(3.238.96.184) 您好!臺灣時間:2021/05/08 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊仁華
研究生(外文):Jen-Hua Yang
論文名稱:具有高功率因數與超低輸入電流總諧波失真的主動式LED驅動器架構研製
論文名稱(外文):Design and Implementation of an Active LED Driver Scheme with High Power Factor and Extra-Low Total Harmonic Distortion of Input Current
指導教授:涂世雄涂世雄引用關係
指導教授(外文):Shih-Hsiung Twu
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:初級側調節LED驅動器高功率因數超低輸入電流總諧波失真
外文關鍵詞:extra-low THDLED driverPSRhigh PF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,具有高功率因數和超低輸入電流總諧波失真的AC-DC LED驅動器,基於初級端調節( PSR )方案被實現。
它實現了高功率因數( PF)和超低輸入電流總諧波失真( THDi )的性能,並操作於邊界導通模式( BCM) 。
我們通過使用SD6800實現設計採用改進的PSR轉換器方案的結構。如何改善PF和THDi將進行說明。
我們的SD6800應用電路的分析與設計於此處進行說明。
此外,它會顯示我們所提出的轉換器電路的時域分析在BCM的操作,以實現高PF和超低THDI。
最後,在邊界導通模式操作與連續導通模式( CCM ) PSR轉換器的性能比較將進行討論。
一些貢獻於這裡介紹:
1 。為了獲得高功率因數大於0.95 ;
2 。為了達到小於10 %超低輸入電流的總諧波失真;
3 。由於基於初級側調節方案,成本比二次側調節方案更便宜。
高PF和超低THDi的性能是越來越重要在LED照明市場,尤其是在使用相同電源部分的精密儀器和易受干擾的生產線。
為了獲得更好的能源利用率,避免諧波干擾,
LED驅動器具有高功率因數和超低THDi是主要的趨勢照明市場在現在和未來。




In this thesis, a scheme with high power factor and extra-low total harmonic distortion of input current is implemented in AC-DC LED driver based on Primary Side Regulation (PSR). It achieves the performance of high Power Factor (PF) and extra-low Total Harmonic Distortion of Input current (THDi), and operates in Boundary Conduction Mode (BCM).
We adopt the structure of the improved PSR converter scheme by using SD6800 to implement the design. How to improve PF and THDi will be described. The analysis and design of our SD6800 application circuit are explained here. Furthermore, it will show time-domain analysis of our proposed converter circuit to achieve high PF and extra-low THDi by operating in BCM. Finally, the performance comparison of PSR converter operated in Boundary Conduction Mode with Continuous Conduction Mode (CCM) will be discussed.
Some contributions are presented here :
1. To get high power factor greater than 0.95;
2. To achieve extra-low total harmonic distortion of input current less than 10%;
3. Due to based on primary side regulation scheme, the cost is more cheaper than secondary side regulation scheme.
The performances of high PF and extra-low THDi are more and more important in LED lighting market, especially for some precise-instruments and susceptible production-lines in the same power supply. To get the better energy utilization and to avoid the harmonic interferences, the LED driver with high PF and extra-low THDi is the major-trends in the lighting market now and future.





摘要…………………………………………………………………………..I
Abstract……………………………………………………………………..II
Acknowledge……………………………………………………………….III
Contents…………………………………………………………………….IV
List of Figures……………………………………………………………....VI
List of Tables…………………………………………………………...…VIII
Chapter 1. Introduction…………………………………………………….1
1.1 Background………………………………………………………………1
1.2 Motivation and Method…………………………………………………..6
1.3 Chapter Outline………………………………………………………..…9
Chapter 2. The Overview of Existing LED Driver Schemes with PFC and
THD Principle………………………………………………..10
2.1 The Existing LED Driver Schemes…………………………………….10
2.2 The Topology of Switching LED Driver Schemes……………………..11
2.3 The Power Application and Selection of LED Driver Schemes……..…14
2.4 The Restriction of Space and Thermal Issues in The Built-in Type LED
Driver………………………………………………………………….…15
2.5 Power Factor Correction Schemes and Total Harmonic Distortion….....16
2.6 The Safety Criterion of LED Lighting about The Restriction of PF and
THD……………………………………………………………………....27
Chapter 3. The Time-Domain Analysis of PSR Converter with High PF and
Extra-Low THDi……………………………………………..29
3.1 The Structure of The Improved PSR Converter Scheme…………….....29
3.2 The Analysis and Design of Our SD6800 Application Circuit…………31
3.3 The Time-Domain Analysis of Our Proposed Converter Circuit Operated in
BCM…………………………………………………………………...…40
Chapter 4. The Results and Waveforms of The Experiments…………..46
4.1 The Experimental Waveforms of The PSR Converter Operated in BCM
Output Constant-Current……………………………………………...…46
4.2 The Performance Comparison of PSR Converter Operated in BCM with
CCM…………………………………………………………………..…49
Chapter 5. The Conclusions and Future Prospect……………………...51
5.1 Conclusions……………………………………………………….........51
5.2 Future Prospect………………………………………………………...51
References…………………………………………...……………………52
Appendix A: Photograph………………………………………………...54
A-1 Measuring Instruments…………………………………………....…..54
A-2 Power Module and T8 LED Tube…………………………………….56

List of Figures
Fig 1.1 The current-limit resistor circuit for LED driver………………………..1
Fig 1.2 Linear Mode Power Supply block diagram……………………………..2
Fig 1.3 Switching Mode Power Supply block diagram………………………….3
Fig 1.4 Flyback converter block diagram………………………………………..4
Fig 1.5 PSR converter block diagram………………………………………..…..4
Fig 1.6 PSR converter schematic for T8 tube LED driver…………………...….7
Fig 2.1 Buck Converter…………………………………………….…………..11
Fig 2.2 Boost Converter………………………………………………………..11
Fig 2.3 Buck-Boost Converter…………………………………………………11
Fig 2.4 Flyback Converter………………………………………………….….12
Fig 2.5 Forward Converter………………………………………………...…..12
Fig 2.6 Half-Bridge Converter………………………………………...………12
Fig 2.7 LLC Resonant Converter……………………………………………...13
Fig 2.8 The waveforms of voltage, current, and the fundamental current…….16
Fig 2.9 The relationship of PF and THD…………………………………...….18
Fig 2.10(a) The Circuit Diagram for Average Current Control……………..…21
Fig 2.10(b) The Current waveform for Average Current Control………..……21
Fig 2.11(a) The Circuit Diagram for Peak Current Control…………………...22
Fig 2.11(b) The Current waveform for Peak Current Control………………....23
Fig 2.12(a) The Circuit Diagram for Hysteresis Current Control……………..24
Fig 2.12(b) The Current waveform for Hysteresis Current Control…………...24
Fig 2.13(a) The Circuit Diagram for Voltage Follower Control…………….....25
Fig 2.13(b) The Current waveform for Voltage Follower Control…………….26
Fig 3.1 SD6800 PWM Controller IC Pin Definition……………………..……29
Fig 3.2 The internal block diagram in SD6800…………………………..……30
List of Figures
Fig 3.3 RC loop circuit for compensation pin………………………………..31
Fig 3.4 RC loop circuit for compensation pin…………………………….….32
Fig 3.5 The recommend circuit for drive pin……………………………........33
Fig 3.6 Total capacitance of AC input and compensation network…………..36
Fig 3.7 Compensation network…………………………………………….....37
Fig 3.8 PSR converter schematic for T8 tube LED driver……………………41
Fig 3.9 Id and Vin+ waveforms when AC100V input………………………….42
Fig 3.10 Id and Vin+ waveforms when AC240V input………………………...42
Fig 3.11 Vaux waveform when AC100V input……………………………...…43
Fig 3.12 Vaux waveform when AC240V input…………………………..…….44
Fig 3.13 Vdr waveform when AC100V input…………………………………44
Fig 3.14 Vdr waveform when AC240V input…………………………………45
Fig 4.1 Vac and Iac waveforms when AC100V input……………………….…46
Fig 4.2 Vac and Iac waveforms when AC240V input………………………….47
Fig 4.3 Idc and Vdc waveforms when AC100V input………………………….48
Fig 4.4 Idc and Vdc waveforms when AC240V input………………………….48
Fig A-1.1 AC Source, Power Meter, and Test Fixture……………………..…54
Fig A-1.2 2M Integrating Sphere………………………………………….….54
Fig A-1.3 Digital Oscilloscope and Current Amplifier……………………….55
Fig A-2.1 LED Driver Power Module for T8 LED Tube…………………….56
Fig A-2.2 LED Chips on PCB…………………………………………….….56
Fig A-2.3 T8 LED Tube………………………………………………………57

List of Tables
Tab 2.1 The comparison table of LMPS with SMPS………………………….10
Tab 2.2 EN 61000-3-2 Limits for Class C equipment…………………….…...27
Tab 2.3 DLC Product Qualification Criteria for LED Lighting……………….28
Tab 3.1 Optical and electrical measurement for T8 LED tube operated in BCM
………….………………………………………………………….…..39
Tab 4.1 Optical and electrical measurement for T8 LED tube operated in CCM
…………………………………………………………………….…...49
[1] 梁適安,“交換式電源供給器之理論與實務設計”,全華圖書股份有限公司,中華民國九十七年。
[2] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon Conf., pp 348-353, 1988.
[3] G. Moschopoulos and P. Jain, “Single-phase single-stage power factor corrected topologies,” IEEE trans. on Industrial Electronics, vol. 52, no. 1, Feb. 2005, pp. 23-35.
[4] IEC61000-3-2, “Electromagnetic compatibility (EMC), Part 3: Limits Section 7: Limits for harmonic current emissions,” 2005.
[5] DesignLights Consortium, “Product Qualification Criteria, Power Factor and Total Harmonic Distortion,” FINAL 9/27/13
[6] Silan Microelectronics, “Primary Side Controlled LED Controller with PFC,” SD6800 Datasheet.
[7] 邱煌仁,“基於輸入電流斜率法之功率因數修正技術”,國立台灣科技
大學電子所博士論文,中華民國八十九年。
[8] 蘇英傑,“具同步整流倍流輸出之單級非對稱半橋電能轉換器”,中原
  大學電機工程研究所碩士論文,中華民國九十三年。
[9] 鍾世彥,“單級高功因LED燈驅動器之研製”,中原大學電機工程研究
  所碩士論文,中華民國九十五年。
[10] 任品瑞,“三相三開關功率因數修正器之設計與實現”,中原大學電機
  工程研究所碩士論文,中華民國九十五年。
[11] 蕭立揚,“具降低輸出電壓漣波之單級返馳式功因修正電路”,國立中
山大學電機工程學系碩士論文,中華民國九十八年。
[12] N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics: Converters, Applications and Design,” John Wiley &; Sons, 3rd Edition, 2003.
[13] A. 1. Pressman, “Switching Power Supply Design,” McGraw-Hill, Inc., 1998.
[14] 黃慶宏,“800W定電流輸出之交錯式功率因數修正器研製”,國立臺北
科技大學電機工程系碩士論文,中華民國九十八年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔