跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韋廷
研究生(外文):Wei-Ting Cheng
論文名稱:以常壓式有機金屬化學氣相法沉積硫化銅銦和硫化銅鎵三元化合物特性分析
論文名稱(外文):Characterizations of Cu(In,Ga)S2 ternary compounds by AP-MOCVD
指導教授:溫武義
指導教授(外文):Wu-Yih Uen
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:80
中文關鍵詞:銅鎵二硫銅銦二硫光激螢光能譜散佈分析儀掃描式電子顯微鏡硫化法常壓式金屬有機氣相沉積法
外文關鍵詞:PLCuGaS2CuInS2AP-MOCVDVulcanizationEDSSEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薄膜太陽能電池中,銅銦鎵硒(CIGS)為潛力最佳的熱門材料。本論文嘗試使用硫化銅銦(CuInS2)代替CIGS做為吸收層和硫化銅鎵(CuGaS2)薄膜的寬能隙能做成窗戶層,研發出不同材料,使材料具多元化選擇。在製備過程中,成功的利用常壓式有機金屬化學氣相沉積法合成出CuInS2 和CuGaS2的I-III-VI2黃銅礦結構三元化合物半導體在銅和玻璃基板上進行薄膜光性分析和比較。在銅基板上可以發現優於玻璃基板的地方在於無限的銅填補了銅空缺,使銅空缺所主導的缺陷發光變弱或是可能消失。CuInS2兩種主要的XRD峰值(112), (204/220)和CuGaS2兩種主要的峰值(112), (204/220)在XRD實驗中被發現。在低溫的情形下所量測的光激螢光實驗中,兩種化合物都有著許多發光機制。本論文中,CIS主要強的發光波段為1.37eV。CGS主要發光波段在銅和玻璃基板上分別為2.489eV和2.4eV,在低溫下可發現發著強大的綠光。研究再者,使用SEM(Scanning Electron Microscope)觀察其剖面及俯視影像,分析結果其成長厚度大約為0.8-1.28μm,也觀察出在不同基板上成長的晶體結構不同。再由EDS(Energy Dispersive Spectrometer)分析結果此CIS薄膜的化學當量比例Cu : In : S約為1.56 : 1.26 : 2,CGS薄膜的化學當量比例Cu : Ga : S約為1.44 : 1.37 : 2。本論研究成功建立以AP-MOCVD制備Cu-In-S和Cu-Ga-S的三元化合物。

Among thin film solar cells, copper indium gallium selenide (CIGS) recently become the most popular photovoltaic material. In this paper, we attempt to use copper indium disulfide (CuInS2) as an alternative absorber layer material of CIGS and the copper gallium disulfide (CuGaS2) has wide band gap can be window layer material. We expect to developed different materials with various choices. In the preparation process, I-III-VI ternary chalcopyrite semiconductors of CuInS2 and CuGaS2 were successfully fabricated by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) method for the first time. We use cupper plate and glass two different substrate to conduct characterizations of Cu(In,Ga)S2. In copper substrate can be found that the infinite copper fill the copper vacancy was better than finite copper of glass substrate. CuInS2 and CuGaS2 have two major peaks (112), ( 204 / 220 ) was found in the XRD experiment. In the case of the low-temperature photoluminescence measurements of experiments, both compounds have a lot of light-emitting mechanism. A strong emission line at 1.37 eV of CIS and CGS has main emitting wavelength of the glass substrate and the copper respectively 2.489eV and 2.4eV were found in this paper. In addition, the cross-sectional and top-view scanning electron microscopy images characterized the fabricated Cu-In-S and Cu-Ga-S compound as a polycrystalline film of thickness about 0.8 – 1.28μm. We can also seen the different crystal structure grown on different substrates. Furthermore, we know the CIS thin-film chemical equivalent ratio Cu: In: S about 1.56:1.26:2, the CGS thin-film chemical equivalent ratio Cu: Ga: S about 1.44:1.37:2 by the energy dispersive spectrometer (EDS). In this paper, Cu-In-S and Cu-Ga-S ternary compounds successfully preparation by AP-MOCVD has been established.

摘要 I
Abstract II
致謝 IV
Content V
Figure Contents VIII
Table Contents XII
Chapter 1 1
Introduction 1
Chapter 2 3
Growth methods and measurement systems 3
2.1 Growth methods 3
2.1.1 Metal Organic Chemical Vapor Deposition 3
2.1.2 Reactive Magnetron Sputtering system 7
2.2 Measurement systems 8
2.2.1 X-Ray Diffraction 8
2.2.2 Photoluminescence 10
2.2.3 Scanning Electron Microscope 17
2.2.4 Energy Dispersive Spectrometer 20
2.2.5 Hot-probe 21
Chapter 3 24
Experimental Process 24
Chapter 4 27
Results and Discussion 27
4.1 XRD 27
4.1.1 CIS XRD 27
4.1.2 CGS XRD 29
4.2 PL 31
4.2.1 CIS PL 31
4.2.2 CGS PL 35
4.3 Hot-probe 40
4.3.1 CIS Hot-probe 40
4.3.2 CGS Hot-probe 40
4.4 SEM 41
4.4.1 CIS SEM 41
4.4.2 CGS SEM 46
4.5 EDS 51
4.5.1 CIS EDS 51
4.5.2 CGS EDS 56
Chapter 5 62
Conclusion 62
Reference 64

[1] K. Djessas, G. Massé,a,z and M. Ibannaim. Journal of The Electrochemical Society, 147 (4) 1235-1239 (2000)
[2] D. Braunger, D. Hariskos, T. Walter, H.W. Schock. Solar Energy Materials and Solar Cells 40 97-102 (1996)
[3] YAN You-hua, LIU Ying-chun, FANG Ling, ZHU Jing-sen, ZHAO Hai-hua, LI De-ren, LU Zhi-chao, ZHOU Shao-xiong. Trans. Nonferrous Met. Soc. China 18 ,1083-1088 (2008)
[4]Shigefusa CHICHIBU, Sho SHIRAKATA, Mei UCHIDA, Yoshiyuki HARADA, Toshio WAKIYAMA, Satoru MATSUMOTO, Hirofumi and Shigehiro ISOMURA. Jpn. J. Appl. Phys. Vol. 34pp . 3991-3997(1995)
[5] R. Kaigawa, A. Neisser, R. Klenk, M.-Ch. Lux-Steiner. Thin Solid Films 415 ,266–271 (2002)
[6] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang. http://www.ndl.org.tw/cht/ndlcomm/P12_2/6.pdf
[7] http://en.wikipedia.org/wiki/Main_Page
[8] G. Golan, A. Axelevitch_, B. Gorenstein, V. Manevych. Microelectronics Journal 37, 910–915 (2006)
[9] Takashi MATSUMOTO, Hiroshi NAKANISHI and Tetsuro ISHIDA. Jpn. J. Appl. Phys. Vol. 26 No.8, August, pp. L1263-L1265(1987)
[10] C. Guillén* and J. Herrero. phys. stat. sol. (a) 203, No. 10, 2438–2443 (2006)
[11] J. Eberhardt,*, H. Metzner,*, R. Goldhahn, F. Hudert, U. Reislfhner, C. Hqlsen,J. Cieslak, Th. Hahn, M. Gossla, A. Dietz, G. Gobsch, W. Witthuhn. Thin Solid Films 480–481 ,415– 418(2005)
[12] X. H. Liu, X. M. Dou, and M. Sugiyama. Journal of Applied Physics 112, 123521 (2012)
[13] Mutsumi Sugiyama, Chika Fujiwara, Ryuki Shoji, and Shigefusa Chichibu. Japanese Journal of Applied Physics 50,065503(2011)
[14] Xiaohui Liu, Chika Fujiwara, Xiaoming Dou, Shigefusa F. Chichibu, and Mutsumi Sugiyama. Japanese Journal of Applied Physics 51 031202 (2012)
[15]J. Van Gheluwe,, J. Versluys, D. Poelman , J. Verschraegen, M. Burgelman, P. Clauws. Thin Solid Films 511 – 512,304 – 308(2006)
[16]Kaxuhiko Hara, Tohru KOJIMA and Hiroshi KUKIMOTO. Jpn. J. Appl. Phys. Vol. 26, No.7, Joly, pp. L1107-L1109(1987)
[17] H. Metzner, Th. Hahn, J. Cieslak, U. Grossner, U. Reislöhner, W. Witthuhn, R. Goldhahn, J. Eberhardt, G.Gobsch, and J. Kräußlich. Applied Physics Letters 81, 156 (2002)
[18] J.R. Botha,*, M.S. Branch, J. Weber. Thin Solid Films 431 –432 ,210–213(2003)
[19] H.Metzner, J.Eberhar dt, J.Cieslak, Th.Hahn, R.Goldhahn, U.Reislo‥hner, W.Witthuhn. Thin Solid Films 451 –452 ,241–244(2004)
[20] J.R. Botha , M.S. Branch , P.R. Berndt , A.W.R. Leitch , J. Weber. Thin Solid Films 515 , 6246–6251(2007)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊