跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉日兆
研究生(外文):Jih-Chao Yeh
論文名稱:多功能磁性奈米粒子於大白鼠頸動脈血栓標定與藥物輸送之研究
論文名稱(外文):Study of the multifunctional magnetic nanoparticle for thrombosis targeting in carotid artery in rat and drug delivery
指導教授:婁世亮
指導教授(外文):Shyh- Liang Lou
學位類別:博士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:139
中文關鍵詞:生物降解性多功能磁性奈米粒子溫度應答型高分子磁振造影顯影劑LED誘發血栓模型生物相容性血栓形成藥物釋放
外文關鍵詞:thermo-responsive copolymersdrug deliveryMRI contract agentsmultifunctional magnetic nanoparticlesLED induced thrombosis modelthrombosisbiodegradabilitybiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血栓是因血管內皮細胞功能受損引起的擴散性病理過程,造成冠狀動脈疾病、腦血管疾病與短暫性腦缺血發作。此外,因一氧化氮引起的慢性發炎也會造成內皮細胞受損,進而使其失去原有抗凝血、抗血小板聚集及血管擴張的功能,導致有血栓形成的趨勢。陳皮素具有抗氧化及抗發炎的特性,然而,陳皮素在水中的低溶解度影響其對抗發炎治療的結果。另外,血管壁內皮細胞受損的位置無法早期的被診斷出來,因此,需要一個新的方法來解決上述的問題。
目前已有不同形式的藥物載體發展成為藥物輸送的方法,其中同時具有疏水性內核與親水性外殼結構的溫度應答型微胞是熱門的選擇。磁性奈米粒子可被使用為具診斷功能的磁振造影對比劑。因此,本研究將結合抗體、磁性奈米粒子及溫度應答型高分子的特性,設計一個多功能磁性奈米粒子提供藥物輸送與磁振造影時標定血栓使用。並且,為了驗證多功能磁性奈米粒子主動標定於內皮細胞受損位置的能力,本論文將開發新的血栓動物模型。
首先,本研究提出一個使用可植入式無線發光二極體裝置誘發大鼠頸動脈形成血栓動物模型的方法。此裝置由負責無線傳輸電力的體外控制器與體內發光二極體組件所組成。在動物體內注入rose Bengal後,體內植入的發光二極體組件獲得電力後,發光照射頸動脈形成血栓。使用小動物超音波、7T磁振造影及組織學染色觀察血栓形成的變化。研究結果發現,使用光功率為6 mW/cm2的發光二極體單次照射頸動脈4小時,能夠得到急性栓塞的結果;另外,使用光功率4.5 mW/cm2的發光二極體照射頸動脈2小時,關閉30分鐘,再次照射2小時,發現血栓會逐漸累積,並且於照射後第7天頸動脈會完全栓塞。與對側沒有發光二極體照射的動脈比較,發現經由發光二極體照射後的血管內皮細胞呈現不連續受損的情形。因此,透過調整發光二極體照射的時間與調整發光二極體的光功率,將能夠產生急性與漸進性血栓形成模型。此模型將能夠提供驗證多功能奈米粒子主動標定內皮細胞受損位置的能力。
第二部分,本研究提出一個製備由聚琥珀醯胺與聚異丙基丙烯醯胺及二甲基丙烯醯胺所組成之具有生物相容性與溫度應答型共聚物作為藥物載體的方法,並且探討此共聚物的相關特性。此共聚物是由帶有胺基的聚異丙基丙烯醯胺及二甲基丙烯醯胺的聚合物,透過與聚琥珀醯胺的親核開環反應所製成。此聚合物的低臨界溶液溫度為高於人體體溫的42.6 oC,外型為圓球狀且直徑為85 nm。經由細胞毒性與溶血試驗結果得到此聚合物具有相當好的生物相容性。此外,此聚合物能夠將陳皮素包覆於內核中,包覆率約為20%。經由體外藥物釋放試驗結果發現,此聚合物具有透過溫度應答控制藥物釋放的能力。與高於低臨界溶液溫度的陳皮素釋放結果比較下,僅有少部分陳皮素在低於低臨界溶液溫度的狀況下被釋放出來。藉由脂多醣體誘發一氧化氮的抑制實驗結果發現,包覆有陳皮素的共聚物能夠明顯抑制一氧化氮的生成。從以上結果得知,此具有生物相容性的溫度應答型共聚物具有作為藥物載體的能力。
最後,結合磁性奈米粒子、抗體與溫度應答型共聚物的特性,設計一個具有主動標定血栓形成位置的主動標定多功能磁性奈米粒子作為血栓診斷的工具。此主動標定多功能磁性奈米粒子是由帶胺基的磁性奈米粒子與溫度應答高分子交聯結合後,再與血管細胞黏附因子抗體(VCAM-1)交聯反應而成。此接枝有血管細胞黏附因子的多功能磁性奈米粒子仍具有直徑約600nm的圓球外型。帶胺基的磁性奈米粒子沒有明顯的細胞毒性,表示此多功能磁性奈米粒子能夠於生物醫學上使用。將接枝有血管細胞黏附因子的多功能磁性奈米粒子靜脈注射進入體內5分鐘後,能夠藉由磁振造影觀察粒子主動標定血管內皮細胞受損的位置。因此,接枝有血管細胞黏附因子的多功能磁性奈米粒子能夠作為磁振造影的顯影劑,並且及早標定血管內皮細胞受損的位置。


Thrombosis is a diffuse pathologic process that starts with endothelial dysfunction and clinically manifests as coronary artery disease, cerebrovascular disease, and transient ischemic attack. In addition, chronic inflammation induced by nitric oxide may also cause endothelial damage, resulting in losing the physiologic anticoagulant, antiaggregant, and vasodilatory properties of endothelium and causing thrombotic tendencies. Hesperetin is a flavanone with a wide range of antioxidant and anti-inflammatory properties. However, the poor solubility of hesperetin in aqueous buffers can cause bioavailability problems in anti-inflammatory treatments. Moreover, physicians encountered problems in the early diagnosis of the location of endothelial dysfunction on the vascular wall. Therefore, a new approach is needed to overcome the abovementioned problems.
Several types of drug carriers have been investigated. Thermoresponsive core shell-type polymeric micelles with a hydrophobic inner core and hydrophilic outer shell architecture are popular candidates. Magnetic nanoparticles can be used as magnetic resonance imaging contrast agents for diagnostic purposes. This dissertation combines the properties of antibodies, magnetic nanoparticles, and thermoresponsive copolymers to design multifunctional magnetic nanoparticles for drug delivery and thrombosis labeling in MR imaging. Furthermore, to test whether multifunctional magnetic nanoparticles can actively target endothelial injury sites, a novel thrombosis animal model was developed.
First, a novel approach to form the common carotid artery (CCA) thrombus in rats with a wireless implantable light-emitting diode (LED) device was developed. The device mainly comprises an external controller that is responsible for wirelessly transmitting electrical power and an internal LED assembly. In addition to rose Bengal dye injection into animal circulation, the internal LED assembly served as the implant that receives power and irradiates light on CCA. Thrombus formation was identified with animal sonography, 7T magnetic resonance imaging, and histopathologic examination. The present study showed that an LED assembly implanted on the outer surface of CCA could induce acute occlusion with single irradiation by a 6 mW/cm2 LED for 4 h. If intermittent irradiation with a 4.3–4.5 mW/cm2 LED for 2 h was shut off for 30 min and reapplied for another 2 h, the thrombus was observed to gradually grow and was totally occluded after 7 days. Compared with the contralateral CCA without LED irradiation, the arterial endothelium in the LED-irradiated artery was discontinued. This study has shown that by adjusting the duration of irradiation and the power intensity of LED, it is possible to produce acute occlusion and progressive thrombosis for studying the feasibility of multifunctional magnetic nanoparticles for actively labeling endothelial injury sites.
A synthesis method of biocompatible and thermoresponsive copolymers comprising poly(succinimide)-g-poly(N-isopropylacrylamide-co-N,N-dimethyl acrylamide)(PSI-g-poly(NIPAAm-co-DMAAm) as new drug carriers is provided, and their characteristics are investigated. The PSI-g-poly(PNIPAAm-co-DMAAm) copolymers were prepared by nucleophilic opening of poly(succinimide) (PSI) using amino-terminated poly(NIPAAm-co-DMAAm). The lower critical solution temperature (LCST) of the copolymer was 42.6 °C higher than the normal human body temperature. Blank copolymers were observed to have regular spherical shape with a particle diameter of approximately 85 nm. This copolymer exhibited no significant cytotoxicity and hemolysis indicated that the copolymer had good biocompatibility. In addition, these copolymers could encapsulate the anti-inflammatory hesperetin in their inner core with a drug load of approximately 20%. The release profiles of hesperetin showed significant thermoresponsive switching behavior. The hesperetin release response was dramatically lower at temperatures below LCST compared with temperatures above LCST. Lipopolysaccharide-induced nitric oxide (NO) production inhibition experiments demonstrated that hesperetin-encapsulated micelles were significantly reduced. Biocompatible thermoresponsive copolymers based on PSI-g-poly(NIPAAm-co-DMAAm) clearly have great potential as drug delivery agents.
Finally, combining the properties of antibody, magnetic nanoparticles, and thermoresponsive copolymers, active targeting multifunctional magnetic nanoparticles were designed to use as diagnostic tools for thrombosis labeling. Nanoparticles were prepared by cross-linking with PSI-g-poly(PNIPAAm-co-DMAAm) and amino-terminated magnetic nanoparticles; then, the vascular cell adhesion molecule-1 (VCAM-1) was conjugated with Fe3O4/PSI-g-poly(PNIPAAm-co-DMAAm) magnetic nanoparticles. VCAM-1-conjugated multifunctional magnetic nanoparticles have regular spherical shape with a particle diameter of approximately 600 nm. The amino-terminated magnetic nanoparticles exhibited no significant cytotoxicity, indicating that the multifunctional magnetic nanoparticles have good biocompatibility in biomedical applications. Endothelial injury sites could be actively labeled by VCAM-1-conjugated multifunctional magnetic nanoparticles and observed using magnetic resonance imaging after intravenous administration within 5 min. Thus, VCAM-1-conjugated multifunctional magnetic nanoparticles can be used as tools for the early diagnosis of the location of endothelial dysfunction on vascular walls.


摘要 i
Abstract iv
謝誌 viii
Table of contents x
List of Figures xv
Chapter 1 Introduction 1
1.1 Literature Review 3
1.1.1 Thrombosis animal model 3
1.1.1.1 Electric current injury model 4
1.1.1.2 Balloon injury model 5
1.1.1.3 Ferric chloride (FeCl3) induced injury model 5
1.1.1.4 Photochemical induced injury model 6
1.1.2 Magnetic nanoparticles 7
1.1.2.1 Synthesis of magnetic nanoparticles 7
1.1.2.2 Surface modification of magnetic nanoparticles 8
1.1.3 Thermo responsive and biodegradable micelles 10
1.2 Problem Defined 12
1.3 Proposed Solution 14
1.4 Rationale for the study 16
1.4.1 Improve the treatment efficiency 16
1.4.2 Actively target to the endothelial injury site 17
1.4.3 Improve the power transfer system 18
1.5 Direction of the Research work 20
Chapter 2 Approach to establish a thrombosis animal model 21
2.1 Materials and methods 24
2.1.1 Animals 24
2.1.2 Materials 24
2.1.3 In vivo LED-induced thrombosis model 25
2.1.3.1 Wireless implantable LED device 25
2.1.3.2 Animal groups 29
2.1.1 Serial in vivo detection of thrombosis progression by ultrasonography 31
2.1.2 Serial in vivo imaging of thrombotic plaque by magnetic resonance (MA) angiography 31
2.1.3 Histologic and immunohistochemical studies 33
2.2 Results 34
2.2.1 Implantable LED apparatus to induce thrombosis 34
2.2.2 Acute thrombotic occlusion model induced by single LED irradiation 37
2.2.3 Progressive thrombosis model induced by intermittent LED irradiation 39
2.2.3.1 Ultrasound imaging of the CCA with intermittent irradiation40
2.2.3.2 MR imaging of the CCA 40
2.2.3.3 Histopathologic findings of arterial thrombosis 42
2.3 Discussion 42
2.4 Summary 47
Chapter 3 Design and study of biocompatible and thermo-responsive micelles for drug delivery 48
3.1 Materials and methods 51
3.1.1 Materials 51
3.1.2 Synthesis of PSI-g-poly(NIPAAm-co-DMAAm) copolymer 51
3.1.2.1 Synthesis of amino-terminated poly(N-isopropylacrylamide-co-N,N-dimethylmethanamide) 51
3.1.2.2 Synthesis of poly (succinimide) (PSI) 52
3.1.2.3 Synthesis of PSI-g-poly(NIPAAm-co-DMAAm) copolymer 53
3.1.3 Characterization of PSI-g-poly(NIPAAm-co-DMAAm) copolymer 53
3.1.4 Lower critical solution temperature (LCST) measurement 54
3.1.5 Biocompatibility evaluation 55
3.1.5.1 Hemolysis testing 55
3.1.5.2 Cytotoxicity testing 55
3.1.6 Biodegradation evaluation 56
3.1.7 Drug loading and in vitro drug release experiments 56
3.1.7.1 Incorporation of hesperetin 56
3.1.7.2 In vitro hesperetin release 57
3.1.7.3 Anti-inflammatory test 58
3.1.8 Statistical analysis 58
3.2 Results and Discussion 59
3.2.1 Synthesis and characteristics of PSI-g-poly(NIPAAm-co- DMAAm) 59
3.2.1.1 1H NMR analysis 59
3.2.1.2 FT-IR analysis 63
3.2.1.3 Molecular weight 65
3.2.1.4 Thermal property and miceller morphology 66
3.2.2 LCST of PSI-g-poly(NIPAAm-co-DMAAm) 68
3.2.3 Biodegradable rate 70
3.2.4 Biocompatibility of PSI-g-poly(NIPAAm-co-DMAAm) 70
3.2.4.1 Hemolysis testing 70
3.2.4.2 Cell cytotoxicity 72
3.2.5 Drug release behaviors 72
3.2.6 Drug release behaviors 74
3.2.7 Hesperetin-loaded PSI-g-poly(NIPAAm-co-DMAAm) co-polymer decreased LPS-induced NO production in RAW 264.7 cells 78
3.3 Summary 80
Chapter 4 Design and study of active targeting multifunctional magnetic composites 81
4.1 Materials and Methods 85
4.1.1 Materials 85
4.1.2 Synthesis of amino-terminated magnetic nanoparticles 85
4.1.2.1 Synthesis of magnetic nanoparticles 85
4.1.2.2 Synthesis of amino-terminated magnetic nanoparticles 86
4.1.3 Synthesis of Fe3O4/PSI-g-poly (NIPAAm-co-DMAAm) magnetic nanoparticles 86
4.1.4 Preparation of VCAM-1 conjugated thermo-responsive magnetic composites 87
4.1.5 Characterization 87
4.1.6 Cytotoxicity testing 88
4.1.7 Active targeting ability of VCAM-1 conjugated multifunctional magnetic nanoparticles to endothelial injury site 89
4.2 Results and Discussions 90
4.2.1 Magnetic nanoparticles 90
4.2.1.1 Structures of magnetic nanoparticles 92
4.2.1.2 Particles size and morphology 95
4.2.1.3 Zeta potential 95
4.2.1.4 Magnetic property 98
4.2.1.5 Cytotoxicity 98
4.2.2 VCAM-1 conjugated Fe3O4/PSI-g-poly(NIPAAm-co- DMAAm) magnetic nanoparticles 100
4.2.2.1 Structures of Fe3O4/PSI-g-poly(NIPAAm-co- DMAAm) 100
4.2.2.2 Particles size and morphology 102
4.2.2.3 Magnetic property 102
4.2.2.4 Qualitation and quantitation analysis of conjugated antibody 104
4.2.2.5 In vivo MR imaging of thrombosis 106
4.3 Summary 110
Chapter 5 Summary and Conclusions 111
Reference 115
Appendix I Chemical reagents used in this work 134
Appendix II Apparatus used in this work 138


LIST OF FIGURES
Figure 1.1 Schematic diagram of active targeting thermo-responsive magnetic composites against diseased vascular sites 15
Figure 1.2 Scheme of wireless electric energy transfer system 19
Figure 2.1 Research framework of establishment of thrombosis model in common carotid artery induced by implantable wireless light-emitting diode (LED) device 23
Figure 2.2 Schematic description of the LED irradiation apparatus 26
Figure 2.3 The schematic diagram of LED assembly 26
Figure 2.4 The schematic diagram of implanting the LED assembly around carotid artery 27
Figure 2.5 The experimental protocol of the (A) acute thrombosis and (B) progressive thrombosis models 30
Figure 2.6 Typical MR imaging experimental scheme and the axial T2-weighted images of the time-dependent changes of thrombus formation after intermittent LED irradiation with 4.5 mW/cm2 for 2 h first, shut off for 30 min and then, for another 2 h 32
Figure 2.7 The picture of homemade implantable LED device. 35
Figure 2.8 Power transfer efficiency is measured for the LED with 4.5 mW/cm2 at different coupling distance (A), and the power stability is determined for the LED at coupling distance of 0 mm for 120 min (B) 36
Figure 2.9 Ultrasound images of common carotid artery (CCA) after single LED irradiation with 6, 5, and 4 mW/cm2 for 4 h 38
Figure 2.10 Ultrasound images of common carotid artery (CCA) after intermittent LED irradiation (4.5 mW/cm2 for 2 h first, shut off for 30 min and then, another 2 h) 41
Figure 2.11 Histological and immunohistochemical staining of arterial thrombosis at 3 days after intermittent LED irradiation with 4.5 mW/cm2 for 2 h first, shut off for 30 min and then, for another 2 h 43
Figure 3.1 Research framework of design and investigation of biodegradable and thermo-responsive copolymers 50
Figure 3.2 Synthetic scheme of PSI-g-poly(NIPAAm-co-DMAAm) 60
Figure 3.3 1H NMR Spectra of amino-terminated poly(NIPAAm-co-DMAAm) copolymers in DMSO-d6 61
Figure 3.4 1H NMR Spectra of poly(succinimide) in DMSO-d6 61
Figure 3.5 1H NMR Spectra of poly(succinimide)-g-poly(N-isopropylamide -co-N,N-dimethylacrylamide)(PSI-g-poly(NIPAAm-co-DMAAm) copolymers in DMSO-d6 62
Figure 3.6 Fourier transform infrared (FT-IR) spectra of (a) poly(NIPAAm-co-DMAAm), (b) poly(succinimide)(PSI), and (c) PSI-g-poly(NIPAAm-co-DMAAm) 64
Figure 3.7 Thermogravimetric analysis (TGA) polt of (a) Poly(succiminide), (b) Amino-terminated poly(NIPAAm-co-DMAAm), and (c) PSI-g-poly(NIPAAm -co-DMAAm) 67
Figure 3.8 Transmission electron microscope (TEM) images of PSI-g-poly(NIPAAm-co-DMAAm) 67
Figure 3.9 Lower critical solution temperature (LCST) of poly(NIPAAm-co-DMAAm) with different composition determined by UV-Vis transmittance at 500 nm.
69
Figure 3.10 Lower critical solution temperature (LCST) of PSI-g-poly(NIPAAm-co-DMAAm) determined by UV-Vis transmittance at 500 nm. 69
Figure 3.11 Percent degradation of PSI-g-poly(NIPAAm-co-DMAAm) (PSI-g-PN35D2.5) in phosphate buffered solution (pH 7.4, 37 oC) at 0, 1,4,and 7 days 71
Figure 3.12 Hemolysis testing of PSI-g-poly(NIPAAm-co-DMAAm) polymers 71
Figure 3.13 Cytotoxicity study is carried out for measurement of cell viability with polymers in different concentrations. 73
Figure 3.14 Hesperetin release profile of PSI-g-poly(NIPAAm-co-DMAAm) in phosphate buffered solution (PBS) above the lower critical solution temperature [LCST] (a, at 45 oC) and below the LCST (b and c, at 37 and 25 oC) 75
Figure 3.15 Hesperetin inhibits NO production through the release from hesperetin-encapsulated PSI-g-poly(NIPAAm-co-DMAAm) micelles. 79
Figure 4.1 Research framework of design of active targeting thermo-responsive magnetic composites for thrombosis diagnosis. 84
Figure 4.2 Photography of magnetic nanoparticles dispersed in (A) hexanes, and amino-terminated magnetic nanoparticles dispersed in (B) water, and (C) ethanol. 91
Figure 4.3 Fourier transform infrared (FT-IR) spectra of (A) oleic acid coated magnetic nanoparticles and (B) amino-terminated magnetic nanoparticles. 93
Figure 4.4 XRD patterns of (a) oleic acid coated magnetic nanoparticles and (b) amino-terminated magnetic nanoparticles. 94
Figure 4.5 Transmission electron microscope (TEM) images of (A) oleic acid coated magnetic nanoparticles and (B) amino-terminated nanoparticles. 96
Figure 4.6 Zeta potential vs pH for the water dispersible amino-terminated magnetic nanoparticles 97
Figure 4.7 Hysteresis loops for (a) oleic acid coated magnetic nanoparticles, (b) amino-terminated magnetic nanoparticles, and (c) Fe3O4/PSI-g-poly(NIPAAm -co-DMAAm) magnetic nanoparticles. 99
Figure 4.8 In vitro cell viability of amino-terminated magnetic nanoparticles as a function of different iron concentrations of 20, 40, 60, 80, and 100 μg/mL
99
Figure 4.9 Fourier transform infrared (FT-IR) spectra of (A) PSI-g-poly(NIPAAm-co-DMAAm) copolymers and (B) Fe3O4/PSI-g-poly (NIPAAm-co-DMAAm) magnetic nanoparticles. 101
Figure 4.10 Transmission electron microscope (TEM) images of (A) Fe3O4/PSI-g-poly (NIPAAm-co-DMAAm) magnetic nanoparticles and (B) VCAM-1 conjugated Fe3O4/PSI-g-poly (NIPAAm-co-DMAAm) magnetic nanoparticles. 103
Figure 4.11 Confocal laser scanning microscopy images of anti-IgG FITC conjugated with Fe3O4/PSI-g-poly(NIPAAm -co-DMAAm). 105
Figure 4.12 In vivo Magnetic resonance angiography (MRA) of carotid artery.. 107
Figure 4.13 In vivo T2-weighted magnetic resonance imaging of carotid artery after 4.5 mW/cm2 LED irradiation with 2 h first, shut-off for 30 min and another 2h for 1d 109
1. Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical
cardiologist. Circulation, 2002; 105: 546-549.
2. B. Furie, B.C. Furie. Mechanisms of Disease: Mechanisms of Thrombus
Formation. The New England Journal of Medicine, 2008; 359: 938-949.
3. D. R. Phillips, P. B. Conley, U. Sinha, P. Andre. Therapeutic approaches in
arterial thrombosis. Journal of Thrombosis and Haemostasis, 2005; 3:
1577-1589.
4. Yoshiaki Itoh, Haruki Toriumi, Satoshi Yamada, Haruhiko Hoshino, Norihiro
Suzuki. Resident endothelial cells surrounding damaged arterial endothelium
reendothelialize the lesion. Arteriosclerosis, Thrombosis, and Vascular
Biology, 2010; 30: 1725-1732.
5. Shinji Kikuchi, Kazuo Umemura, Kazunao Kondo, Abby R. Saniabadi, Mitsuyoshi
Nakashima. Photochemically induced endothelial injury in the mouse as a
screening model for inhibitors of vascular intimal thickening.
Arteriosclerosis, Thrombosis, and Vascular Biology, 1998; 18:1069-1078.
6. J. Diego Lozano, Denise P. Abulafia, Gary H. Danton, Brant D. Watson, W.
Dalton Dietrich. Characterization of a thromboembolic photochemical model of
repeated stroke in mice. Journal of Neuroscience Methods, 2007; 162: 244-254.
7. Macrene Alexiades-Armenakas. Laser-mediated photodynamic therapy. Clinics in
Dermatology, 2006; 24: 16-25.
8. Jitesh Neupane BE, Sabitri Ghimire, Sajina Shakya, Lilamber Chaudhary, Vishwa
P. Shrivastava. Effect of light emitting diodes in the photodynamic therapy
of rheumatoid arthritis. Photodiagn Photodyn, 2010; 7:44-49.
9. Charles H. Cunningham, Takayasu Arai, Phillip C. Yang, Michael V. McConnell,
John M. Pauly, Steven M. Conolly. Positive contrast magnetic resonance
imaging of cells labeled with magnetic nanoparticles. Magnetic Resonance in
Medicine, 2005; 53: 999-1005.
10. Gordon D.O. Lowe. Virchow’s triad revisited: abnormal flow. Pathophysiology
of Haemostasis and Thrombosis, 2003/2004; 33: 455-457.
11. Ulrich J.H. Sachs, Bernhard Nieswandt. In Vivo Thrombus Formation in Murine
Models. Circulation Research, 2007; 100: 979-991.
12. P.N. Saeyer, S.A. Wesolowski. The electric current of injured tissue and
vascular occlusion. Annals of Surgery 1961; 153: 34-42.
13. P.N. Saeyer. Significance of Electrochemical Phenomena in Intravascular
Thrombosis. Nature, 1965; 206: 1162-1163.
14. Salvatore Guarini. A highly reproducible model of arterial thrombosis in
rats. Journal of Pharmacological and Toxicological Methods, 1996; 35:
101-105.
15. Akiko Kusada, Noritaka Isogai, Brian C. Cooley. Electric injury model of
murine arterial thrombosis. Thrombosis Research, 2007;121:103-106.
16. Clowes AW, Reidy MA, Clowes MM. Mechanisms of stenosis after arterial
injury. Laboratory Investigation, 1983; 49: 208-215.
17. David Anthony Tulis. Rat Carotid Artery Balloon Injury Model. Methods in
Molecular Medicine, 2007 ; 139: 1-28.
18. David Anthony Tulis. Histological and Morphometric Analyses for Rat Carotid
Artery Balloon Injury Studies. Methods in Molecular Medicine, 2007 ; 139:
31-66.
19. Kurz KD, Main BW, Sandusky GE. Rat model of arterial thrombosis induced by
ferric chloride. Thrombosis Research, 1990; 60: 269-80.
20. Xinkang Wang, Lin Xu. An optimized murine model of ferric chloride-induced
arterial thrombosis for thrombosis research. Thrombosis Research, 2005; 115:
95-100.
21. Xunde Xian, Yu Ding, Ling Zhang, Yanan Wang, Michael A. McNutt, Colin Ross,
Michael R. Hayden, Xuming Deng, George Liu. Enhanced atherothrombotic
formation after oxidative injury by FeCl3 to the common carotid artery in
severe combined hyperlipidemic mice. Biochemical and Biophysical Research
Communications, 2009; 385:563-569.
22. Jinwei Tian, SiningHu, Yanli Sun, XiangBan, Huai Yu, Nana Dong, JianWu, Bo
Yu. A Novel Model of Atherosclerosis in Rabbits Using Injury to Arterial
Walls Induced by Ferric Chloride as Evaluated by Optical Coherence
Tomography as well as Intravascular Ultrasound and Histology. Journal of
Biomedicine and Biotechnology, 2012; 2012: 1-6.
23. Inamo J., Belougne E., Doutremepuich C. Importance of photo activation of
rose Bengal for platelet activation in experimental models of
photochemically induced thrombosis. Thrombosis Research 1996; 83: 229-235.
24. Elliot D. Rosen, Sylvain Raymond, Amy Zollman, Francisco Noria, Mayra
Sandoval-Cooper, Alexis Shulman, James L. Merz, Francis J. Castellino. Laser-
Induced Noninvasive Vascular Injury Models in Mice Generate Platelet- and
Coagulation- Dependent Thrombi. American Journal of Pathology 2001; 158:
1613-1622.
25. Bruce Furie, Barbara C. Furie. Thrombus formation in vivo. The Journal of
Clinical Investigation, 2005; 115: 3355-3362.
26. Lubica Rauova. 'Radical' model of thrombosis. Blood, 2012; 119: 1798-1799.
27. Kazuo Umemura, Shinji Watanabe, Kazunao Kondo, Hisakuni Hashimoto,
Mitsuyoshi Nakashima. Inhibitory effect of prostaglandin E1 on intimal
thickening following photochemically induced endothelial injury in the rat
femoral artery. Atherosclerosis 1997;130: 11-16.
28. Kazumasa Arii, Hironaka Igarashi, Takako Arii, Yasuo Katayama.The effect of
ozagrel sodium on photochemical thrombosis in rat: Therapeutic window and
combined therapy with heparin sodium. Life Sciences 2002;71:2983-2994.
29. Jiayi Cheng, Kazunao Kondo, Yasuhiro Suzuki, Yasuhiko Ikeda, Xiansheng Meng,
Kazuo Umemura. Inhibitory effects of total flavones of Hippophae Rhamnoides
Lon thrombosis in mouse femoral artery and in vitro platelet aggregation.
Life Sciences 2003; 72:2263-2271.
30. Chin-Hsien Chang, Kuo-Ti Chen, Chang-Jer Wu, Shih-Liang Chang, Ya-Huang
Chiu, Pei-Hsiu Hung, Jih-Chao Yeh, Yen-Lin Chang. Laser-induced carotid
artery injury model in the rat for therapeutic agent screening. Lasers in
Medical Science, 2012; 27: 593-598.
31. Chuan-sheng Zhao, Kirsi Puurunen, Timothy Schallert, Juhani Sivenius, Jukka
Jolkkonen. Behavioral and histological effects of chronic antipsychotic and
antidepressant drug treatment in aged rats with focal
ischemic brain injury. Behavioural Brain Research 2005;158: 211-220.
32. Jung-Kil Lee, Min-Sung Park, Yeon-Seong Kim, Kyung-Sub Moon, Sung-Pil Joo,
Tae-Sun Kim, Jae-Hyoo Kim, Soo-Han Kim. Photochemically induced cerebral
ischemia in a mouse model. Surgical Neurology 2007; 67:620- 625.
33. Kim Frederix, Anil K. Chauhan, Janka Kisuck, Bing-Qiao Zhao, Erik I. Hoff,
Henri M.H. Spronk, Hugo ten Cate, Denisa D. Wagner. Platelet adhesion
receptors do not modulate infarct volume after a photochemically induced
stroke in mice. Brain Research 2007; 1185: 239-245.
34. Sharavanan Balasubramaniam, Sanem Kayandan, Yin-Nian Lin, Deborah F. Kelly,
Michael J. House, Robert C. Woodward, Timothy G. St. Pierre, Judy S. Riffle,
Richey M. Davis. Toward Design of Magnetic Nanoparticle Clusters Stabilized
by Biocompatible Diblock Copolymers for T2-Weighted MRI Contrast. Langmuir,
2014; 30: 1580-1587.
35. Thikra Mustafa, Yongbin Zhang, Fumiya Watanabe, Alokita Karmakar, Madhu P.
Asar, Reginald Little, M. Keith Hudson, Yang Xu, Alexandru S. Biris. Iron
oxide nanoparticle-based radio-frequency thermotherapy for human breast
adenocarcinoma cancer cells. Biomaterial Science, 2013; 1: 870-880.
36. Gerardo F. Goya, Laura Asin, M. Ricardo Ibarra. Cell death induced by AC
magnetic fields and magnetic nanoparticles: Current state and perspectives.
International Journal of hyperthermia, 2013; 29: 1-9.
37. R Jurgons, C Seliger, A Hilpert, L Trahms, S Odenbach and C Alexiou. Drug
loaded magnetic nanoparticles for cancer therapy. Journal of Physics:
Condensed Matter, 2006; 18: S2893.
38. Shouheng Sun and Hao Zeng. Size-Controlled Synthesis of Magnetite
Nanoparticles. Journal of the American Chemical Society, 2002; 124: 8204-8205
39. Jörg Rockenberger , Erik C. Scher , and A. Paul Alivisatos. A New
Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of
Transition Metal Oxides. Journal of the American Chemical Society, 1999;
121: 11595-11596.
40. William W. Yu, Joshua C. Falkner, Cafer T. Yavuz and Vicki L. Colvin.
Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition
of iron carboxylate salts. Chemical Communications, 2004: 2306-2307.
41. Shouheng Sun, Hao Zeng. Size-Controlled Synthesis of Magnetite
Nanoparticles. Journal of the American Chemical Society, 2002; 124:
8204-8205.
42. Wei Wu, Quanguo He ,Changzhong Jiang. Magnetic Iron Oxide Nanoparticles:
Synthesis and Surface Functionalization Strategies. Nanoscale Research
Letters, 2008; 3:3 97–415.
43. Manuel Arruebo, Rodrigo Fernández-Pacheco, M. Ricardo Ibarra, and Jesús
Santamaría. Magnetic nanoparticles for drug delivery. Nanotoday, 2007; 2:
22-32
44. Babita Gaihre, Myung Seob Khil, Douk Rae Lee, Hak Yong Kim. Gelatin-coated
magnetic iron oxide nanoparticles as carrier system: Drug loading and in
vitro drug release study. International Journal of Pharmaceutics, 2009; 365:
180-189.
45. Jyh-Ping Chena, Pei-Chin Yang, Yunn-Hwa Ma, Tony Wu. Characterization of
chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen
activator. Carbohydrate Polymers, 2011; 84: 364-372.
46. Bakandritsos A, Mattheolabakis G, Zboril R, Bouropoulos N, Tucek J, Fatouros
DG, Avgoustakis K. Preparation, stability and cytocompatibility of
magnetic/PLA-PEG hybrids. Nanoscale, 2010;2:564-572.
47. I. Garcia, N. E. Zafeiropoulos, A. Janke, A. Tercjak, A. Eceiza, M. Stamm,
I. Mondragon. Functionalization of iron oxide magnetic nanoparticles with
poly(methyl methacrylate) brushes via grafting-from atom transfer radical
polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2007;
45: 925–932.
48. Avnesh Kumari, Sudesh Kumar Yadav, Subhash C. Yadav. Biodegradable polymeric
nanoparticles based drug delivery systems. Colloids and Surfaces B:
Biointerfaces, 2010; 75:1-18.
49. Veronica I. Shubayev, Thomas R. Pisanic II , Sungho Jin. Magnetic
nanoparticles for theragnostics. Advanced Drug Delivery Reviews, 2009; 61:
467-477.
50. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A., M. Nakamurad, H.E. Toma.
Preparation and characterization of (3-aminopropyl) triethoxysilane-coated
magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2004;
279: 210-217.
51. Randy De Palma,Sara Peeters, Margriet J. Van Bael, Heidi Van den Rul,
Kristien Bonroy, Wim Laureyn, Jules Mullens, Gustaaf Borghs, Guido Maes.
Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles
Water-Dispersible. Chemistry of Materials, 2007; 19: 1821-1831.
52. Z. P. Chen, R. Z. Xu, Y. Zhang, N. Gu. Effects of Proteins from Culture
Medium on Surface Property of Silanes- Functionalized Magnetic
Nanoparticles. Nanoscale Research Letters, 2009; 4:204-209.
53. Elvin Blanco, Chase W. Kessinger, Baran D. Sumer, Jinming Gao.
Multifunctional micellar nanomedicine for cancer therapy. Experimental
Biology and Medicine, 2009; 234:123-131.
54. Jiangbing Zhou, Jie Liu,Christopher J. Cheng, Toral R. Patel, Caroline
E. Weller, Joseph M. Piepmeier, Zhaozhong Jiang, W. Mark Saltzman.
Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery.
Nature Materials, 2012; 11: 82-90.
55. Ming Jiang, Yan Wu, Yong He, Jun Nie. Micelles formed by self-assembly of
hyperbranched poly[(amine-ester)-co-(D,L-lactide)] (HPAE-co-PLA) copolymers
for protein drug delivery. Polymer International, 2009; 58: 31-39.
56. Ha Young Lee, Hye Won Jee, Sung Mi Seo, Byung Kook Kwak, Gilson Khang, Sun
Hang Cho. Diethylenetriaminepentaacetic Acid-Gadolinium (DTPA-Gd)-Conjugated
Polysuccinimide Derivatives as Magnetic Resonance Imaging Contrast Agents.
Bioconjugate Chemistry, 2006; 17: 700-706.
57. Isaac Koh, Xiang Wang, Bindhu Varughese, Lyle Isaacs, Sheryl H. Ehrman,
Douglas S. English. Magnetic Iron Oxide Nanoparticles for Biorecognition:
Evaluation of Surface Coverage and Activity. The Journal of Physical
Chemsitry B, 2006; 110: 1553-1558.
58. Yuichi Ohya, Shinya Takeda, Yosuke Shibata, Tatsuro Ouchi, Arihiro Kano,
Tomoki Iwata, Shinichi Mochizuki, Yuki Taniwaki, Atsushi Maruyama.
Evaluation of polyanion-coated biodegradable polymeric micelles as drug
delivery vehicles. Journal of controlled release, 2011; 155: 104-110.
59. Yongli Zheng, Wuli Yang, Changchun Wang, Jianhua Hu, Shoukuan Fu, Ling
Dong, Lili Wu, Xizhong Shen. Nanoparticles based on the complex of chitosan
and polyaspartic acid sodium salt: preparation, characterization and the use
for 5-fluorouracil delivery. European journal of pharmaceutics and
biopharmaceutics, 2007; 67: 621-631.
60. Byeong-Su Kim, Sang Wook Park, Paula T. Hammond. Hydrogen-Bonding Layer-
by-Layer-Assembled Biodegradable Polymeric Micelles as Drug Delivery
Vehicles from Surfaces. ACS NANO, 2008; 2: 386-392.
61. Chau-Hui Wang, Wei-Ting Wang, Ging-Ho Hsiue. Development of polyion complex
micelles for encapsulating and delivering amphotericin B. Biomaterials,
2009; 30: 3352-3358.
62. Sheva Naahidi, Mousa Jafari, Faramarz Edalat, Kevin Raymond, Ali
Khademhosseini and P. Chen. Biocompatibility of engineered nanoparticles for
drug delivery. Journal of Controlled Release, 2013; 166: 182-194.
63. Theresa M. Allen and Pieter R. Cullis. Liposomal drug delivery systems: From
concept to clinical applications. Advanced Drug Delivery Reviews, 2013; 65:
36-48.
64. Sungmun Lee, Noaf Salah Ali Alwahab and Zainab Muhammad Moazzam. Zein-based
oral drug delivery system targeting activated macrophages. International
Journal of Pharmaceutics, 2013; 454: 388-393.
65. Ming-Long Yeh, Hai-Hsiang Chen, Nai-Jen Chang, Hsin-Der Chen and Kuo-An Lai.
Prolonged Antibiotic Release by PLGA Encapsulation on Titanium Alloy,
Journal of Medical and Biological Engineering, 2013; 33: 17-22.
66. Yong Sun, Yihang Huang, Shaoquan Bian, Jie Liang, Yujiang Fan and Xingdong
Zhang. Reduction-degradable PEG-b–PAA-b–PEG triblock copolymer
micellesincorporated with MTX for cancer chemotherapy. Colloids and Surfaces
B: Biointerfaces, 2013; 112: 197-203.
67. Huaizhong Pan and Jindrich Kopecek. Multifunctional Water-Soluble Polymers
for Drug Delivery. Multifunctional Pharmaceutical Nanocarriers Fundamental
Biomedical Technologies 2008; 4: 81-142.
68. Veeran Gowda Kadajji and Guru V. Betageri. Water Soluble Polymers for
Pharmaceutical Applications. Polymers 2011; 3: 1972-2009.
69. Alexander Chan and Rowan P. Orme, Rosemary A. Fricker, Paul Roach. Remote
and local control of stimuli responsive materials for therapeutic
applications. Advanced Drug Delivery Reviews, 2013; 65: 497–514.
70. U. Kedar, P. Phutane, S. Shidhaye and V. Kadam, Advances in polymeric
micelles for drug delivery and tumor targeting. Nanomedicine:
Nanotechnology, Biology, and Medicine, 2010; 6: 714-729.
71. In-Sook Kim, Young-Il Jeong, Chong-Su Cho and Sung-Ho Kim. Thermo-responsive
self-assembled polymeric micelles for drug delivery in vitro. International
Journal of Pharmaceutics, 2000; 205: 165-172.
72. Arun K. Iyer, Greish Khaled, Jun Fang, Hiroshi Maeda. Exploiting the
enhanced permeability and retention effect for tumor targeting, Drug
discovery today, 2006; 11: 812-818.
73. H. Maeda, G.Y. Bharate, J. Daruwalla, Polymeric drugs for efficient tumor-
targeted drug delivery based on EPR-effect, European journal of
pharmaceutics and biopharmaceutics, 2009; 71: 409-419.
74. Yunhai Liu, Xiaohong Cao, Mingbiao Luo, Zhanggao Le and Wenyuan Xu.
Self-assembled micellar nanoparticles of a novel star copolymer for thermo
and pH dual-responsive drug release. Journal of Colloid and Interface
Science, 2009; 329: 244-252.
75. Liwei Ma, Mingzhu Liu, Hongliang Liu, Jun Chen and Dapeng Cui. In vitro
cytotoxicity and drug release properties of pH- and temperature-sensitive
core–shell hydrogel microspheres. International Journal of Pharmaceutics,
2010; 385: 86-91.
76. Chi Huang, Yangbo Zhou, Yong Jin, Xiaofeng Zhou, Zhaomin Tang, Xing Guo and
Shaobing Zhou. Preparation and characterization of temperature-responsive
and magnetic nanomicelles. Journal of Materials Chemistry, 2011; 21:
5660-5670.
77. Kazuaki Ninomiya, Shinya Kawabata, Hiroyuki Tashita and Nobuaki Shimizu.
Ultrasound-mediated drug delivery using liposomes modified with a
thermosensitive polymer. Ultrasonics Sonochemistry, 2014; 21: 310-316.
78. M. Nakayama, J.E. Chung, T. Miyazaki, M. Yokoyama, K. Sakai, T. Okano,
Thermal modulation of intracellular drug distribution using thermoresponsive
polymeric micelles, Reactive and Functional Polymers, 2007; 67: 1398-1407.
79. William B. Liechty, David R. Kryscio, Brandon V. Slaughter and Nicholas A.
Peppas. Polymers for Drug Delivery Systems. Annual Review of Chemical and
Biomolecular Engineering, 2010; 1: 149–173.
80. Guiying Li, Sen Song, Lei Guo, Songmei Ma. Self-assembly of thermo- and
pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for
drug delivery. Journal of Polymer Science Part A: Polymer Chemistry, 2008;
46: 5028-5035.
81. Comolli N, Neuhuber B, Fischer I, Lowman A. In vitro analysis of
PNIPAAm-PEG, a novel, injectable scaffold for spinal cord repair. Acta
biomaterialia, 2009; 5: 1046-1055.
82. Kumaresh. S. Soppimath, Darren Cherng-Wen Tan, Yi-Yan Yang, pH-triggered
thermally responsive polymer core-shell nanoparticles for drug delivery,
Advanced Materials 2005:17: 318-323.
83. J. L. Zhang, R. S. Srivastava, R. D. K. Misra. Core-Shell Magnetite
Nanoparticles Surface Encapsulated with Smart Stimuli-Responsive Polymer.
Langmuir, 2007; 23: 6342-6351.
84. Q. Yuan, R. Venkatasubramanian, S. Hein, R.D. Misra. A stimulus-responsive
magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-
grafted-copolymer. Acta Biomaterialia, 2008; 4 :1024-1037.
85. Hynn Jung, Mi-Kyeong Jang, Jae-Woon Nah. Synthesis and Characterization of
Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell
Structure. Macromolecular Research, 2009; 17: 265-270.
86. Aurica P. Chiriac, Lorenana E.Nita, Iordana Neamtu, Poly(ethylene glycol)
functionalized by polycondensing procedure with poly(succinimide). Polimery,
2010; 55: 641-645.
87. Willy Agut, Annie Brûlet, Daniel Taton, Sébastien Lecommandoux.
Thermoresponsive Micelles from Jeffamine-b-poly(l-glutamic acid) Double
Hydrophilic Block Copolymers. Langmuir, 2007; 23:11526-11533.
88. Hosei Shinoda, Yukiko Asou, Akio Suetsugu, Kimiko Tanaka. Synthesis and
Characterization of Amphiphilic Biodegradable Copolymer, Poly(aspartic
acid-co-lactic acid). Macromolecular Bioscience, 2003; 3: 34-43.
89. Aksu K, Donmez A, Keser G. Inflammation-induced thrombosis: mechanisms,
disease associations and management. Current Pharmaceutical Design, 2012;
18: 1478-93.
90. Eun Jeong Choi. Antioxidative effects of hesperetin against
7,12-dimethylbenz(α)anthracene-induced oxidative stress in mice. Life
Sciences, 2008; 82: 1059-1064.
91. Hui-Yi Lin, Shing-Chuan Shen and Yen-Chou Chen. Anti-Inflammatory Effect of
Heme Oxygenase 1: Glycosylation and Nitric Oxide Inhibition in Macrophages.
Journal of Cellular Physiology, 2006; 202: 579-590.
92. Eun Jeong Choi and Hesperetin Induced G1-Phase Cell Cycle Arrest in Human
Breast Cancer MCF-7 Cells: Involvement of CDK4 and p21. Nutrition and
Cancer, 2007; 59: 115-119.
93. Yong-Ri Jin, Xiang-Hua Han, Yong-He Zhang, Jung-Jin Lee, Yong Lim, Jin-Ho
Chung and Yeo-Pyo Yun. Antiplatelet activity of hesperetin, a bioflavonoid,
is mainly mediated by inhibition of PLC-γ2 phosphorylation and
cyclooxygenase-1 activity. Atherosclerosis,2007; 194: 144-152.
95. Yong Yang, Joy Wolfram, Haifa Shen, Xiaohong Fang and Mauro Ferrari.
Hesperetin: An inhibitor of the transforming growth factor-β (TGF-β)
signaling pathway. European Journal of Medicinal Chemistry, 2012; 58:
390-395.
96. Abolfazl Akbarzadeh, Mohammad Samiei, Soodabeh Davaran. Magnetic
nanoparticles: preparation, physical properties, and applications in
biomedicine. Nanoscale Research Letters, 2012; 7:144 -156.
97. Masamichi Nakayama, Teruo Okano. Multi-targeting cancer chemotherapy using
temperature-responsive drug carrier systems. Reactive &; Functional Polymers,
2011; 71: 235-244.
98. Uei-Ming Jow, Maysam Ghovanloo. Design and Optimization of Printed Spiral
Coils for Efficient Inductive Power Transmission. Biomedical Circuits and
System, IEEE Transactions on, 2007; 1: 193-202.
99. Abel L. Thangawng, Rodney S. Ruoff, Melody A. Swartz, Matthew R. Glucksberg.
An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and
characterization. Biomedical Microdevices, 2007; 9: 587-595.
100. Tsong-Hai Lee, Ho-Ling Liu, Shun-Tai Yang, Jen-Tsung Yang, Mei-Yu
Yeh, Jr-Rung Lin. Effects of aging and hypertension on cerebral ischemic
susceptibility: Evidenced by MR diffusion–perfusion study in rat.
Experimental Neurology, 2011; 227: 314-321.
101. Michael T. Tseng, Alan Dozier, Bodduluri Haribabu, Uschi M. Graham.
Transendothelial migration of ferric ion in FeCl3 injured murine common
carotid artery. Thrombosis Research, 2006; 118: 275-280.
102. Hiroshi Sugimori, Hiroshi Yao, Hiroaki Ooboshi, Setsuro Ibayashi, Mitsuo
Iida. Krypton laser-induced photothrombotic distal middle cerebral artery
occlusion without craniectomy in mice. Brain Research Protocols, 2004; 13:
189-196.
103. Carrie G. Markgraf, Susan Kraydieh, Ricardo Prado, Brant D. Watson, W.
Dalton Dietrich, Myron D. Ginsberg. Comparative histopathologic consequences
of photothrombotic occlusion of the distal middle cerebral artery in Sprague-
Dawley and Wistar rats. Stroke, 1993; 24: 286-292.
104. Nobuo Nagai, Bing-Qiao Zhao, Yasuhiro Suzuki, Hayato Ihara, Tetsumei Urano,
Kazuo Umemura. Tissue-type plasminogen activator has paradoxical roles in
focal cerebral ischemic injury by thrombotic middle cerebral artery
occlusion with mild or severe photochemical damage in mice. Journal of
Cerebral Blood Flow &; Metabolism, 2002; 22: 648-651.
105. André Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter
Fisher, Marin Soljai. Wireless power transfer via strongly coupled magnetic
resonances. Science, 2007; 317: 83-86.
106. Naga S. Korivi, Pratul K. Ajmera. Self-closing cuff electrode for
functional neural stimulation and recording. Journal of Medical and
Biological Engineering, 2011; 31: 353-357.
107. Zongxia Mou, Wensheng Hou, Xiaolin Zheng, Jun Zheng, Xiaoying Wu, Yingtao
Jiang, Ning Hu, Nan Xia. Microcoil-array-based multichannel transcutaneous
transmission for implantable neural electrical stimulation. Journal of
Medical and Biological Engineering, 2012; 32: 123-130.
108. I-Te Hsieh, Cheryl Ching-Hsiu Yang, Chun-Yu Chen, Guo-She Lee, Fu-Jen Kao,
Kuan-Liang Kuo, Terry Bo-Jau Kuo. Uninterrupted wireless long-term recording
of sleep Patterns and autonomic function in freely moving rats. Journal of
Medical and Biological Engineering, 2013; 33: 79-86.
109. J. Choi, C. Seo. High-efficiency wireless energy transmission using
magnetic resonance based on metamaterial with relative permeability equal
to-1. Progress In Electromagnetics Research, 2010; 106: 33-47.
110. S. Smith, T. B. Tang, J. G. Terry, J. T. M. Stevenson, B. W. Flynn, H. M.
Reekie, A. F. Murray, A. M. Gundlach, D. Renshaw, B. Dhillon. Development of
a miniaturized drug delivery system with wireless power transfer and
communication. IET Nanobiotechnol, 2007; 1: 80-86.
111. Mariko Ishihara, Seiichiro Fujisawa. Photooxygenation, photodegradation and
antioxidative activity of platonin, a cyanine photosensitizing dye. In Vivo,
2007; 21: 163-174.
112. Daniel T. Eitzman, Randal J. Westrick, Zuojun Xu, Julia Tyson, David
Ginsburg. Hyperlipidemia promotes thrombosis after injury to atherosclerotic
vessels in apolipoprotein E-deficient mice. Arteriosclerosis Thrombosis and
Vascular Biology, 2000; 20: 1831-1834.
113. Haim D. Danenberg, Alexander J. Szalai, Rajesh V. Swaminathan, Lin Peng,
Zhiping Chen, Philip Seifert, William P. Fay, Daniel I. Simon, Elazer R.
Edelman. Increased thrombosis after arterial injury in human C-reactive
protein-transgenic mice. Circulation, 2003; 108: 512-515.
114. Jonas Nordberga, Elias S.J. Arnér. Reactive oxygen species, antioxidants,
and the mammalian thioredoxin system. Free Radical Biology and Medicine,
2001; 31: 1287-1312.
115. Hartmut Jaeschke. Reactive oxygen and mechanisms of inflammatory liver
injury: present concepts. Journal of Gastroenterology and Hepatology, 2011;
26: 173-179.
116. Ferdinando Giacco, Michael Brownlee. Oxidative stress and diabetic
complications. Circulation Research, 2010 ; 107: 1058-1070.
117. Michael A. Moskowitz, Eng H. Lo, Costantino Iadecola. The science of
stroke: mechanisms in search of treatments. Neuron 2010; 67: 181-198.
118. Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis.
British Journal of Anaesthesia, 2011; 107: 57-64.
119. Takeshi Nakato, Atsushi Kusuno and Toyoji Kakuchi. Synthesis of
Poly(succinimide) by Bulk Polycondensation of L-Aspartic Acid with an Acid
Catalyst. Journal of Polymer Science: Part A: Polymer Chemistry, 2000; 38:
117–122.
120. Ulrich Theo Seyfert, Volker Biehl, Joachim Schenk. In vitro
hemocompatibility testing of biomaterials according to the ISO 10993-4.
Biomolecular Engineering, 2002; 19: 91-96.
121. M. Carme Coll Ferrer, Uriel N. Eckmann, Russell J. Composto, David M.
Eckmann. Hemocompatibility and biocompatibility of antibacterial biomimetic
hybrid films. Toxicology and Applied Pharmacology, 2013; 272: 703-712.
122. Kang Moo Huh, Junko Hashi, Toor Ooya, Nobuhiko Yui. Synthesis and
characterization of dextran grafted with poly(N-isopropylacrylamide-co-N,N-
dimethylacrylamide). Macromolecular Chemistry and Physics, 2000; 201:
613-619.
123. Kang Moo Huh, Yoshikazu Kumashiro, Tooru Ooya, Nobuhiko Yui. New Synthetic
Route for Dextran Graft Copolymers Containing Thermo-Responsive Polymers.
Polymer Journal, 2001; 33: 108-111.
124. Jian Xiang Zhang, Li Yan Qiu, Yi Jin, Kang Jie Zhu. Thermally responsive
polymeric micelles self-assembled by amphiphilic polyphosphazene with poly(N-
isopropylacrylamide) and ethyl glycinate as side groups: polymer synthesis,
characterization, and in vitro drug release study. Journal of Biomedical
Materials Research Part A, 2006; 76A: 773-780.
125. J. Zhang and R.D.K. Misra. Magnetic drug-targeting carrier encapsulated
with thermosensitive smart polymer: Core–shell nanoparticle carrier and
drug release response. Acta Biomaterialia, 2007; 3: 838-850.
126. Takeshi Nakato, Atsushi Kusuno, Toyoji Kakuchi. Synthesis of
Poly(succinimide) by Bulk Polycondensation of L-Aspartic Acid with an Acid
Catalyst. Journal of Polymer Science: Part A: Polymer Chemistry, 2000; 38:
117-122.
127. Takeshi Nakato, Kyoko Oda, Masako Yoshitake, Masayuki Tomida, Toyoji
Kakuchi. Synthesis and characterization of poly(aspartic acid) and its
derivatives as biodegradable materials. Journal of Macromolecular Science,
Part A: Pure and Applied Chemistry, 1999; 36: 949-961.
128. Yong Wang, Yinong Wang, Guolin Wu, Yunge Fan, Jianbiao Ma. pH-Responsive
selfassembly and conformational transition of partially
propyl-esterified poly(a,b-L-aspartic acid) as amphiphilic biodegradable
polyanion. Colloids and Surfaces B Biointerfaces, 2009; 68: 13-19.
129. Longxiao Liu and Jun Chen. Solubility of Hesperetin in Various Solvents
from (288.2 to 323.2) K. Journal of Chemical &; Engineering Data, 2008; 53:
1649-1650
130. Libby P. Inflammation in atherosclerosis. Nature, 2002; 420: 868-874.
131. Kaeko Iiyama, Leena Hajra, Motoi Iiyama, Hongmei Li, Maria DiChiara,
Benjamin D. Medoff, Myron I. Cybulsky. Patterns of Vascular Cell Adhesion
Molecule-1 and Intercellular Adhesion Molecule-1 Expression in Rabbit and
Mouse Atherosclerotic Lesions and at Sites Predisposed to Lesion Formation.
Circulation Research, 1999; 85: 199-207.
132. Andrew Tsourkas, Vivek R. Shinde-Patil, Kimberly A. Kelly, Pratik Patel,
Allison Wolley, Jennifer R. Allport, Ralph Weissleder. In Vivo Imaging of
Activated Endothelium Using an Anti-VCAM-1 Magnetooptical Probe.
Bioconjugate Chemistry, 2009; 16: 576-581.
133. Kimberly A. Kelly, Jennifer R. Allport, Andrew Tsourkas, Vivek R. Shinde-
Patil, Lee Josephson, Ralph Weissleder. Detection of Vascular Adhesion
Molecule-1 Expression Using a Novel Multimodal Nanoparticle. 2005, 96:
327-336.
134. Jinhao Gao, Hongwei Gu, Bing Xu. Multifunctional Magnetic Nanoparticles:
Design, Synthesis, and Biomedical Applications. Accounts of chemical
research, 2009, 42, 1097-1107.
135. Lucas W. E. Starmans, Dirk Burdinski, Nicole P. M. Haex, Rik P. M. Moonen,
Gustav J. Strijkers, Klaas Nicolay, Holger Grüll. Iron Oxide Nanoparticle-
Micelles (ION-Micelles) for Sensitive (Molecular) Magnetic Particle Imaging
and Magnetic Resonance Imaging. Plos One, 2013; 8: e57335.
136. Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice,
Shan X. Wang, Guanxiong Li. Monodisperse MFe2O4 (M = Fe, Co, Mn)
Nanoparticles. Journal of American Chemical Society, 2003; 126: 273-279.
137. Congcong Mi, Jingpu Zhang, Huanyu Gao, Xianlong Wu, Meng Wang, Yingfan Wu,
Yueqin Di, Zhangrun Xu, Chuanbin Mao, Shukun Xu. Multifunctional
nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare
earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and
their applications in biolabeling and fluorescent imaging of cancer cells.
Nanoscale, 2010; 2: 1141-1148.
138. Esben K. U. Larsen, Thomas Nielsen, Thomas Wittenborn, Henrik Birkedal,
Thomas Vorup-Jensen, Mogens H. Jakobsen, Leif Østergaard, Michael R.
Horsman, Flemming Besenbacher, Kenneth A. Howard, Jørgen Kjems.
Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide
Nanoparticles in Murine Tumors. ACS Nano, 2009; 3: 1947-1951.
139. R. A. Sperling, W. J. Parak. Surface modification, functionalization and
bioconjugation of colloidal inorganic nanoparticles. Philosophical
Transactions of The Royal Society A, 2010; 368: 1333-1383.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊