跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/21 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳廷宇
研究生(外文):Ting-Yu Chen
論文名稱:磁流體動壓軸承穩定性與磁場分析研究
論文名稱(外文):Magnetic Field Analysis and Stability of a Hydrodynamic Journal Bearing System Lubricated with Ferrofluid
指導教授:范憶華
指導教授(外文):Yi-Hua Fan
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:流體動壓軸承、鐵磁流體、軸承潤滑、油漩、油顫
外文關鍵詞:Fluid whipFluid whirlHydrodynamic Journal BearingsFerrofluidLubrication
相關次數:
  • 被引用被引用:2
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流體潤滑軸承在旋轉機械領域的使用非常廣泛,但流體潤滑液會造成軸承在旋轉機構中,產生不穩定因素如油漩、油顫等等,造成軸承碰撞摩擦,使機械組件損壞。有鑒於此,本研究針對旋轉機械流體油膜產生流體不穩定現象提出以鐵磁流體取代傳統潤滑流體並外加磁場以改變提昇油膜不穩定之發生頻率以避免旋轉機械操作於共振區。
在本論文中,成功建立一組流體動壓軸承轉子測試平台,並以鐵磁流體作為軸承潤滑液,且在軸承外部外加上不同型式之磁場,藉由分析不同磁路方向,對油軸承油漩、油顫等實驗之影響。由油軸承之全頻譜串聯圖中觀察軸承發生油漩之穩定門檻轉速中可知,因為磁場可改變磁流體之黏滯係數,提高軸承潤滑液剛度提升可以改變流體引發的油漩或油顫不穩定發生之頻率。實驗結果顯示,磁場設計為八極閉迴路環型磁場所獲得之效果為最優,可有效提升本測試平台之旋轉油軸承的油漩或油顫不穩定門檻發生之轉速由原始之3024轉提高到4480轉赫茲。


Nowadays, the fluid fluid-lubricated bearings applying in the rotating machines are very widespread. However, these rotor interaction systems need to consider the instability phenomena induced by the lubricated fluid, such as the fluid whirl and fluid whip. The fluid-induced self-excited vibrations of rotor will make the journal rubbing or striking to bearing and may demand the machine parts. By these lights, the research proposed a solution to chance and promote the frequencies of fluid-induced self-excited vibrations by a ferrofluid and an additional magnetic field to avoid the rotating machine operating in the resonance frequencies.
In this research, we have established a fluid-dynamic bearing rotor test platform. The system uses the ferrofluid to replace traditional bearing lubricant fluid and provide different types of magnetic fields by the permanent magnets in the outside of bearing to change the lubricated viscously of ferrofluid. From the analyzing results of the different magnetic directions and the corresponding experimental results in the oil bearing system showed that the resonance frequencies of fluid whirl and fluid whip of the oil bearing system had been changed. The experimental results also showed that the magnetic field built by eight has the best performance in these proposed magnetic fields. It can promote the he instability threshold speed of the test system from 3024 RPM to 4480 RPM.


目錄
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1前言 1
1.2研究目的 2
1.3 研究重要性 3
1.4文獻回顧 3
1.5論文架構 5
第二章 流體動壓軸承系統原理 7
2.1動壓軸承簡介 7
2.2動壓軸承之基本方程 9
2.3軸承潤滑液之雷諾方程式 12
2.3-1 一維雷諾方程式 12
2.3-2流體流動連續方程式 13
2.3-3 三維雷諾方程式 14
2.3-4 非牛頓流體雷諾方程式 16
2.4軸承潤滑液之轉子不穩定 17
2.4-1 轉子不穩定介紹 17
2.4-2油漩和油顫 17
2.4-3 半頻率 19
2.4-4軸承油漩門檻 19
第三章 磁流體分析 23
3.1磁流體 23
3.2磁流體之黏滯係數 24
3.2-1 磁力矩 L 24
3.2-2黏性力矩Lτ 24
3.2-3磁力矩Lm 25
3.2-4 等速渦漩下磁流體之磁化強度 26
3.2-5 磁流體在磁場下之黏滯係數ηH 30
3.3磁流體之運動方程式 31
3.4磁流體的磁化方程 34
3.5軸承內磁流體潤滑液 36
第四章 實驗平台與磁場分析 38
4.1實驗平台架構 38
4.1-1 Bently-Nevada ADRE 108 Data Acquisition Instrument 39
4.1-2 FW-BELL 5180高斯計 39
4.1-3 油軸承 41
4.2永久磁鐵 43
4.3 分析軟體 44
4.4 磁路走向分析結果 44
第五章 實驗數據與結論 50
5.1未加磁場軸承之觀察 50
5.2 實驗結果-磁場對磁流體軸承之影響 52
5-3結論 60
第六章 未來研究方向 62
未來研究方向 62
參考文獻 63
圖目錄
圖2.1 動壓軸承作動模式(a)靜止模式(b)作動模式 9
圖2.2 頸軸承形態 9
圖2.3 流體動壓軸承壓力分布示意圖 11
圖2.4 軸承漸縮油楔的速度與壓力分佈 12
圖2.5 液柱的流動連續性 13
圖2.6元件力的平衡 14
圖2.7 註解: 18
圖2.8 半頻率狀態 19
圖2.9 此為單邊剛性潤滑軸承支撐轉子模型 21
圖3.1 圓柱形內磁模型(a) 靜止磁流體微型圓柱(b)具有渦漩運動磁流體微型圓柱 26
圖3.2 磁流體潤滑液 36
圖4.1 實驗之設計圖 38
圖4.2 ADRE 108 Data Acquisition Instrument 39
圖4.3 FW-BELL 5180高斯計 40
圖4.4 油軸承之工程圖 41
圖4.5油軸承實際圖 42
圖4.6 實際設計圖 42
圖4.7實驗之磁鐵實際圖 43
圖4.8 軸承內設定分析角度之位置 47
圖5.1未加入磁場時油軸承之全頻串聯圖 51
圖5.2未加入磁場前之油軸承頻譜圖(Spectrum Plots) 51
圖5.3 磁鐵位置編號 52
圖5.4 三顆磁鐵油軸承全頻串聯圖(Full Spectrum Cascade Plots) 53
圖5.6 六顆磁鐵油軸承全頻串聯圖(Full Spectrum Cascade Plots) 55
圖5.7 六顆磁鐵油軸承全頻串聯圖(Full Spectrum Cascade Plots) 56
圖5.8 六顆磁鐵之油軸承頻率分析圖(Spectrum Plots) 57
圖5.9七顆磁鐵油軸承全頻串聯圖(Full Spectrum Cascade Plots) 57
圖5.10八顆磁鐵油軸承全頻串聯圖(Full Spectrum Cascade Plots) 58


表目錄
表3-1 油基磁流體性質 36
表4.1 此為精密高斯計規格表 41
表4.2 磁力分析圖表 47
表4.3 內軸承磁力大小值 49
表5-1 各不同位置磁極影響由軸承之數值 60

[1]Oscar, Pinkus, “The Reynolds centennial: a brief history of the theory of hydrodynamic lubrication” Transactions of the ASME, Journal of Tribology, Vol.109, pp.2-20, 1987.
[2]Sami Naïmi, Mnaouar Chouchane, Jean-Louis Ligier “Steady state analysis of a hydrodynamic short bearing supplied with a circumferential groove” Comptes Rendus Mécanique , Vol.338, Issue 6, pp.338-349, June 2010.
[3]U. Singh, L. Roy, M. Sahu, “Steady-state thermo-hydrodynamic analysis of cylindrical fluid filmjournal bearing with an axial groove”Tribology International, Vol.41, Issue 12, pp.1135-1144, December 2008.
[4]F.P. Brito, A.S. Miranda, J.C.P. Claro, M. Fillon, “Experimental comparison of the performance of a journal bearing with a single and a twin axial groove configuration” Tribology International, Vol.54, pp.1-8, October 2012.
[5]Tomoko Hirayama, Naomi Yamaguchi, Shingo Sakai, Noriaki Hishida, Takashi Matsuoka, Hiroshi Yabe, “Optimization of groove dimensions in herringbone grooved journal bearings for improved repeatable run-out characteristics” Tribology International, Vol.42, Issue 5, pp.675-681, May 2009.
[6]J. H. Vohr, C. Y. Chow, “Characteristics of Herringbone-Grooved Gas-Lubrication Journal Bearings” Transactions of the ASME: Journal of Basic Engineering Technology, pp.568-578, 1965.
[7]D. J. Foster, D. Carowand, D. Benson, “An Approximate Theoretical Analysis of the Static and Dynamic Characteristics of the Herringbone Grooved, Gas Lubrication Journal Bearing, and Comparison with Experiment.”' Transactions of the ASME:Journal of Lubrication Technology, pp.25-35, 1969.
[8]Nobuy shi Kawabata, Yasumi Ozawa, Shuji Kamaya and Yutaka Miyake, “Static Characteristics of the Regular and Reversible Rotation Type Herringbone Grooved Journal Bearing” Transactions of the ASME:Journal of Tribology, Vol.111, pp.484-490, 1989.
[9]Dun Lu, Wanhua Zhao, Bingheng Lu, Jun Zhang “Static characteristics of a new hydrodynamic–rolling hybrid bearing” Tribology International, Vol.48, pp.87-92, April 2012.
[10]Dun Lui, Wanhua Zhao, Bingheng Lu, “Static characteristics of a new hydrodynamic–rolling hybrid bearing” Assembly and Manufacturing (ISAM)IEEE International Symposium on 25-27, May 2011
[11]Asada, T.Saitou, H. Itou D, “Design of hydrodynamic bearing for mobile hard disk drives” Magnetics, IEEE Transactions Vol 41, Issue 2 (2005), pp.741-743.
[12]R. M. Patel, G. M. Deheri, Pragna A. Vadher, “Performance of a Magnetic Fluid-based Short Bearing” Acta Polytechnica Hungarica, Vol.7, No.3, 2010.
[13]Salmiah Kasolang, Mohamad Ali Ahmad, Rob-Dwyer Joyce, Che Faridah Mat Taib, “Preliminary study of Pressure Profile in Hydrodynamic Lubrication Journal Bearing” Sciverse Science Direct Procedia Engineering 41 ( 2012 ) 1743 – 1749.
[14]Vijay Kumar Dwivedi, “Effect of Different Flow Regime on the Static and Dynamic Performance Parameter of Hydrodynamic Bearing” Procedia Engineering, Vol. 51, pp.520-528, 2013.
[15]M.I. Shliomis, “Magnetic fluids” Soviet Phys Uspekhi, 17 (2) (1974) 153– 169.
[16]B. U. Felderhof, “Magnet to viscosity and relaxation in ferrofuids” Physical review, Vol.62, No.3, 2000.
[17]Mark I. Shliomis, “Comment on Magnetoviscosity and relaxation in ferrofuids” arXiv:cond-mat/0106414v1, 2001.
[18]Joseph L. Neuringer, Ronald E. Rosensweig, “Ferro hydrodynamics” Phys. Fluids 7, 1927 (1964)
[19]R.E. Rosensweig, Ferro hydrodynamics. New York: Cambridge UniversityPress, 1985: republished by New York: Dover Publications, 1997.
[20]S. Odenbach, Magnet to viscous Effects in Ferrofluids, Springer, Berlin, 2002.
[21]B. Berkovski, V. Bashtovoy (Eds.), Magnetic Fluids and Applications,Begell House, New York, 1996.
[22]M. I. Shliomis, “Effective viscosity of magnetic suspensions” Soviet physics, vol.34, pp.1291-1294, 1972.
[23]A. Muszynska, “Rotor dynamics” CRC Taylor & Francis Group, 2005.
[24]D.E. Bently, “The death of whirl and whip” Bently Nevada Corporation ORBIT, pp.42–46, 2001.
[25]D.E. Bently, C.T. Hatch, R. Jesse and J. Whiteley, “Dynamic stiffness inwhirl and whip” Bently Nevada Corporation ORBIT, pp.4–9, 1998.
[26]D.E. Bently and C.T. Hatch, “Fundamentals of Rotating Machinery Diagnostics” Bently Pressurized Bearing Company, 2002.
[27]G. Adiletta, A.R. Guido and C. Rossi, “Nonlinear dynamics of a rigid unbalanced rotor in journal bearings—part II: experimental analysis” Nonlinear Dynamics, Vol.14, pp.157–189, 1997.
[28]H. Diken, “Non-linear vibration analysis and subharmonic whirl frequencies of the Jeffcott rotor model” Journal of Sound and Vibration, Vol.243, pp.117–125, 2001.
[29]J.K. Sinha, A.W. Lees and M.I. Friswell, “Estimating the static load on the fluid bearings of a flexible machine from run-down data” Mechanical System and Signal Processing, Vol.18, pp.1349–1368, 2004.
[30]Petchenve,A.,Bently,D.E.,Goldman,P, “1/3 Whirl Phonemenon : Case History on Vibaricated Response of a Rotor Supported in One Rigid and One Poorly Lubricated Fluid-Film Bearing” Bently Rotor Dynamic Research Corporation, Report No.6, 1999.
[31]Petchenve A.,Goldman P, Muszynska A., “Torque And Power Loss in a Cylindrical Fulid- Lubricated earing/Rotor System” 96-GT-408,IGTI/ASME TURBO EXPO, Birmingham, UK, pp.1-6, 1996.
[32]Petchenve ,A., Bently, D.E., Goldman, P., Muszynska, A. “Analytical Study on the Fulid Journal Bearing/Seal/Rotor System” The Joint ASME & JSME Fulids Engineering Annual Conference, Hilton Head Isl.SC, FED-Vol.207, p33-38, 1995.
[33]Ghosh, B., “An Exact Analysis of a Hydrostatic Journal Bearing With a Large Circumferential Sill” Wear, Vol.21, pp.367-375, 1972.
[34]Ghosh B., “Load And Flow Characteristics of Capillary-Compensated Hydrostatic Journal Bearing” Wear Vol.23, pp.377-386, 1973.
[35]H Montazeri, “Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid” Journal of Engineering Tribology, Vol.222, no.1, pp.51-60, January 2008.
[36]H Montazeri, “ Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid” Journal of Engineering Tribology 222: 51, 2008.
[37]Chi Changqing“Ferrofluid Lubricated Journal Bearing in Uniform Magnetic Field” Journal of Aerospace Power, 15(2), pp.174-178, 2000
[38]Chi Changqing, “On performance of Ferrofluid Lubrica-ted Plane Slider in Uniform Magnetic Field” Journal of Beijing University of Aeronautics and Astronautics, 27(1), pp.93-96, 2001.
[39]Chi Changqing, “Non-Newtonian Effects on Ferrofluid Lubrication” Journal of Beijing University of Aeronautics and Astronautics, 27(1), pp.88-92, 2001.
[40]Hu Guoxiang “Calculation and Analysis of Load Capacity for Sliding Bearing Lubricated with Ferrofluid” Lubrication Engineering, pp.12-15, 1996.
[41]C.C. Fan and M.C. Pan, “Fluid-induced instability elimination frotor-bearing system with an electromagnetic exciter” International Journal of Mechanical Sciences, Vol.52, pp.581-589, 2010.
[42]C.C. Fan and M.C. Pan, “Experimental study on the whip elimination of rotor-bearing systems with electromagnetic exciters” Mechanism and Machine Theory, Vol.46, pp.290-304, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top