跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:丘如茵
研究生(外文):Ju-Yin Chiu
論文名稱:澱粉水解酵素固定於金屬有機骨架之微反應器的開發與應用
論文名稱(外文):Development and application of α-amylase immobilized on metal-organic-framework microreactors
指導教授:黃悉雅
指導教授(外文):Hsi-Ya Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:129
中文關鍵詞:澱粉酶固定化金屬有機骨架
外文關鍵詞:metal-organic-frameworkimmobilizedamylase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬有機骨架(Metal-Organic Frameworks, MOFs)材料應用於酵素固定化時,因蛋白質酵素體積過大(~3-10 nm),而無法進入MOFs的微孔(<2 nm)內,因此,較不易以簡單的物理吸附方式固定酵素於MOFs。
為改善此問題,本研究利用改變酵素結構的方式,使團聚的酵素變成較線性的結構以改變酵素尺寸,故能將常見的α-澱粉酶(α-amylase)固定化於MOFs上,形成澱粉酶固定化微反應器。研究中,以質譜儀及紫外─可見光譜儀(UV-Visible spectrometry)對澱粉酶固定化微反應器催化水解澱粉所得之醣產物進行定性及定量,並進行澱粉酶固定化效果及穩定性的比較。文獻中顯示,α-澱粉酶水解澱粉後所得主產物為麥芽醣(Maltose),為確認變性後的α-澱粉酶催化水解出的產物是否改變,故以質譜儀進行確認,再利用Bernfeld法檢測醣化合物的產量,評估本研究所製備的微反應器催化水解澱粉之效果。因α-澱粉酶結構中含有的色胺酸(tryptophan),此胺基酸具螢光特性,故可用螢光儀測得此固定化微反應器所吸附的酵素量為0.0997 mg α-amylase / mg UiO-66。
由實驗結果顯示,以UiO-66材料所製備之澱粉酶固定化微反應器具有最佳的催化效果,其原因推測是此MOFs孔洞尺寸(0.6 nm)吻合變性後澱粉酶的胜肽鏈片段,進而有利於酵素的吸附。此反應器與溶液態澱粉酶的催化效果相互比較後,澱粉酶固定化微反應器在第一次催化上就有80%以上的相對產率(Relative hydrolysis efficiency %),並在重複15次催化反應或重複催化25天後,其產率依然可達70%以上。因此,本實驗所開發出的澱粉酶固定化微反應器,具有可重複催化、高穩定性、易與產物分離等優點。


In the immobilized micro-reactor research, physical adsorption method is not commonly used due to the size of enzyme that is difficult to enter into the synthetic support. In this study, metal-organic frameworks (MOFs) were used as immobilized substrate.
The α-amylase was immobilized on MOFs by changing its structure from cluster to linear type by denaturation process. Hererin, mass spectrometry (MS) and UV-visible spectrophotometry (UV-Vis) were used to identity the performance and stability of α-amylase@MOFs bioreators. For qualitative analysis, the native and denatured α- amylase were compared based on their efficiency to hydrolyze the starch. The product was identified as maltose for both α- and denatured- amylase using MS. For the quantitative analysis, Bernfeld method coupled with UV-Vis spectrophotometry, the α-amylase@MOFs efficiency was used to test (i.e : the amount of carbohydrates). Furthermore, the tryptophan, (a amino acid), in α-amylase structure has fluorescent ability, thus, the enzyme loading capacity was determined via fluorescence spectrophotometry. The loading capacity of the denature α-amylase@UiO-66 was 0.0997 mg.
After the optimization procedure, the bioreactor has the best catalysis efficiency when UiO-66 was used as substrate which still remained 80% hydrolysis efficiency compared with α-amylase (in-solution). It shows that the window pore size (0.6 nm) was suitable to accommodate the peptide chain size. Finally, the denature α-amylase@UiO-66 has a relative hydrolysis efficiency over 70% even after 15 cycles or 25 days. The developed α-amylase@UiO-66 have many advantages, including reusability, stability and ease sparation from products.


目錄
摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 X
一、緒論 1
1-1 生物催化簡介 1
1-1-1 醣化酶介紹 2
1-1-2 澱粉酶介紹 2
1-2 酵素微反應器介紹 5
1-2-1 酵素固定化方法及基材之簡介 6
1-3 金屬有機骨架簡介 13
1-3-1 MOFs之孔洞型態 14
1-3-2 金屬有機骨架之應用 18
1-3-3 酵素固定化於金屬有機骨架之應用 20
1-4 研究動機 26
二、實驗介紹 27
2-1 實驗儀器設備及裝置 27
2-2 藥品名稱及廠牌介紹 29
2-3 金屬有機骨架之製備 31
2-4 中孔矽氧化物的製備 33
2-5 變性澱粉酶之步驟 34
2-5-1 變性澱粉酶溶液配製之步驟 34
2-5-2 澱粉酶變性步驟 35
2-5-3 酶變性機制 35
2-6 金屬有機骨架固定化澱粉酶之步驟 37
2-6-1 以物理吸附法將澱粉酶固定在金屬有機骨架材料之流程 37
2-6-2 以物理吸附法將變性澱粉酶固定於金屬有機骨架化材料之流程 38
2-7 以澱粉酶催化生成醣化合物之步驟 40
2-7-1 溶液態澱粉酶催化生成醣之步驟 40
2-7-2 以未變性或變性澱粉酶製備之微反應器進行催化生成醣的步驟 41
2-8 測試酵素催化生醣的效能方法介紹 42
2-9 酵素負載量測試方法之介紹 44
三、結果與討論 49
3-1 變性澱粉酶催化效果探討 50
3-2 變性澱粉酶固定化於MOF之催化效果探討 54
3-2-1 不同種類MOFs對產物產率之影響 54
3-2-2 變性澱粉酶固定化於UiO-66之鑑定 58
3-2-2-1 denature α-amylase@UiO-66之螢光鑑定 58
3-2-2-2 denature α-amylase@UiO-66之氮氣吸脫附曲線 59
3-2-2-3 denature α-amylase@UiO-66之PXRD與SEM 60
3-2-3 固定化變性澱粉酶濃度對催化產率之影響 63
3-2-4 變性澱粉酶固定化時間對醣化合物產率之影響 65
3-2-5 催化溫度與時間對產物產率之影響 67
3-2-6催化澱粉生成的醣化合物與DNS試劑反應時間對產率之影響 69
3-3 直接使用澱粉酶水溶液固定化在MOF之催化效果探討 71
3-3-1 不同種類MOFs做固定基材對醣產物產率之影響 73
3-3-2 澱粉酶水溶液直接固定化後之光學鑑定 76
3-3-2-1 α-amylase@UiO-66之螢光鑑定 76
3-3-2-2 澱粉酶水溶液直接固定化於UiO-66之氮氣吸脫附檢測 77
3-3-2-3 α-amylase@UiO-66之PXRD與SEM鑑定 78
3-3-3 直接固定化澱粉酶水溶液其濃度對催化產率之影響 80
3-4 澱粉酶微反應器之催化效能比較 83
3-4-1 比較固定化澱粉酶水溶液或變性澱粉酶於MOFs之穩定性 83
3-4-2 變性與未變性澱粉酶固定化於UiO-66之生命週期(Life time)比較 86
3-4-3.文獻比較 88
3-5 結論 90
參考文獻 91
附錄I 變性澱粉酶條件的優化 100
附錄II 廣角XRD繞射圖 102
附錄III 酵素動力學 104
附錄IV denature α-amylase@MIL-101(Cr)之鑑定 108
附錄V α-amylase@MIL-101(Cr)之鑑定 112
附錄VI 利用MS檢測變性澱粉酶催化生醣與DNS效能評比 116
附錄VII 以圓二色光譜(CD)檢測α-amylase溶於PBS buffer及H2O對其結構的影響 118


圖目錄
圖1-1 澱粉酶降解澱粉之反應式 4
圖1-2 酵素固定化示意圖 5
圖1-3 酵素固定化方法示意圖 6
圖1-4 金屬有機骨架材料結構示意圖 13
圖1-5 MIL-100(Cr)與MIL-101(Cr)結構示意圖 15
圖1-6 UiO-66之結構示意圖 15
圖1-7 IRMOF-n結構示意圖 16
圖1-8 MIL-53經不同處理方式後的孔洞結構改變示意圖 17
圖1-9 MOF-177、沸石與市售活性碳吸附劑之CO2吸附量比較 18
圖1-10 MALDI-TOF-MS分析不同MOFs吸附濃縮胜肽分子之結果 19
圖1-11 trypsin-MIL-88B-NH2(Cr)製備之反應流程 21
圖1-12 trypsin-MIL-88B-NH2(Cr)進行BSA水解步驟示意圖 21
圖1-13 trypsin–FITC@CYCU-4之固定化與BSA水解步驟示意圖 23
圖1-14 trypsin–NBD@MOFs之固定化步驟示意圖 23
圖1-15 研究示意圖 26
圖2-1 澱粉酶之變性流程示意圖 36
圖2-2 MOFs固定化澱粉酶 37
圖2-3 MOFs固定化變性澱粉酶之示意圖 39
圖2-4 α-amylase@MOFs或denature α-amylase@MOFs催化生成醣流程之示意圖 41
圖2-5 澱粉結構示意圖 43
圖2-6 以DNS試劑檢測澱粉酶催化生成的醣化合物之示意圖 43
圖2-7 α-澱粉酶溶液檢量線 45
圖2-8 變性α-澱粉酶溶液檢量線 46
圖2-9 denature α-amylase@UiO-66吸附前後螢光光譜圖 47
圖2-10 α-amylase@UiO-66吸附前後螢光光譜圖 48
圖3-1 變性與未變性澱粉酶進行澱粉水解反應的差異 51
圖3-2 α-澱粉酶結構與活性位置 52
圖3-3 Ion trap MS對變性前後澱粉酶溶液催化澱粉之產物鑑定 53
圖3-4 不同種類MOFs固定化變性澱粉酶之微反應器進行澱粉催化生醣之結果 56
圖3-5 denature α-amylase@UiO-66之固態螢光光譜 58
圖3-6 denature α-amylase@UiO-66之等溫氮氣吸脫附曲線圖 59
圖3-7 UiO-66之PDXRD圖 61
圖3-8 UiO-66及denature α-amylase@UiO-66之SEM圖 62
圖3-9 不同固定化酵素濃度對澱粉催化效果之影響 63
圖3-10 denature α-amylase@UiO-66固定化時間對催化效果的影響 65
圖3-11 denature α-amylase@UiO-66催化溫度對催化效果之關係 67
圖3-12 水解澱粉之產物與DNS試劑反應時間對所測得還原DNS的UV-Visble訊號強度之關係 69
圖3-13 澱粉酶溶解於不同溶劑並進行固定化後所獲得催化效果的差異 72
圖3-14 澱粉酶水溶液固定化於不同種類基材後對澱粉進行水解反應的效能評估 74
圖3-15 α-amylase@UiO-66之固態螢光光譜 76
圖3-16 α-amylase@UiO-66之等溫氮氣吸脫附圖 77
圖3-17 UIO-66直接固定化澱粉酶水溶液之PXRD圖 78
圖3-18 UiO-66固定化α-澱粉酶前後之SEM圖 79
圖3-19 不同澱粉酶濃度對固定化在MIL-101(Cr)上之關係 81
圖3-20 不同澱粉酶濃度對固定化在UiO-66上之關係 81
圖3-21 澱粉酶固定化於UiO-66之平均催化效果比較 84
圖3-22 測試變性或未變性澱粉酶固定化於UiO-66進行澱粉水解反應之重複使用性 86
圖II-1 初合成UiO-66之廣角XRD繞射圖 102
圖II-2 denature α-amylase@UiO-66之廣角XRD繞射圖 102
圖II-3 α-amylase@UiO-66之廣角XRD繞射圖 103
圖III-1 麥芽醣溶液檢量線 105
圖III-2 α-amylase游離態與固定化態之Lineweaver-Burk圖 107
圖IV-1 denature α-amylase@MIL-101(Cr)吸附前後螢光光譜圖 108
圖IV-2 denature α-amylase@MIL-101(Cr)之等溫氮氣吸脫附曲線圖 109
圖IV-3 MIL-101(Cr)之PDXRD圖 110
圖IV-4 MIL-101(Cr)及denature α-amylase@ MIL-101(Cr)之SEM圖 111
圖V-1 denature α-amylase@MIL-101(Cr)吸附前後螢光光譜圖 112
圖V-2 α-amylase@MIL-101(Cr)之等溫氮氣吸脫附曲線圖 113
圖V-3 MIL-101(Cr)之PDXRD圖 114
圖V-4 MIL-101(Cr)及α-amylase@ MIL-101(Cr)之SEM圖 115
圖VI-1 DNS Vs. MS催化生醣效能評比 117
圖VII-1 圓二色光譜(CD)檢測α-amylase溶於PBS buffer及H2O之差異 118

表目錄
表1-1 近五年(2009-2014)以物理吸附方法固定化α-澱粉酶催化反應之文獻整理 9
表1-2 近五年(2009-2014)以包埋法固定化α-澱粉酶催化反應之文獻整理 10
表1-3 近五年(2009-2014)以化學鍵結方法固定化α-澱粉酶催化反應之文獻整理 10
表1-4 近五年(2009-2014)以交連方法固定化α-澱粉酶催化反應之文獻整理 12
表1-5 近年(2011-2014)酵素固定化金屬有機骨架之應用 24
表2-1 儀器設備名稱及廠牌型號 27
表2-2 藥品名稱及廠牌 29
表2-3 本研究所合成中孔矽材之結構與孔洞型態鑑定 33
表2-4 α-澱粉酶溶液檢量線之放光強度 45
表2-5 變性α-澱粉酶溶液檢量線之放光強度 46
表3-1 本實驗所使用固定化基材之結構與孔洞型態 55
表3-2 不同種類基材固定化變性澱粉酶之催化效果 57
表3-3 denature α-amylase@UiO-66之表面積變化比例比較 60
表3-4不同固定化酵素濃度對澱粉催化效果之影響 64
表3-5 denature α-amylase@UiO-66固定化時間對催化效果的影響 66
表3-6 denature α-amylase@UiO-66催化溫度對催化效果的影響 68
表3-7水解澱粉之產物與DNS試劑反應時間對所測得還原DNS的UV-Visble訊號強度之關係 70
表3-8澱粉酶水溶液固定化於不同種類基材後對澱粉進行水解反應的效能評估 75
表3-9 UiO-66進行α-amylase@固定化前後之表面積變化 77
表3-10 不同澱粉酶濃度對固定化於MIL-101(Cr)或UiO-66上的影響 82
表3-11 變性與未變性澱粉酶固定化於UiO-66之不同批製備的催化性差異比較 85
表3-12 denature α-amylase@UiO-66及α-amylase@UiO-66之穩定性關係 87
表3-13 目前文獻中有較佳催化效果與穩定度之固定化α-澱粉酶微反應器比較 89
表I-1 尿素濃度對溶液態變性澱粉酶催化效果之影響 100
表I-2 不同變性劑下變性澱粉酶催化效果之影響 101
表III-1麥芽醣溶液檢量線之吸光值 105
表III-2 α-amylase游離態與固定化態之酵素動力學 106
表III-3 α-amylase游離態與固定化態之酵素動力學參數 107
表IV-1 denature α-amylase@MIL-101(Cr)之表面積變化比例比較 109
表V-1 α-amylase@MIL-101(Cr)之表面積變化比例比較 113
表VI-1 DNS Vs. MS催化生醣效能 116

A. L. Cordeiro, T. Lenk, C. Werner, Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films, J. Biotechnol., 154 (2011) 216
A. Popat, S. B. Hartono, F. Stahr, J. Liu, S. Z. Qiao, Qing Max Lu G., Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers, Nanoscale, 3 (2011) 2801
A. S. Bommarius, Biocatalysis, 2004
A. Illanes, Enzyme Biocatalysis: Principles and Applications; Springer: Dordrecht, The Netherlands, 2008
B.-S. Xie, H.-H. Jia, Y.-C. Xie, P. Wei, J. issn., 9 (2011) 1672
C. Serre, F. Millange, C. Thouvenot, M. Nogue`s, G. Marsolier, D. Loue¨r, G. Fe´rey, Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)‧{O2C-C6H4-CO2}‧{HO2C-C6H4-CO2H}x‧H2Oy, J. Am. Chem. Soc., 124 (2002) 13519
C. Vera; C. Guerrero; R. Conejeros; A. Illanes, Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose, Enzyme Microb. Technol., 50 (2012) 188
C. Volkringer, D. Popov, T. Loiseau, G. Ferey, M. Burghammer, C. Riekel, M. Haouas, F. Taulelle, Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100, Chem. Mater., 21 (2009) 5695
D. Meridor, A. Gedanken, Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films, Ultrason. Sonochem., 20 (2013) 425
D. Meridor, A. Gedanken, Forming nanoparticles of α-amylase and embedding them into solid surfaces, J. Mol. Catal. B: Enzym., 90 (2013) 43
D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120 (1998) 6024
D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120 (1998) 6024
D. Saha, R. Zacharia, L. Lafi, D. Cossement, R. Chahine, Synthesis, characterization and hydrogen adsorption properties of metaleorganic framework Al-TCBPB, Int. J. Hydrogen Energy, 37 (2012) 5100
E. Bastu¨rk, S. Demir, O. Danıs, M. V. Kahraman, Covalent Immobilization of α-Amylase onto Thermally Crosslinked Electrospun PVA/PAA Nanofibrous Hybrid Membranes, J. Appl. Polym. Sci., (2013) DOI 10.1002APP.37901
E. Cakmakci, O. Danis, S. Demir, Y. Mulazim, M. V. Kahraman, Alpha-Amylase Immobilization on Epoxy Containing Thiol-Ene Photocurable Materials, J. Microbiol. Biotechnol., 23 (2013) 205
F. J. Contesini, J. de A. Figueira, H. Y. Kawaguti, P. C. de B. Fernandes, P. de O. Carvalho, M. da G. Nascimento, H. H. Sato, Potential Applications of Carbohydrases Immobilization in the Food Industry, Int. J. Mol. Sci., 14 (2013) 1335
F. Wang, Z. Gu, Z. Cui, L. Liu, Comparison of covalent immobilization of amylase on polystyrene pellets with pentaethylenehexamine and pentaethylene glycol spacers, Bioresour., Technol., 102 (2011) 9374
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309 (2005) 2040
G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, Molecular modeling: A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction, Angew. Chem. Int. Ed., 43 (2004) 6296
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309 (2005) 2040
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309 (2005) 2040
H. Yang, H. Yanga, L. Liua, H.-d. Shinc, R. R. Chenc, J. Li, G. Dua, J. Chen, Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions, J. Biotechnol., 164 (2013) 59
H. Y. Kawaguti, H. H. Sato, Palatinose production by free and Ca-alginate gel immobilized cells of Erwinia sp, Biochem. Eng. J., 36 (2007) 202
H. Yang, H. Yanga, L. Liua, H.-d. Shinc, R. R. Chenc, J. Li, G. Dua, J. Chen, Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions, J. Biotechnol., 164 (2013) 59
I. Chibata, T. Tosa, T. Sato, T. Mori, Y. Matuo, Proc. of the 4th Int. Fermentation Symp:fermentation technology today (1972) 383
J. Krisch; O. Bencsik; T. Papp; C. Vágvölgyi; M. Takó, Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. Bioresour. Technol., 114 (2012) 555
J.-R. Li, R. J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477
J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature, 404 (2000) 982
J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc,. 130 (2008) 13850
J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130 (2008) 13850
L. Kandra, α-Amylases of medical and industrial importance, J. Mol. Struct. (Theochem) 666 (2003) 487
L. A. Underkofler, L. J. Danault, E. F. Hou, Enzymes in starch industry, Die Starke, 17 (1965) 179
L. M. Marchal, H. H. Beeftink, J. Tramper, (1999). Towards a rational design of commercial maltodextrins. Trends in Food Science & Technology, 10 (1999) 345
M. Jana, C. Maity; S. Samanta; B. R. Pati; S. S. Islam; P. K. D. Mohapatra; K. C. Mondal, Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides, Ind. Crop. Prod., 41 (2013) 386
M. Alcalde, M. Ferrer, F. J. Plou, A. Ballesteros, Environmental biocatalysis: from remediation with enzymes to novel green processes, Trends Biotechnol., 24 (2006)
M. E. Sedaghat, M. Ghiaci, H. Aghaei, S. Soleimanian-Zad, Enzyme immobilization. Part 3 Immobilization of α-amylase on Na-bentonite and modified bentonite, Applied Clay Science, 46 (2009) 125
M. G. Bellino, A. E. Regazzoni, G. J. A. A. Soler-Illia, Amylase-Functionalized Mesoporous Silica Thin Films as Robust Biocatalyst Platforms, ACS Appl. Mater. Interfaces, 2 (2010) 360
M. G. Bellinoa, A. E. Regazzonia, Immobilization of enzymes into self-assembled iron(III) hydrous oxide nano-scaffolds: A bio-inspired one-pot approach to hybrid catalysts, Appl. Catal., A, 408 (2011) 73
M. Sureshkumar, C-K. Lee, Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization, Carbohydr. Polym., 84 (2011) 775
M. J. Khan, Q. Husain, S. A. Ansari, Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase, Appl. Microbiol. Biotechnol., 97 (2013) 1513
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Materials Design, Discovery Group, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295 (2002) 469
M. Kinter, In Protein Sequencing and Identification Using Tandem Mass Spectromertry, (2005) 147
M. K. Campbell, Biochemistry., Saunders College Publishing, 1995
N. Tüzmena, T. Kalburcub, A. Denizlic, α-Amylase immobilization onto dye attached magnetic beads: Optimization and characterization, J. Mol. Catal. B: Enzym., 78 (2012) 16
N. Sohrabi, N. Rasouli, M. Torkzadeh, Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles, Biochem. Eng. J., 240 (2014) 426
N. S. Reddy, N. Annapoorna, K. R. S. Sambasiva Rao, An overview of the microbial a-amylase family. African journal of biotechnology, 2 (2003) 645
N. Grubhofer, L. Schleith, Naturwissenschaften, 40 (1953) 508
O. M. Yaghi, H. Li, Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels, J. Am. Chem. Soc. 117 (1995) 10401
O. Prakash, N. Jaiswal, Immobilization of a Thermostable α-Amylase on Agarose and Agar Matrices and its Application in Starch Stain Removal, World Applied Sciences Journal, 13 (2011) 572
P. V. Aiyer, Amylases and their applications, African Journal of Biotechnology, 4 (2005) 1525
P. Jochems, Y. Satyawali, L. Dielsa, W. Dejonghea, Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs), Green Chem., 13 (2011) 1609
P. Horcajada, T. Chalati, C. Serre1, B. Gillet, C. Sebrie, T. Baati1, J. F. Eubank1, D. Heurtaux1, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey1, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater,. 9 (2010) 172
P. S. Bárcia, D. Guimarães, P. A. P. Mendes, J. A.C. Silva, V. Guillerm, H. Chevreau, C. Serre, A. E. Rodrigues, Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66, Microporous Mesoporous Mater., 139 (2011) 67
P. Bernfeld, Amylases, Alpha and Beta, Meth. in Enzymology, 1 (1955) 149
Q. Zhang, X. Hanb, B. Tanga, Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles, RSC Adv., 3 (2013) 9924
R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, B. Chauhan, Microbial α-amylases: a biotechnological perspective, Process Biochem., 38 (2003) 1599
R. W. Larsen, L. Wojtas, J. Perman, R. L. Musselman, M. J. Zaworotko, C. M. Vetromile, Mimicking Heme Enzymes in the Solid State: MetalOrganic Materials with Selectively Encapsulated Heme, J. Am. Chem. Soc., 133 (2011) 10356
S. Hudson, J. Cooney, E. Magner, Proteins in Mesoporous Silicates, Angew. Chem. Int. Ed., 47 (2008) 8582
S. Akgöl; Y. Kaçar; A. Denizli; M. Y. Arıca, Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres, Food Chem., 74 (2001) 281
S. Talekar, S. Chavare, Optimization of immobilization of α-amylase in alginate gel and its comparative biochemical studies with free α-amylase, Recent Research in Science and Technology, 4 (2012) 01
S. Demir, S. B. Go¨k, M. V. Kahraman, α-Amylase immobilization on functionalized nano CaCO3 by covalent attachment, Starch/Sta¨rke, 64 (2012) 3
S. Talekar, A. Pandharbale, M. Ladole, S. Nadar, M. Mulla, K. Japhalekar, K. Pattankude, D. Arage, Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): A tri-enzyme biocatalyst with one pot starch hydrolytic activity, Bioresour. Technol., 147 (2013) 269
S. Singha, J. P. Saikiab, A. K. Buragohaina, A novel reusable PAni-PVA-Amylase film: Activity and analysis, Colloids Surf., B 106 (2013) 46
S. Keskin, S. Kizilel, Biomedical Applications of Metal Organic Frameworks, Ind. Eng. Chem. Res., 50 (2011) 1799
T. Vasiljevic; P. Jelen, Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria, Innov. Food Sci. Emerg., 2 (2001) 75
T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Eur. J., 10 (2004) 1373
V. Swarnalatha, R. A. Esther, R. Dhamodharan, Immobilization of α-amylase on gum acacia stabilized magnetite nanoparticles, an easily recoverable and reusable support, J. Mol. Catal. B Enzym., 96 (2013) 6
V. Singh, P. Kumar1, Carboxymethyl tamarind gum–silica nanohybrids for effective immobilization of amylase, J. Mol. Catal. B: Enzym., 70 (2011) 67
V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R. L. Musselman, S. Ma, Immobilization of MP-11 into a Mesoporous MetalOrganic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis, J. Am. Chem. Soc., 133 (2011) 10382
W. Xuan, C. Zhu, Y. Liu, Y. Cui, Mesoporous metal-organic framework materials, Chem. Soc. Rev., 41 (2012) 1677
W.-L. Liu, S.-H. Lo, B. Singco, C.-C. Yang, H.-Y. Huang, C.-H. Lin, Novel trypsin–FITC@ MOF bioreactor efficiently catalyzes protein digestion, J. Mater. Chem. B, 1 (2013) 928
W.-L. Liu, C.-Y. Wu, C.-Y. Chen, B. Singco, C.-H. Lin, H.-Y. Huang, Fast Multipoint Immobilised MOF Bioreactor, Chem. Eur. J., 20 (2014) 1
X. Yang, Z. Cai, Z. Ye, S. Chen, Y. Yang, H. Wang, Y. Liu, A. Cao, In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes, Nanoscale, 4 (2012) 414
Y. Liu, S. Jia, J. Ran, S. Wu, Effects of static magnetic field on activity and stability of immobilized α-amylase in chitosan bead, Catal. Commun., 11 (2010) 364
Y. Zhang, P. He, N. Hu, Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis, Electrochim. Acta, 49 (2004)1981
Y. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L.-J. Ming, R. W. Larsen, S. Ma, How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome c Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows, J. Am. Chem. Soc., 134 (2012) 13188
Y. Chen, V. Lykourinou, T. Hoang, L.-J. Ming, S. Ma, Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal−Organic Framework with Hierarchical Pore Sizes, Inorg. Chem., 51 (2012) 9156
Y.-H. Shih, S.-H. Lo, N.-S. Yang, B. Singco, Y.-J. Cheng, C.-Y. Wu, I.-H. Chang, H.-Y. Huang, C.-H. Lin, Trypsin-Immobilized Metal–Organic Framework as a Biocatalyst In Proteomics Analysis, ChemPlusChem, 77 (2012) 982
Z. Zhao, W. Lei, X. Zhang, B. Wang, H. Jiang, ZnO-based amperometric enzyme biosensors, Sensors, 10 (2010) 1216
Z.-L. Yu, W.-C. Zeng, W.-H. Zhang, X.-P. Liao, B. Shi, Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin, Ultrason. Sonochem., 21 (2014) 930
Z.-Z. Lu, R. Zhang, Y.-Z. Li, Z.-J. Guo, H.-G. Zheng, Solvatochromic Behavior of a Nanotubular Metal-Organic Framework for Sensing Small Molecules, J. Am. Chem. Soc., 133 (2011) 4172
Z.-Y. Gu, C.-X. Yang, N. Chang, X.-P. Yan, Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation, Acc. Chem. Res., 45 (2012) 734
楊妮欣,中原大學化學系碩士學位論文,2013年
莊榮輝,酵素化學實驗。台灣大學農化系。(2000) 76~81

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top