(3.230.76.48) 您好!臺灣時間:2021/04/11 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王琨允
研究生(外文):Kun-Yun Wang
論文名稱:以金屬有機骨架-高分子整體材料為固相微萃取之吸附劑萃取磺胺類抗生素與非類固醇抗發炎藥物
論文名稱(外文):Solid-Phase Microextraction of Sulfonamide Antibiotics and Non-Steroid Anti-Inflammatory Drugs using Metal-Organic Framework Polymeric Monoliths as Absorbent
指導教授:黃悉雅
指導教授(外文):Hsi-Ya Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:177
中文關鍵詞:固相微萃取金屬有機骨架-高分子非類固醇藥物磺胺類
外文關鍵詞:metal-organic framework–polymersolid-phase microextractionsulfonamidesnon-steroid anti-inflammatory drugs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以金屬有機骨架-高分子(metal-organic framework–polymeric monolith, MOF-polymer)整體成形材料做為固相微萃取(solid-phase microextraction, SPME) 之吸附劑,進行磺胺類 (sulfonamides) 抗生素及非類固醇藥物 (non-steroid anti-inflammatory drugs, NSAIDs) 萃取。
第一部份探討MOF-polymer進行磺胺類藥物之SPME萃取,並以微乳化電層析 (microemulsion electrokinetic chromatography, MEEKC) 方法檢測萃取效果。實驗中探討不同型態MOF對磺胺類藥物之萃取影響,並進行最佳化條件測試。結果顯示在50 wt% MIL-53(Al)含量、pH 5樣品基質、5 cm萃取管柱長、1 mL MeOH脫附溶劑與0.125 mL/min萃取流速為最佳化條件,得到磺胺類藥物之萃取回收率為40.6% - 93.0%,相對標準偏差 (relative standard deviation, RSD) 低於4.8% (intra-day);不同天萃取回收率為40.6% - 91.2%,RSD低於6.4% (inter-day);不同合成批次之萃取管柱回收率為41.9% - 89.7%,RSD低於5.3% (column-to-column),此MIL-53(Al)-polymer可重複使用至少30次,顯示具有良好管柱再現性。
第二部份探討MOF-polymer對非類固醇藥物之萃取效果,以33%的MIL-101(Cr)含量、0.125 mL/min萃取流速為最佳化條件,得到之回收率為93.1% - 106.1%,RSD低於5.7%;並比較不同種類MOFs萃取效果,DUT-5回收率為91.0% - 106.6%,RSD低於8.7%; MIL-100(Fe)回收率為52.1% - 79.6%,RSD低於10.5%; UiO-66回收率為46.7% - 69.9%,RSD低於10.4%,結果證明MOF-polymer可成功應用於非類固醇藥物之SPME萃取。


In this study, metal-organic framework–polymeric monolith (MOF-polymer) were used as adsorbent for solid-phase microextraction (SPME) of sulfonamides and non-steroidal anti-inflammatory drugs (NSAIDs).
For the first part in this dissertation, MOF-polymers were applied for SPME technology for sulfonamides extraction and analyzed by using microemulsion electrokinetic chromatography (MEEKC) method to determine the extraction efficiency. Considering the extraction efficiency of sulfonamides, different type of MOFs and extraction conditions were optimized. The results show that 50 weight percent MOF amount, sample matrix at pH 5, 5 cm of extraction column lengths, 0.125 mL/min of extraction flow rate and 1 mL methanol as eluting solvent for optimized conditions. Based on the optimized results, the recoveries and relative standard deviation (RSD) for intra-day were ranged from 40.6% - 93.0% and <4.8%, respectively. For inter-day, the recoveries were ranged from 40.6% - 91.2%, and RSD < 6.4 %. In addition, the recoveries of column-to-column were ranged from 41.9% - 89.7% and RSD < 5.3%, demonstrated MIL-53(Al)-polymer column was high reproducibility. Furthermore, the MIL-53(Al)-polymer column can be re-used at least 30 times.
For the second part in this dissertation, MOF-polymers were applied for SPME technology for NSAIDs extraction. The results show that 33 weight percent MOF amount, 0.125 mL/min of extraction flow rate for optimized conditions. Based on the optimized results, the extraction recoveries by using MIL-101(Cr)-polymer were ranged from 84.0 % - 104.5 % and RSD < 5.7%.Comparison with different type of MOF for NSAIDs extraction, the extraction recoveries by using DUT-5-polymer were ranged from 91.0% - 106.6% and RSD < 8.7 %. The extraction recoveries by using MIL-100(Fe)-polymer were ranged from 52.1% - 79.6% and RSD < 10.5%. The extraction recoveries by using UIO-66-polymer were ranged from 46.7% - 69.9% and RSD < 10.4%.Finally, the results showed that the MOF-polymer were successfully applied for SPME application in the extraction of NASIDs.


摘要 I
Abstract III
謝誌 V
目錄 VII
圖目錄 XII
表目錄 XIX
第一章 緒論 1
1-1. 磺胺類抗生素之介紹 1
1-1-1. 磺胺類抗生素作用機制及其副作用 2
1-1-2. 磺胺類抗生素相關法規 3
1-2. 非類固醇抗發炎藥物之介紹 4
1-2-1. 非類固醇藥物作用機轉及其副作用 5
1-3. 毛細管電泳簡介 6
1-3-1. 毛細管電泳系統及原理 6
1-3-2. 電滲流 (electroosmotic flow, EOF) 7
1-3-3. 微乳化電層析 8
1-3-4. 毛細管電層析 10
1-4. 固相微萃取技術簡介 11
1-4-1. Fiber SPME 簡介 13
1-4-2. SBSE SPME 簡介 14
1-4-3. In-tube SPME 簡介 15
1-4-4. Syringe SPME 簡介 16
1-4-5. In-tip SPME 簡介 17
1-5. 金屬有機骨架簡介 18
1-5-1. MOF之特性 20
1-5-2. MOF之孔洞型態 22
1-5-3. MOF作為萃取吸附劑之文獻回顧 27
1-6. 磺胺類抗生素萃取文獻回顧 31
1-7. 非類固醇藥物萃取文獻回顧 38
1-8. 研究動機 40
第二章 實驗介紹 41
2-1. 實驗儀器設備及藥品 41
2-2. 標準品名稱及微乳化溶液配製 47
2-3. 金屬有機骨架之製備 54
2-4. MOF-polymer 固相微萃取管柱製備 56
2-4-1. 硼矽酸玻璃毛細管壁改質前處理 56
2-4-2. MOF純化步驟 57
2-4-3. MOF-polymer 溶液及萃取管柱之製備 58
2-5. SPME萃取裝置介紹 60
2-6. MOF-polymer SPME 萃取流程 60
2-7. 毛細管電泳儀器操作參數 63
2-7-1. 磺胺類抗生素檢測方法 63
2-7-1-1. 毛細管前處理條件 63
2-7-1-2. 儀器參數設定 64
2-7-2. 非類固醇藥物檢測方法 65
2-7-2-1. 毛細管改質步驟 65
2-7-2-2. poly(SMA-DVB-VBSA) 管柱製備 66
2-7-2-3. 儀器參數設定 67
2-8. 萃取回收率計算 67
第三章 磺胺類藥物萃取之結果與討論 68
3-1. 高分子管柱對磺胺類藥物吸附之影響 68
3-2. 籠狀型MIL-101(Cr)-polymer吸附劑對磺胺類藥物吸附之影響 71
3-2-1. 樣品基質pH值對萃取效果之影響 75
3-2-2. MIL-101(Cr)含量對萃取效果之影響 77
3-2-3. 脫附溶劑體積之影響 80
3-2-4. 脫附溶劑種類之影響 83
3-2-5. 籠狀MIL-101(Cr)對磺胺類藥物萃取之評估 86
3-3. 通道型MIL-53(Al)-polymer對磺胺類吸附之影響 87
3-3-1. 樣品基質pH值對萃取效果之影響 90
3-3-2. 萃取管柱長度對萃取效果之影響 93
3-3-3. 脫附溶劑種類之影響 96
3-3-4. MIL-53(Al)含量對萃取效果之影響 99
3-3-5. 脫附溶劑體積之影響 102
3-3-6. 萃取流速之影響 105
3-4. MIL-53(Al)-polymer 管柱之鑑定 108
3-4-1. X光粉末繞射儀(PXRD) 108
3-4-2. 紅外線光譜儀(FTIR)鑑定 109
3-4-3. 掃描式電子顯微鏡 (SEM) 110
3-4-4. 氮氣等溫吸附/脫附表面基測定儀 113
3-5. MIL-53(Al)-polymer萃取效能評估 114
3-6. 檢量曲線及偵測極限 115
3-7. MIL-53(Al)-polymer萃取管柱重複使用次數之探討 116
3-8. 結論 118
第四章 非類固醇藥物之萃取 121
4-1. 高分子管柱對磺胺類藥物吸附之影響 121
4-2. MIL-101(Cr)-polymer對非類固醇藥物吸附之影響 124
4-2-1. 萃取流速之影響 128
4-2-2. MIL-101(Cr)含量對萃取效果之影響 131
4-2-3. 不同孔洞型態之MOF-polymer對萃取之影響 134
4-3. MIL-101(Cr)-polymer 管柱之鑑定 136
4-3-1. X光粉末繞射儀(PXRD) 136
4-3-2. 紅外線光譜儀(FTIR)鑑定 137
4-3-3. 掃描式電子顯微鏡 (SEM) 138
4-3-4. 氮氣等溫吸附/脫附表面基測定儀 141
4-4. MOF-polymer萃取效能評估 142
4-5. 結論 144
第五章.總結與未來展望 147
參考文獻 148
附錄Ⅰ 154
碳化CMIL-53(Al)-polymer對磺胺類吸附之影響 154

圖目錄
圖1-1 磺胺類化合物主要官能基結構 1
圖1-3 NSAIDs作用機制 5
圖1-4 毛細管電泳裝置圖 6
圖1-5 電雙層示意圖 7
圖1-6 微乳化電層析示意圖 8
圖1-7 微乳化油滴在低pH值移動方向 9
圖1-8 微乳化油滴在施加負電壓下移動方向 9
圖1-9 (a)電滲流驅動 (b)壓力驅動訊號比較圖 10
圖1-10 SPME之類型及裝置示意圖 12
圖1-11 fiber SPME模式 13
圖1-12 (a) Fiber SPME (b) SBSE (c) TFME 14
圖1-13 In-tube SPME流程示意圖 15
圖1-14 PMME裝置示意圖 16
圖1-15 In-tip裝置示意圖 17
圖1-16 MOF材料建構示意圖 18
圖1-17 MOFs結構近年來的發展 19
圖1-18不同有機配位基長度的MOF-74 20
圖1-19不同孔洞大小之MOF-74 21
圖1-20 MIL-100(Cr)結構示意圖 23
圖1-21 MIL-101(Cr)結構示意圖 24
圖1-22不同長度配位基所組合而成之IRMOF-n (n=1-7, 8, 10, 12,14,16) 25
圖1-23 (a)初合成 (b)純化鍛燒後 (c)置於室溫下 26
圖1-24 MIL-53吸附水之前後差異 26
圖1-25 MOF-199 fiber SPME SEM圖 27
圖1-26 MOF-199之PXRD圖 27
圖1-27 ZIF-90 fiber SPME合成過程 28
圖1-28 ZIF-90 fiber SPME SEM圖 28
圖1-29 MIL-101(Cr)-polymer 製備示意圖 29
圖2-1 [C6mim][BF4]之1H NMR圖譜 44
圖2-2 磺胺類藥物結構解離示意圖 (a)陽離子 (b)陰離子 49
圖2-3 pKa分佈圖 50
圖2-4 MOF-polymer置備流程圖 58
圖2-5初製備合成MOF-polymer管柱 59
圖2-6不同MOF-polymer 管柱長度 59
圖2-7不同MOF種類之MOF-polymer 管柱外觀 (a)UiO-66(Zr)-polymer 59
(b) MIL-53(Al)-polymer (c) MIL-101(Cr)-polymer (d) MIL-100(Fe)-polymer 59
(e) DUT-5(Al)-polymer 59
圖2-8 SPME裝置示意圖 60
圖2-9 SPME萃取流程示意圖 60
圖3-1 以MEEKC檢測neat poly(BMA-EDMA)吸附劑萃取磺胺類藥物之溶液所得之層析圖 (a) 30 ppm磺胺類藥物標準品; (b) loading後之溶液; (c) washing後之溶液; (d) elution後之溶液 69
圖3-2 neat poly(BMA-EDMA)對磺胺類藥物萃取回收率之趨勢圖 70
圖3-3以MEEKC檢測MIL-101(Cr)-polymer吸附劑萃取磺胺類藥物之溶液所得之層析圖 (a) 30 ppm磺胺類藥物標準品; (b) loading後之溶液; (c) washing後之溶液; (d) elution後之溶液 72
圖3-4 MIL-101(Cr)-polymer對磺胺類藥物萃取回收率之趨勢圖 73
圖3-5 不同樣品基質pH值對MIL-101(Cr)-polymer萃取磺胺類藥物之影響 75
圖3-6不同樣品基質pH值之MIL-101(Cr)-polymer吸附磺胺類藥物loading後之溶液層析圖 (a) pH 2; (b) pH 3; (c) pH 8 76
圖3-7不同樣品基質pH值之MIL-101(Cr)-polymer吸附磺胺類藥物elution後之溶液層析圖 (a) pH 2; (b) pH 3; (c) pH 8 76
圖3-8以不同MOF含量之MIL-101(Cr)-polymer吸附磺胺類藥物loading後之溶液層析圖(a) 25%; (b) 33%; (c) 50% 78
圖3-9以不同MOF含量之MIL-101(Cr)-polymer吸附磺胺類藥物elution後之溶液層析圖(a) 25%; (b) 33%; (c) 50% 78
圖3-10 不同MIL-101(Cr)含量對磺胺類藥物萃取之影響 79
圖3-11不同甲醇脫附溶劑體積對MIL-101(Cr)-polymer萃取磺胺類藥物之影響 80
圖3-12不同甲醇脫附溶劑體積對MIL-101(Cr)-polymer脫附磺胺類藥物之層析圖
(a) 0.2 mL; (b) 0.4 mL; (c) 0.6 mL 81
圖3-13 不同脫附溶劑對MIL-101(Cr)-polymer萃取磺胺類藥物之影響 83
圖3-14不同脫附溶劑種類對MIL-101(Cr)-polymer脫附磺胺類藥物之層析圖 84
(a) ACN; (b) MeOH 84
圖3-15 磺胺類藥物於MIL-101(Cr)中(a)多重脫附路徑 與可能(b)配位鍵結機制 86
圖3-16以MEEKC檢測MIL-53(Al)-polymer吸附劑萃取磺胺類藥物之溶液所得之層析圖 (a) 30 ppm磺胺類藥物標準品; (b) loading後之溶液; (c) washing後之溶液; (d) elution後之溶液 87
圖3-17 MIL-53(Al)-polymer對磺胺類藥物萃取回收率之趨勢圖 88
圖3-18 MIL-53(Al)-polymer與MIL-101(Cr)-polymer萃取磺胺類之回收率比較 88
圖3-19不同樣品基質pH值對MIL-53(Al)-polymer萃取磺胺類藥物之影響 90
圖3-20不同樣品基質pH值對MIL-53(Al)-polymer脫附磺胺類藥物之層析圖 91
(a) pH 3; (b) pH 4; (c) pH 5;(d) pH 6; (e) pH 7 91
圖3-21不同MIL-53(Al)-polymer萃取管柱長度對萃取效果之影響 93
圖3-22不同MIL-53(Al)-polymer萃取管柱長度對脫附磺胺類藥物之層析圖 94
(a) 3 cm; b) 4 cm; (c) 5 cm 94
圖3-23不同脫附溶劑體積對對MIL-53(Al)-polymer萃取磺胺類藥物之影響 96
圖3-24不同脫附溶劑種類對MIL-53(Al)-polymer脫附磺胺類藥物之層析圖 97
(a) ACN; (b) MeOH 97
圖3-25 不同MIL-53(Al)含量對磺胺類藥物萃取之影響 99
圖3-26不同MOF含量之MIL-53(Al)-polymer吸附磺胺類藥物之elution後溶液層析圖 (a) 25%; (b) 33%; (c) 50% 101
圖3-27不同脫附溶劑體積對MIL-53(Al)-polymer萃取磺胺類藥物之影響 102
圖3-28不同甲醇脫附溶劑體積對MIL-53(Al)-polymer脫附磺胺類藥物之層析圖(a) 0.6 mL; (b) 0.8 mL; (c) 1.0 mL 104
圖3-29不同萃取流速對MIL-53(Al)-polymer萃取磺胺類藥物之影響 105
圖3-30 不同萃取流速對MIL-53(Al)-polymer脫附磺胺類藥物之層析圖 106
(a) 0.1 mL/min; (b) 0.125 mL/min 106
圖3-31 (a) MIL-53(Al)-polymer (MOF amount 50% ) (b) as synthesized MIL-53(Al) 108
(c) poly(BMA-EDMA) 之PXRD圖譜 108
圖3-32 (a) MIL-53(Al)-polymer (MOF amount 50% ) (b) as synthesized MIL-53(Al) 109
(c) poly(BMA-EDMA) 之FTIR圖譜 109
圖3-33 (a)(b) poly(BMA-EDMA) (c)(d) MIL-53(Al)-polymer管柱之SEM圖 110
左圖掃描倍率:80倍;右圖掃描倍率:10,000倍 110
圖3-34 (a) poly(BMA-EDMA) 之SEM-EDS圖 111
圖3-34 (b) MIL-53(Al)-polymer 之SEM-EDS圖 112
圖3-35 MIL-53(Al)-polymer、poly(BMA-EDMA)與MIL-53(Al)之氮氣等溫吸附圖 113
圖3-36 MIL-53(Al)-polymer重複SPME萃取之結果 117
圖3-37磺胺類藥物於MIL-53(Al)結構內脫附之路徑 118
圖4-1 neat poly(BMA-EDMA)對非類固醇藥物萃取回收率之趨勢圖 121
圖4-2以CEC檢測neat poly(BMA-EDMA)吸附劑萃取非類固醇藥物之溶液所得之層析圖 (a) 1 ppm非類固醇藥物標準品; (b) elution後之溶液 122
圖4-3 MIL-101(Cr)-polymer對非類固醇藥物萃取回收率之趨勢圖 124
圖4-4以CEC檢測MIL-101(Cr)-polymer吸附劑萃取非類固醇藥物之溶液所得之層析圖 (a) 1 ppm非類固醇藥物標準品; (b) elution後之溶液 126
圖4-5不同萃取流速對MIL-101(Cr)-polymer萃取非類固醇藥物之影響 128
圖4-6不同萃取流速對MIL-101(Cr)-polymer脫附磺胺類藥物之層析圖 129
(a) 0.1 mL/min; (b) 0.125 mL/min;(c) 0.15 mL/min 129
圖4-7不同MIL-101(Cr)含量對非類固醇藥物萃取之影響 131
圖4-8不同MOF含量之MIL-101(Cr)-polymer吸附非類固醇藥物elution後之溶液層析圖(a) 25%; (b) 33% 132
圖4-9 不同孔洞型態之MOF-polymer對非類固醇藥物萃取之影響 134
圖4-10 (a) MIL-101(Cr)-polymer (MOF amount 33% ) 136
(b) as synthesized MIL-101(Cr) (c) poly(BMA-EDMA) 之PXRD圖譜 136
圖4-11 (a) MIL-101(Cr)-polymer (MOF amount 33%) 137
(b) as synthesized MIL-101(Cr) (c) poly(BMA-EDMA) 之FTIR圖譜 137
圖4-12 (a)(b) poly(BMA-EDMA) (c)(d) MIL-101(Cr)-polymer管柱之SEM圖 138
左圖掃描倍率:80倍;右圖掃描倍率:10,000倍 138
圖4-13 (a) poly(BMA-EDMA) 之SEM-EDS圖 139
圖4-13 (b) MIL-101(Cr)-polymer 之SEM-EDS圖 140
圖4-14 MIL-101(Cr)-polymer、poly(BMA-EDMA)與MIL-101(Cr)之氮氣等溫吸附圖 141
圖4-15非類固醇藥物與DUT-5(Al)之配位基形成π - π作用力 144


表目錄
表1-1 磺胺類藥物在歐盟法規之標準 3
表1-2 磺胺類藥物在台灣法規之標準 3
表1-3 MOF應用於SPME方法中之文獻整理(2009 ~ 2014) 30
表1-4 SPE方法於磺胺類藥物萃取之文獻整理(2013 ~ 2014) 32
表1-5歷年SPME方法於磺胺類藥物萃取之文獻整理(2005 ~ 2008) 36
表1-6近十年非類固醇藥物應用於SPME方法中之文獻整理 39
表2-1 儀器設備名稱及廠牌型號 41
表2-2 藥品名稱及其純度和廠牌 42
表2-3 製備萃取管柱所需試藥之廠牌與純度 43
表2-4 製備萃取管柱所需試藥之結構及性質 43
表2-5 製備poly(SMA-DVB)分離管柱所需試藥之廠牌與純度 45
表2-6 製備萃取管柱所需試藥之結構及性質 46
表2-7 磺胺類藥物標準品之廠牌與純度 47
表2-8 磺胺類藥物標準品之結構及性質 48
表2-9 非類固醇抗發炎藥物標準品之廠牌與純度 51
表2-10 非類固醇抗發炎藥物標準品之結構及性質 52
表2-10 非類固醇抗發炎藥物標準品之結構及性質-續 53
表2-11 MOF-polymer聚合溶液比例 58
表2-12樣品基質調整pH值之配製 61
表2-13 CEC背景電解液與樣品基質配製 61
表2-14 磺胺類抗生素之MOF-polymer SPME萃取最佳化條件 62
表2-15 非類固醇藥物之MOF-polymer SPME萃取最佳化條件 62
表2-16自動化毛細管電泳儀參數設定 64
表2-17 Poly(SMA-DVB-VBSA) 聚合溶液配製 66
表3-1 neat poly(BMA-EDMA)吸附劑萃取磺胺類藥物之回收率 70
表3-2 磺胺類藥物之分子尺寸 71
表3-3 MIL-101(Cr)-polymer萃取磺胺類藥物之回收率 74
表3-4 不同樣品基質pH值對MIL-101(Cr)-polymer萃取磺胺類藥物之回收率 77
表3-5 不同MIL-101(Cr)含量對磺胺類藥物之回收率 79
表3-6 不同甲醇脫附溶劑體積對MIL-101(Cr)-polymer萃取磺胺類藥物之回收率 82
表3-7 不同脫附溶劑種類對MIL-101(Cr)-polymer萃取磺胺類藥物之回收率 85
表3-8 MIL-53(Al)-polymer萃取磺胺類藥物之回收率 89
表3-9 不同樣品基質pH值對磺胺類藥物之回收率 92
表3-10 不同MIL-53(Al)-polymer萃取管柱長度對磺胺類藥物之回收率 95
表3-11 不同脫附溶劑種類對磺胺類藥物之回收率 98
表3-12 不同MIL-53(Al)含量對磺胺類藥物之回收率 100
表3-13 不同脫附溶劑體積對MIL-53(Al)-polymer萃取磺胺類藥物之回收率 103
表3-14 不同萃取流速對MIL-53(Al)-polymer萃取磺胺類藥物之回收率 107
表3-15 poly(BMA-EDMA)之元素分佈比例 111
表3-16 MIL-53(Al)-polymer之元素分佈比例 112
表3-17 不同萃取管柱之表面積 113
表3-18 MIL-53(Al)-polymer對磺胺類藥物SPME萃取之再現性 114
表3-19 MIL-53(Al)-polymer 對磺胺類藥物SPME萃取之檢量曲線及偵測極限 115
表3-20本實驗成果與文獻比較 119
表4-1 neat poly(BMA-EDMA)吸附劑萃取非類固醇藥物之回收率 123
表4-2非類固醇藥物之分子尺寸 125
表4-3 MIL-101(Cr)-polymer萃取非類固醇藥物之回收率 127
表4-4 不同萃取流速對MIL-101(Cr)-polymer萃取非類固醇藥物之回收率 130
表4-5 不同MIL-101(Cr)含量對非類固醇藥物之回收率 133
表4-6 不同型態MOF之視窗大小 135
表4-7 不同孔洞型態之MOF-polymer對非類固醇藥物之回收率 135
表4-8 poly(BMA-EDMA)之元素分佈比例 139
表4-9 MIL-101(Cr)-polymer之元素分佈比例 140
表4-10 不同萃取管柱之表面積 141
表4-11 MIL-101(Cr)-polymer對非類固醇藥物SPME萃取之再現性 143
表4-12 DUT-5(Al)-polymer 對非類固醇藥物SPME萃取之再現性 143
表4-13本實驗成果與文獻比較 145

A. Cepeda, I. S. Ibarra, J. M. Miranda, J. A. Rodriguez , C. Nebot, Magnetic solid phase extraction followed by high-performance liquid chromatography for the determination of sulphonamides in milk samples, Food Chemistry 157 (2014) 511.
A. Prieto, L. Araujo, J. Wild, N. Villa, N. Camargo, D. Cubillan, Determination of anti-inflammatory drugs in water samples, by in situ derivatization, solid phase microextraction and gas chromatography–mass spectrometry, Talanta 75 (2008) 111.
A. Sarafraz-Yazdi, A. Amiri, G. Rounaghi, H. E. Hosseini, Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol–gel technique using poly(ethylene glycol)grafted multi-walled carbon nanotubes coated fiber, Anal. Chim. Acta 720 (2012) 134.
A. Sarafraz-Yazdi, A. Amiri, G. Rounaghi, H. E. Hosseini, Determination of non-steroidal anti-inflammatory drugs in urine by hollow-fiber liquid membrane-protected solid-phase microextraction based on sol–gel fiber coating, J. Chromatogr. B 908 (2012) 67.
C. G. Zambonin, A. Aresta, F. Palmisano, Determination of naproxen in human urine by solid-phase microextraction coupled to liquid chromatography, Journal of Pharmaceutical and Biomedical Analysis 39 (2005) 643.
C. Janiak, J. K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks, N. J. Chem. 34 (2010) 2366.
C. Serre, F. Millange, C. Thouvenot, M. Nogue`s, G. Marsolier, D. Loue¨r, G. Fe´rey, Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or Cr III (OH).{O2C - C6H4 - CO2}.{HO2C - C6H4 - CO2H}x.H2Oy, J. Am. Chem. Soc. 124 (2002) 13519.
C. S. Wong, E. L. McClure, Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters, J. Chromatogr. A 1169 (2007) 53.
C.-T. He, J.-Y. Tian, S.-Y. Liu, G. Ouyang, J.-P. Zhang, X.-M. Chen, A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds, Chem. Sci. 4 (2013) 351.
D. Ge, H. K. Lee, Zeolite imidazolate frameworks 8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water samples, J. Chromatogr. A 1257 (2012) 19.
D. R. Baker, Capillary Electrophoresis, New York (1995) 21.
F. Wei, Y.-Q. Feng, S.-L. Da, Z.-G. Shi, Methods of sample preparation for determination of veterinary residues in food matrices by porous monolith microextraction-based techniques, Anal. Methods 3 (2004) 1246.
G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction, Angew. Chem. Int. Ed. 43 (2004) 6296.
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040.
G. Férey, Hybrid porous solids:past, present, future, Chem. Soc. Rev. 37 (2008) 191.
H. C. Goicoechea, L. V. Candioti, M.D. Gil García, M. Martínez Galera, Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography–diode array detection J. Chromatogr. A 1211 (2008) 22.
H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O ’ Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Large-Pore Apertures in a Series of Metal-Organic Frameworks, Science. 336 (2012) 1018.
H. Kataoka, A. Ishizaki, K. Sito, Analysis of contaminant polycyclic aromatic hydrocarbons in tea products and crude drugs, Analytical Methods 3 (2011) 299.
H. Kataoka, Current developments and future trends in solid-phase microextraction techniques for pharmaceutical and biomedical analyses, Anal. Sci. 27 (2011) 893.
H. Kataoka, K. Saito, Recent advances in SPME techniques in biomedical analysis, Journal of Pharmaceutical and Biomedical Analysis 54 (2011) 926.
H.-Y. Huang, Y.-T. Lin, Y.-W. Liu, Y.-J. Cheng, Analyses of sulfonamide antibiotics by a successive anion- and cation-selective injection coupled to microemulsion electrokinetic chromatography, Electrophoresis 31 (2010) 2260.
H.-Y. Huang, C.-H. Hsu, B. Singco, Y.-J. Cheng, Analyses of non-steroidal anti-inflammatory drugs by on-line concentration capillary electrochromatography using poly(stearyl methacrylate–divinylbenzene) monolithic columns, Journal of Chromatography A. 1218 (2011) 350.
H. Yan, M. Gao, N. Sun, Water-compatible poly(hydroxyethyl methacrylate) polymer sorbent for miniaturized syringe assisted extraction of sulfonamides in milk, Anal. Chim. Acta. 800 (2013) 43.
I. Baranowska, S. Magiera, S. Gülmez, A. Michalik, Application of statistical experimental design to the optimization of microextraction by packed sorbent for the analysis of nonsteroidal anti-inflammatory drugs in human urine by ultra-high pressure liquid chromatography, J. Chromatogr. A 1304 (2013) 1.
J. A. Rodríguez/ Recent Advances in the Extraction of Triazines from Water Samples , Chapter 13.
J. D. Holbrey, K. R. Seddon, The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals, J. Chem. Soc., Dalton Trans. 13 (1999) 2133.
J. Ding, Y. Xu, H. Chen, Q. Zhao, J. Hou, J. Yan, H.Wang, L. Ding, N. Ren, Food Chemistry 140 (2013) 83.
J. L. P. Pavón. G. G. Noche, M. E. F. Laespada, B. M. Cordero, S. M. Lorenzo, Microextraction by packed sorbent for the analysis of pharmaceutical residues in environmental water samples by in situ derivatization-programmed temperature vaporizer–gas chromatography–mass spectrometry, J. Chromatogr. A 1218 (2008) 9390.
J.-R. Li, R. J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477.
J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 404 (2000) 982.
J. Zhou, C. Ma, S. Zhou, P. Ma, F. Chen, Y. Qi, H. Chen, Preparation, evaluation and application of molecularly imprinted solid-phase microextraction monolith for selective extraction of pirimicarb in tomato and pear, J. Chromatogr. A 1217 (2010) 7478.
L.-Q. Yu, X.-P. Yan, Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction, Chem. Commun. 49 (2013) 2142.
M. Abdel-Rehim, New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications I. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry, J. Chromatogr. B 801 (2004) 317.
M. Á. Rodríguez-Delgado, A. V. Herrera-Herrera, J. Hernández-Borges, M. M. Afonso, J. A. Palenzuela, Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples, Talanta 116 (2013) 695.
M. C. Jin, Y.-G. Zhao, L.-X. Zhou, S.-D. Pan, J. Chromatogr. A 1345 (2014) 17–28 P.-P. Zhan, X.-H. Chen, Fast determination of 22 sulfonamides from chicken breast muscle using core–shell nanoring amino-functionalized superparamagnetic molecularly imprinted polymer followed by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1345 (2014) 17.
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (2002) 469.
M. R. Lee, K.-H. Lu, C.-Y. Chen, Trace determination of sulfonamides residues in meat with a combination of solid-phase microextraction and liquid chromatography–mass spectrometry, Talanta 72 (2007) 1082.
M.-R. S. Fuh, S.-Y. Chu, Quantitative determination of sulfonamide in meat by solid-phase extraction and capillary electrophoresis, Anal. Chim. Acta 499 (2008) 215.
M. Valcarcel, M. L. Polo-Luque, B. M. Simonet, Analyst 138 (2013) 3786.
N. Chang, Z.-Y. Gu, H.-F. Wang, X.-P. Yan, Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes, Anal. Chem. 83 (2011) 7094.
N. Sun, S. Wu, H. Chen, D. Zheng, J. Xu, Y. Ye, Determination of sulfamethoxazole in milk using molecularly imprinted polymer monolith microextraction coupled to HPLC, Microchim Acta 179 (2012) 33.
O. Chailapakul, N. Thammasoontaree, P. Rattanarat, N. Ruecha, W. Siangproh, N. Rodthongkum, Talanta 123 (2014) 115.
O. G. Patel, E. K. Mberu, A. M. Nzila, I. G. Macreadie, Sulfa drugs strike more than once, TRENDS in Parasitology 20 (2004) 1.
O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant , R. Q. Snurr , S. T. Nguyen, A. Ö. Yazaydın, J. T. Hupp, Metal − Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, New. J. Chem. 34 (2010) 2366.
O. M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc. 117 (1995) 10401.
P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater. 9 (2010) 172.
P. Gallo, S. Fabbrocino, F. Vinci, M. Fiori, V. Danese, A. Nasi, L. Serpe, Multi-Residue Determination of Non-Steroidal Anti-Inflammatory Drug Residues in Animal Serum and Plasma by HPLC and Photo-Diode Array Detection, Journal of Chromatographic Science 44 (2006) 585
R. Hoff, T. B. L. Kist, Analysis of sulfonamides by capillary electrophoresis, J. Sep. Sci. 32 (2009) 854.
R. J. Barrio, M. A. Goicolea, U. Akesolo, A. Sanchez-Ortega, N. Unceta, A. Gómez-Caballero, M. C. Sampedro, Sensitive determination of triazines in underground waters using stir bar sorptive extraction directly coupled to automated thermal desorption and gas chromatography–mass spectrometry, Anal. Chim. Acta 641 (2009) 110.
R. Weinberger,“Practical capillary electrophoresis 2nd Ed.”, San Diego, CA︰Academic Press.
S. J. Shiff, B. Rigas, Nonsteroidal anti-inflammatory drugs and colorectal cancer:evolving concepts of their chemopreventive actions. Gastroenterology 113 (1997) 1992.
S.-Y. Ali, A. Amiri, G. Rounaghi, E.-H. Hossein, Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol–gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes coated fiber, Anal. Chim. Acta 720 (2012) 134.
T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration, Chem. Eur. J. 10 (2004) 1373.
T. Tian, S. Zheng, B. Ye, B. Qu, Y. Zhao, X. K, Z. Gu, Poly-3,4-ethylenedioxythiophene nanoclusters for high effective solid phase extraction, J. Chromatogr. A 1275 (2013) 17.
V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R. L. Musselman, S. Ma, Immobilization of MP-11 into a mesoporous metal organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis, J. Am. Chem. Soc. 133 (2011) 10382.
V. K. Balakrishnan, K. A. Terry, J. Toito, Determination of sulfonamide antibiotics in wastewater: A comparison of solid phase microextraction and solid phase extraction methods, J. Chromatogr. A 1131 (2006) 1.
W. Xuan, C. Zhu, Y. Liu, Y. Cui, Mesoporous metal-organic framework materials, Chem. Soc. Rev. 41 (2012) 1677.
X.-F. Chen, H. Zang, X. Wang, J.-G. Cheng, R.-S. Zhao, C.-G. Cheng, X.-Q. Lu, Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry, Analyst 137 (2012) 5411.
X.-Y. Cui, Z.-Y. Gu, D.-Q. Jiang, Y. Li, H.-F. Wang, X.-P. Yan, Solid-phase microextraction of gaseous benzene homologues, Anal. Chem. 81 (2009) 9771.
Y.-B. Lu, L. Chen, T. Zhou, Y. Zhang, Rapid determination of trace sulfonamides in fish by graphene-based SPE coupled with UPLC/MS/MS, Anal. Methods 5 (2013) 4363.
Y. Fan, Y.-Q. Feng, S.-L. Da, Z.-G. Shi, Poly (methacrylic acid–ethylene glycol dimethacrylate) monolithic capillary for in-tube solid phase microextraction coupled to high performance liquid chromatography and its application to determination of basic drugs in human serum, Anal. Chim. Acta 523 (2004) 251.
Y.-L. Wu, X.-L. Hou, T. Y, X.-D. Du, Multi-walled carbon nanotubes–dispersive solid-phase extraction combined with liquid chromatography–tandem mass spectrometry for the analysis of 18 sulfonamides in pork, J. Chromatogr. B 929 (2013) 107.
Y.-Q. Feng, M. M. Zhang, M. Y. Zhang, G. Y. Peng, Monitoring of sulfonamide antibacterial residues in milk and egg by polymer monolith microextraction coupled to hydrophilic interaction chromatography/mass spectrometry, Anal. Chim. Acta 625 (2008) 160.
Y.-Q. Feng, Q.-W. Yu, X. Wang, Q. Ma, B.-F. Yuan, H.-B. He, Automated analysis of non-steroidal anti-inflammatory drugs in human plasma and water samples by in-tube solid-phase microextraction coupled to liquid chromatography-mass spectrometry based on a poly(4-vinylpyridine-co-ethylene dimethacrylate) monolith, Anal. Methods 4 (2008) 1538.
Y. Wen, M. Zhang, Q. Zhao, Y.-Q. FENG Monitoring of Five Sulfonamide Antibacterial Residues in Milk by In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography, J. Agric. Food Chem 53 (2005) 8468.
Z.-Y. Gu, C.-X. Yang, N. Chang, X.-P. Yan, Metal-organic frameworks for analytical chemistry: From sample collection to chromatographic separation, Acc. Chem. Res. 5 (2012) 734.
Z. Zhang, M. J. Yang; J. Pawliszyn, Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation, Anal. Chem. 66 (1994) 844.
Z. Du, S. Zhang, G. Li., Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples Talanta 115 (2013) 32
李祖舜華,夏經緯網台灣人愛用藥汙染生態環境,聯合報,九十七年六月。
高雅慧、李惠玲、賈淑雯,以ATC分類探討全民健保藥品之利用與分配,九十七年六月。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔