426-1433.
Huang, H. Y., Cheng, Y. J., Liu, W. L., Hsu, Y. F., &; Lee, S. (2010). Poly (divinylbenzene-alkyl methacrylate) monolithic stationary phases in capillary electrochromatography. Journal of Chromatography A, 1217(37), 5839-5847.
Huang, K. J., Zhang, M., Xie, W. Z., Zhang, H. S., Feng, Y. Q., &; Wang, H. (2007). Sensitive determination of ultra-trace nitric oxide in blood using derivatization-polymer monolith microextraction coupled with reversed-phase high-performance liquid chromatography. Analytica chimica acta, 591(1), 116-122.
Huang, X., Zhang, S., Schultz, G. A., &; Henion, J. (2002). Surface-alkylated polystyrene monolithic columns for peptide analysis in capillary liquid chromatography-electrospray ionization mass spectrometry. Analytical chemistry, 74(10), 2336-2344.
Kamaruzaman, S., Hauser, P. C., Sanagi, M. M., Ibrahim, W. A. W., Endud, S., &; See, H. H. (2013). A Simple Microextraction and Preconcentration Approach Based on a Mixed Matrix Membrane. Analytica chimica acta, 783(14), 34-30.
Kataoka, H. (2011). Current developments and future trends in solid-phase microextraction techniques for pharmaceutical and biomedical analyses. Analytical Sciences, 27(9), 893.
Kawaguchi, M., Sakui, N., Okanouchi, N., Ito, R., Saito, K., Izumi, S. I., ... &; Nakazawa, H. (2005). Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography–mass spectrometry for measurement of phenolic xenoestrogens in human urine samples. Journal of Chromatography B, 820(1), 49-57.
Koutsouba, V., Heberer, T., Fuhrmann, B., Schmidt-Baumler, K., Tsipi, D., &; Hiskia, A. (2003). Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography–mass spectrometry. Chemosphere, 51(2), 69-75.
Kučerová, Z., Szumski, M., Buszewski, B., &; Jandera, P. (2007). Alkylated poly (styrene‐divinylbenzene) monolithic columns for μ‐HPLC and CEC separation of phenolic acids. Journal of separation science, 30(17), 3018-3026.
Lacey, C., McMahon, G., Bones, J., Barron, L., Morrissey, A., &; Tobin, J. M. (2008). An LC–MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples. Talanta, 75(4), 1089-1097.
Lacina, P., Mravcová, L., &; Vávrová, M. (2013). Application of comprehensive two-dimensional gas chromatography with mass spectrometric detection for the analysis of selected drug residues in wastewater and surface water. Journal of Environmental Sciences, 25(1), 204-212
Legido‐Quigley, C., Marlin, N. D., Melin, V., Manz, A., &; Smith, N. W. (2003). Advances in capillary electrochromatography and micro‐high performance liquid chromatography monolithic columns for separation science. Electrophoresis, 24(6), 917-944.
Li, J., Chen, H., Chen, H., &; Ye, Y. (2012). Selective determination of trace thiamphenicol in milk and honey by molecularly imprinted polymer monolith microextraction and high‐performance liquid chromatography. Journal of separation science, 35(1), 137-144.
Lin, W. C., Chen, H. C., &; Ding, W. H. (2005). Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume on-line derivatization with gas chromatography–mass spectrometry. Journal of Chromatography A, 1065(2), 279-285.
Liu, L., Cheng, J., Matsadiq, G., &; Li, J. K. (2011). Novel polymer monolith microextraction using a poly-(methyl methacrylate-co-ethylene dimethacrylate) monolith and its application to the determination of polychlorinated biphenyls in water samples. Chemosphere, 83(10), 1307-1312.
Liu, L., Zuo, M., Cheng, J., Matsadiq, G., Zhou, H., &; Li, J. (2011). Coupling polymer monolith microextraction to gas chromatography: determination of pyrethroids in water samples. Microchimica Acta, 173(1-2), 127-133.
Liu, W., Qi, J., Yan, L., Jia, Q., &; Yu, C. (2011). Application of poly (butyl methacrylate-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance liquid chromatography to the determination of polycyclic aromatic hydrocarbons in smoked meat products. Journal of Chromatography B, 879(28), 3012-3016.
Liu, Z., Wei, F., &; Feng, Y. Q. (2010). Determination of cytokinins in plant samples by polymer monolith microextraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry. Analytical Methods, 2(11), 1676-1685.
Ma, H., Feng, W., Tian, M., &; Jia, Q. (2013). Determination of N-methylcarbamate pesticides in vegetables by poly (methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance liquid chromatography. Journal of Chromatography B, 929(15), 27-32.
Martín, J., Santos, J. L., Aparicio, I., &; Alonso, E. (2010). Multi‐residue method for the analysis of pharmaceutical compounds in sewage sludge, compost and sediments by sonication‐assisted extraction and LC determination. Journal of separation science, 33(12), 1760-1766.
Michail, K., &; Moneeb, M. S. (2011). Determination of methotrexate and indomethacin in urine using SPE-LC-DAD after derivatization. Journal of pharmaceutical and biomedical analysis, 55(2), 317-324.
Migowska, N., Caban, M., Stepnowski, P., &; Kumirska, J. (2012). Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection. Science of the Total Environment, 441, 77-88.
Mistry, K., Cortes, H., Meunier, D., Schmidt, C., Feibush, B., Grinberg, N., &; Krull, I. (2002). Nonaqueous capillary electrochromatographic separation of synthetic neutral polymers by size exclusion chromatography using polymeric stationary phases. Analytical chemistry, 74(3), 617-625.
Musshoff, F., Lachenmeier, D. W., Kroener, L., &; Madea, B. (2003). Automated headspace solid-phase dynamic extraction for the determination of cannabinoids in hair samples. Forensic science international, 133(1), 32-38.
Noche, G. G., Laespada, M. E. F., Pavón, J. L. P., Cordero, B. M., &; Lorenzo, S. M. (2011). Microextraction by packed sorbent for the analysis of pharmaceutical residues in environmental water samples by in situ derivatization-programmed temperature vaporizer–gas chromatography–mass spectrometry. Journal of Chromatography A, 1218(52), 9390-9396.
Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., ... &; Khan, A. A. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427(6975), 630-633.
Peng, X. T., Shi, Z. G., &; Feng, Y. Q. (2011). Rapid and high-throughput determination of cationic surfactants in environmental water samples by automated on-line polymer monolith microextraction coupled to high performance liquid chromatography–mass spectrometry. Journal of Chromatography A, 1218(23), 3588-3594.
Peters, E. C., Petro, M., Svec, F., &; Fréchet, J. M. (1997). Molded rigid polymer monoliths as separation media for capillary electrochromatography. Analytical Chemistry, 69(17), 3646-3649.
Peters, E. C., Petro, M., Svec, F., &; Frechet, J. M. (1998). Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry. Analytical chemistry, 70(11), 2288-2295.
Rabiet, M., Togola, A., Brissaud, F., Seidel, J. L., Budzinski, H., &; Elbaz-Poulichet, F. (2006). Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Environmental science &; technology, 40(17), 5282-5288.
Rao, C. R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays. Supplement to the Journal of the Royal Statistical Society, 9(1), 128-139.
Sarafraz-Yazdi, A., Amiri, A., Rounaghi, G., &; Eshtiagh-Hosseini, H. (2012). Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol–gel technique using poly (ethylene glycol) grafted multi-walled carbon nanotubes coated fiber. Analytica chimica acta, 720, 134-141.
Schwaiger, J., Ferling, H., Mallow, U., Wintermayr, H., &; Negele, R. D. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68(2), 141-150.
Sebők, Á., Vasanits-Zsigrai, A., Palkó, G., Záray, G., &; Molnár-Perl, I. (2008). Identification and quantification of ibuprofen, naproxen, ketoprofen and diclofenac present in waste-waters, as their trimethylsilyl derivatives, by gas chromatography mass spectrometry. Talanta, 76(3), 642-650.
Shaaban, H., &; Górecki, T. (2011). High temperature–high efficiency liquid chromatography using sub-2μm coupled columns for the analysis of selected non-steroidal anti-inflammatory drugs and veterinary antibiotics in environmental samples. Analytica chimica acta, 702(1), 136-143.
Shaaban, H., &; Górecki, T. (2012). Fast ultrahigh performance liquid chromatographic method for the simultaneous determination of 25 emerging contaminants in surface water and wastewater samples using. Talanta, 100(15), 80-89.
Shih, Y. H., Lo, S. H., Yang, N. S., Singco, B., Cheng, Y. J., Wu, C. Y., ... &; Lin, C. H. (2012). Trypsin‐Immobilized Metal–Organic Framework as a Biocatalyst In Proteomics Analysis. ChemPlusChem, 77(11), 982-986.
Su, R., Zhao, X., Li, Z., Jia, Q., Liu, P., &; Jia, J. (2010). Poly (methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance liquid chromatography for the determination of phthalate esters in cosmetics. Analytica chimica acta, 676(1), 103-108.
Sun, N., Wu, S., Chen, H., Zheng, D., Xu, J., &; Ye, Y. (2012). Determination of sulfamethoxazole in milk using molecularly imprinted polymer monolith microextraction coupled to HPLC. Microchimica Acta, 179(1-2), 33-40.
Sun, Z., Schüssler, W., Sengl, M., Niessner, R., &; Knopp, D. (2008). Selective trace analysis of diclofenac in surface and wastewater samples using solid-phase extraction with a new molecularly imprinted polymer. Analytica chimica acta, 620(1), 73-81.
Svec, F., &; Huber, C. G. (2006). Monolithic materials: promises, challenges, achievements. Analytical chemistry, 78(7), 2100-2107.
Svec, F., Peters, E. C., Sýkora, D., &; Fréchet, J. M. (2000). Design of the monolithic polymers used in capillary electrochromatography columns. Journal of Chromatography A, 887(1), 3-29.
Taguchi, G., Chowdhury, S., &; Wu, Y. (2005). Taguchi's quality engineering handbook (p. 6). Hoboken, John Wiley &; Sons.
Tong, S., Liu, Q., Li, Y., Zhou, W., Jia, Q., &; Duan, T. (2012). Preparation of porous polymer monolithic column incorporated with graphene nanosheets for solid phase microextraction and enrichment of glucocorticoids. Journal of Chromatography A, 1253(31), 22-31.
Tong, S., Zhou, X., Zhou, C., Li, Y., Li, W., Zhou, W., &; Jia, Q. (2013). A strategy to decorate porous polymer monoliths with graphene oxide and graphene nanosheets. Analyst, 138(5), 1549-1557.
Vanderford, B. J., Pearson, R. A., Rexing, D. J., &; Snyder, S. A. (2003). Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry. Analytical Chemistry, 75(22), 6265-6274.
Velo, G. P., &; Milanino, R. (1990). Nongastrointestinal adverse reactions to NSAID. The Journal of rheumatology. Supplement, 20, 42-45.
Vera-Candioti, L., García, G., Martínez Galera, M., &; Goicoechea, H. C. (2008). Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography–diode array detection. Journal of Chromatography A, 1211(1), 22-32.
Viklund, C., Svec, F., Fréchet, J. M., &; Irgum, K. (1996). Monolithic,“molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization. Chemistry of materials, 8(3), 744-750.
Wen, Y., Wang, Y., &; Feng, Y. Q. (2007). Extraction of clenbuterol from urine using hydroxylated poly (glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith microextraction followed by high‐performance liquid chromatography determination. Journal of separation science, 30(17), 2874-2880.
Wu, Y., Zhang, W., &; Chen, Z. (2012). A poly (4‐vinylpridine‐co‐ethylene glycol dimethacrylate) monolithic concentrator for in‐line concentration‐capillary electrophoresis analysis of phenols in water samples. Electrophoresis, 33(18), 2911-2919.
Xiao, P., Bao, C., Jia, Q., Su, R., Zhou, W., &; Jia, J. (2011). Determination of nitroanilines in hair dye using polymer monolith microextraction coupled with HPLC. Journal of separation science, 34(6), 675-680.
Xu, L., Shi, Z. G., &; Feng, Y. Q. (2011). Porous monoliths: sorbents for miniaturized extraction in biological analysis. Analytical and bioanalytical chemistry, 399(10), 3345-3357.
Yang, T. T., Zhou, L. F., Qiao, J. Q., Lian, H. Z., Ge, X., &; Chen, H. Y. (2013). Preparation of poly (trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith and its application in solid phase microextraction of brominated flame retardants. Journal of Chromatography A, 1291(24), 1-9.
Yin, J., Hu, B., He, M., Zheng, M., &; Feng, Y. Q. (2009). Polymer monolith microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace Cd, Tl, and Pb in human serum and urine. Journal of Analytical Atomic Spectrometry, 24(1), 76-82.
Yu, Q. W., Wang, X., Ma, Q., Yuan, B. F., He, H. B., &; Feng, Y. Q. (2011). Automated analysis of non-steroidal anti-inflammatory drugs in human plasma and water samples by in-tube solid-phase microextraction coupled to liquid chromatography-mass spectrometry based on a poly (4-vinylpyridine-co-ethylene dimethacrylate) monolith. Analytical Methods, 4(6), 1538-1545.
Zhang, H. J., Huang, J. F., Wang, H., &; Feng, Y. Q. (2006). Determination of low-aliphatic aldehyde derivatizatives in human saliva using polymer monolith microextraction coupled to high-performance liquid chromatography. Analytica chimica acta, 565(2), 129-135.
Zhang, H. J., Li, J. S., Wang, H., &; Feng, Y. Q. (2006). Determination of aspartate and glutamate in rabbit retina using polymer monolith microextraction coupled to high-performance liquid chromatography with fluorescence detection. Analytical and bioanalytical chemistry, 386(7-8), 2035-2042.
Zhang, M., Wei, F., Zhang, Y. F., Nie, J., &; Feng, Y. Q. (2006). Novel polymer monolith microextraction using a poly (methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin II receptor antagonists in human urine by capillary zone electrophoresis. Journal of Chromatography A, 1102(1), 294-301.
Zhang, W., &; Chen, Z. (2013). Polymer Monolith Microextraction Coupled with HPLC for Determination of Jasmonates in Wintersweet Flowers. Analytical Letters, 46(1), 74-86.
Zheng, M. M., Zhang, M. Y., Peng, G. Y., &; Feng, Y. Q. (2008). Monitoring of sulfonamide antibacterial residues in milk and egg by polymer monolith microextraction coupled to hydrophilic interaction chromatography/mass spectrometry. Analytica chimica acta, 625(2), 160-172.
Zhou, L. F., He, X. G., Qiao, J. Q., Lian, H. Z., Ge, X., &; Chen, H. Y. (2012). A practical interface designed for on-line polymer monolith microextraction: Synthesis and application of poly (4-vinylpyridine-co-ethylene glycol dimethacrylate) monolith. Journal of chromatography. A, 1256, 15-21.
Zorita, S., Boyd, B., Jönsson, S., Yilmaz, E., Svensson, C., Mathiasson, L., &; Bergström, S. (2008). Selective determination of acidic pharmaceuticals in wastewater using molecularly imprinted solid-phase extraction. Analytica chimica acta, 626(2), 147-154.
Zorita, S., Mårtensson, L., &; Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the total environment, 407(8), 2760-2770.
國家教育研究院 雙語詞彙、學術名詞暨辭書資訊網
基層醫學, 第二十二卷第四期
藥學雜誌 第十四卷第三期87年9月
鄭亦傑,中原大學化學研究所博士論文,中華民國一○一年六月
丁志華, &; 戴寶通. (1991). 田口實驗計畫法簡介 (I). 毫微米通訊, 第八卷第三期, 9.
李輝煌, 田口方法:品質設計的原理與實務 第四版, 2011
李茂榮, 陳崇宇, 李祖光。(2005)固相微萃取技術於微量分析之應用 CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 63(3), 329~342
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔