(18.206.12.76) 您好!臺灣時間:2021/04/23 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林律宏
研究生(外文):Lu-Hung Lin
論文名稱:缸內直噴氫引擎熱傳模型之研究
論文名稱(外文):A study of heat transfer models in the direct injection hydrogen engine
指導教授:蔡瑞益蔡瑞益引用關係
指導教授(外文):Ruey-Yih Tsai
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:59
中文關鍵詞:氫氣內燃機熱傳模型
外文關鍵詞:GT-Powerhydrogen engine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為因應石化原料短缺與溫室效應日趨嚴重,世界各國致力於研發應用於內燃機的新型燃料,期望能降低石油用量並減少溫室氣體的排放。氫燃料作為內燃機的燃料來源已被各國學者評估其為具有相當的潛力。且其排放過程接近零汙染,運轉熱效率高於現階段使用汽油、柴油與液化石油氣內燃機等皆已被證實。

本研究以內燃機模擬軟體GT-Suite探討直噴式氫氣內燃機中的熱傳現象。軟體將模擬驗證氫氣內燃機汽缸壓力與最大汽缸壓力、指示平均有效壓力(IMEP)、制動扭矩(Brake torque)與質量消耗率(MFB),並針對上述幾點延伸至熱傳係數作探討。


In consideration of petroleum shortage and global warming is getting worse. Therefore, countries of the world dedicated to develop alternative fuels which applying to internal combustion engine, in order to reduce consumption of fossil fuel and emission of greenhouse gas. Hydrogen fuel has been assessed to a well potential solution on internal combustion engine all over the world. Furthermore, as hydrogen fuel is depleted, it is almost zero pollution and has higher thermal efficiency than petrol, diesel and natural gas in internal combustion engine.

In this study, we utilized GT-Suite which is simulation software for internal combustion engine to investigate the heat transfer phenomena of direct injection hydrogen engine. The software verified the cylinder pressure, maximum pressure, indicated mean effective pressure, Brake Torque, and mass fraction burned of hydrogen engine. Finally, with the points above, we extended discussion to heat transfer coefficient.


目錄
摘要………………………………………………………………………… I
ABSTRACT ……………………………………………………………… II
誌謝………………………………………………………………………… III
目錄………………………………………………………………………… IV
圖目錄……………………………………………………………………… VII
表目錄……………………………………………………………………… VIII
符號說明…………………………………………………………………… IX
第一章 導論 ……………………………………………………………… 1
1-1 前言 ………………………………………………………… 1
1-2 研究動機與目的 …………………………………………… 2
1-3 本文架構 …………………………………………………… 3
1-4 文獻回顧 …………………………………………………… 3
第二章 研究理論與方法 ……………………………………………… 6
2-1 GT-Power 核心演算法……………………………………… 6
2-2 熱傳模型 …………………………………………………… 11
2-2-1 WoschniClassic model ………………………………… 11
2-2-2 WoschniGT model……………………………………… 12
2-2-3 flow model……………………………………………… 12
2-2-4 Hohenberg model……………………………………… 14
2-3熱釋放模型Wiebe…………………………………………… 14
2-4探討項目介紹………………………………………………… 17
2-4-1當量比 (Equivalence ratio)…………………………… 17
2-4-2制動扭矩 (Brake torque)……………………………… 18
2-4-3指示平均有效壓力 (IMEP)…………………………… 18
2-4-4缸內壓力 (In-cylinder pressure) ……………………… 19
2-4-5質量損耗率 (MFB)…………………………………… 20
2-4-6上死點 (TDC)………………………………………… 20
2-4-7 SOI BTDC……………………………………………… 20
2-4-8曲軸角度 (Crank angle) ……………………………… 21
2-4-9熱傳係數 (Heat transfer coefficient) ………………… 21
2-5研究方法……………………………………………………… 21
第三章 結果與討論……………………………………………………… 24
3-1汽缸壓力……………………………………………………… 26
3-1-1 SOI=130˚與150˚BTDC、1800 RPM………………… 26
3-1-2當量比 0.63 與 0.93、3000 RPM…………………… 30
3-2質量損耗率(MFB,mass fraction burned) ………………… 34
3-2-1點火角度SOI = 130˚BTDC、引擎轉速 3000 RPM… 34
3-2-2當量比 1、引擎轉速 1800 RPM……………………… 36
3-3指示平均有效壓力(IMEP) ………………………………… 38
3-4制動扭矩(Brake Torque) …………………………………… 40
3-5最大汽缸壓力………………………………………………… 41
3-6熱傳係數(Heat transfer coefficient) ………………………… 42
第四章 結論………………………………………………………………… 44
參考文獻 …………………………………………………………………… 45

圖目錄
圖2-1 四行程單缸SI直噴氫引擎與進/排氣系統的結構……… 23
圖3-1 SOI=150˚BTDC燃燒行程放大圖………………………… 26
圖3-2 SOI=130˚BTDC、1800 RPM之汽缸壓力………………… 28
圖3-3 SOI=130˚BTDC,缸內壓力與實驗之誤差百率………… 28
圖3-4 SOI=150˚BTDC、1800 RPM之汽缸壓力……………… 29
圖3-5 SOI=150˚BTDC,缸內壓力與實驗之誤差百率………… 29
圖3-6 當量比0.63與0.93之燃燒行程放大圖………………… 31
圖3-7 當量比 0.63、3000 RPM之汽缸壓力………………… 32
圖3-8 當量比 0.63,汽缸壓力與實驗之誤差百分率………… 32
圖3-9 當量比 0.93、3000 RPM之汽缸壓力………………… 33
圖3-10 當量比 0.93,汽缸壓力與實驗之誤差百分率………… 33
圖3-11 當量比0.63 與0.93、3000 RPM之質量損耗率……… 35
圖3-12 當量比 1,3000 RPM之質量損耗率…………………… 37
圖3-13 SOI=130˚BTDC、1800 RPM之指示平均有效壓力…… 38
圖3-14 各種熱傳模型的IMEP與11.84 bar之差距…………… 39
圖3-15 SOI=130˚BTDC、1800 RPM之制動扭矩……………… 40
圖3-16 SOI=130˚BTDC、1800 RPM之最大汽缸壓力………… 41
圖3-17 SOI=130˚BTDC、1800 RPM之熱傳係數……………… 43

表目錄
表 2-1 PROTON CamPro引擎內燃機規格……………………… 22
表 2-2進/排氣歧管規格 ………………………………………… 23

[1] G.Woschni, “A universally applicable equation for the instantaneous
heat transfer coefficient in the internal combustion engine.”, SAE
Technical Paper Serial No 670931, 1967.

[2] WJ.Annand, “ Heat transfer in the cylinders of reciprocating internal
combustion engines”, Proc Inst Mech Eng, p.973, 1963.

[3] G.Eichelberg, “Some new investigations on old combustion engine
problems”, Engineering, p.148:463~547, 1939.

[4] C.M. White, R.R.Steeper, A.E.Lutz, “The Hydrogen-Fueled Internal
Combustion Engine: A Technical review”, AE Lutz International Journal of
Hydrogen Energy, p.1292~1305, 2006.

[5] L.Ronald Fifield, “Development Of In-Cylinder Injection For A
Hydrogen Fueled Internal Combustion Engine”, Bachelor of Science
University of Nevada, Las Vegas, 2005.

[6] Y. Jamal, ML. Wyszynski, “On-board generation of hydrogen-rich
fuels”, Int J Hydrogen Energy, 1994.

[7] HB. Lu , “Research on electronic control system Ph.D. dissertation”,
Tsinghua University, 2006.

[8] C. Ferguson, A. Kirkpatrick, “Internal Combustion Engines: Applied
Thermo- sciences”, Wiley, New York, 2001.

[9] R. Stone, “Introduction to internal combustion engines, 3 rd
ed.Palgrave”, New York, 1999.

[10] G. Woschni, “Universally applicable equation for the instantaneous heat
transfer coefficient in internal combustion engine”, SAE no. 670931, 1967

[11] R. Sindhu, G. Amba Prasad Rao and K. Madhu Murthy, “Termodynamic modelling
of diesel engine processes for predicting
engine performance.”, Department of Mechanical Engineering,
National Institute of Technology, Warangal-506004, 2014.

[12] N. Miyamoto, T. Chikahisa, T. Murayama and R. Sawyer, “Description and
analysis of diesel engine rate of combustion and performance using Weibe's
functions”, SAE 850107, 1985.

[13] C. Ferguson, A. Kirkpatrick, “Internal Combustion Engines: Applied
Thermosciences”, Wiley New York, 2001.

[14] E. Abu-Nada, I. Al-Hinti, A. Al-Sarkhi and B. Akash, “Thermodynamic
modeling of spark-ignition engine: effect of temperature dependent specific
heats, International Communications in Heat and Mass Transfer”,
p.1264~1272, 2006.

[15] E. Abu-Nada, I. Al-Hinti, B. Akash and Al-Sarkhi, “Thermodynamic analysis
of spark- ignition engine using a gas mixture model for the working fluid,
International Journal of Energy Research”, p.1031~1046, 2007.

[16] E. Abu-Nada, I. Al-Hinti, A. Al-Sarkhi and B. Akash, “Effect of piston
friction on the performance of SI engine: a new thermo-dynamic approach”,
ASME Journal of Engineering for Gas Turbines and Power, 022802-1, 2008.

[17] E. Abu-Nada, B. Akash, I. Al-Hinti and A. Al-Sarkhi, “Performance of spark
ignition engine under effect of friction using gas mixture model, Journal
of the Energy Institute”, p.197~205, 2009.

[18] W. Pulkrabek, “Engineering fundamentals of the internal combustion engine,
second ed”, Pearson Prentice-Hall, Upper Saddle River, New Jersey, 2004.

[19] B. John Heywood, “Internal Combustion Engine Fundamentals”, 12.4.3, 1988.

[20] GM. Rassweiler, L.Withrow, “Motion pictures of engine flames correlated with pressure cards”, SAE 380139, 1938.

[21] P. Frank Incropera, P. David , Theodore L. Bergman and Adrienne S.
Lavine, “Introduction to Heat Transfer”, Wiley, p.370, 2005.

[22] G.F. Hohenberg, “Advanced Approaches for Heat Transfer Calculations”, SAE
790825, 1979.

[23] H. Yasara, H.S. Soyhana, H. Walmsleya, B. Heada and C. Sorusbay, “Double-
Wiebe function: An approach for single-zone HCCI engine modeling”,
ELSEVIER, 2008.

[24] Khalaf I. Hamada, M.M. Rahman, M.A. Abdullah, Rosli A. Bakar, A. Rashid
and A. Aziz, “Effect of mixture strength and injection timing on
combustion characteristics of a direct injection hydrogen fueled engine”,
ELSEVIER, 2013.

[25] AA. Boretti, HC. Watson, “Enhanced combustion by jet ignition in a
turbocharged cryogenic port fuel injected hydrogen engine”, Int J Hydrogen
Energ, 2009.

[26] H. Eichlseder, T. Wallner, R. Freymann and J. Ringler, “The
potential of hydrogen internal combustion engines in a future
mobility scenario”, SAE 2003-01-2267, 2003.

[27] S. Verhelst, JD. Landtsheere, FD. Smet, A. Trenson, R. Sierens, “Effects
of supercharging, EGR and variable valve timing on power and emissions of
hydrogen internal combustion engines”, SAE 2008-01-1033, 2008.

[28] T. Morel, R. Keribar, “A Model for predicting spatially and time
resolved convective heat transfer in bowl in piston combustion
chambers”, SAE 850204, 1985.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔