|
[1] J. Berstel, P. Seebold, Morphismes de Sturm, B. Belg. Math. Soc. 1 (1994) 175-189. [2] T.C. Brown, A characterization of the quadratic irrationals, Can. Math. Bull. 34 (1991) 36-41. [3] T.C. Brown, Descriptions of the characteristic sequence of an irrational, Can. Math. Bull. 36 (1993) 15-21. [4] W.-T. Cao, Z.-Y. Wen, Some properties of the factors of Sturmian sequences, Theor. Comput. Sci. 304 (2003) 365-385. [5] W.-F. Chuan, Fibonacci words, Fibonacci Quart. 30.1 (1992) 68-76. [6] W.-F. Chuan, Embedding Fibonacci words into Fibonacci word patterns, in: G.E. Bergum, A.N. Philippou, A.F. Horadam (Eds.), Applications of Fibonacci Numbers Vol. 5 (Kluwer, Dordrecht, 1993) 113-122. [7] W.-F. Chuan, Subwords of the golden sequence and the Fibonacci words, in: G.E. Bergum, A.N. Philippou, A.F. Horadam (Eds.), Applications of Fibonacci Numbers, Vol. 6 (Kluwer, Dordrecht, 1996) 73-84. [8] W.-F. Chuan, α-words and factors of characteristic sequences, Discrete Math. 177 (1997) 33-50. [9] W.-F. Chuan, A representation theorem of the suffixes of characteristic sequences, Discrete Appl. Math. 85 (1998) 47-57. [10] W.-F. Chuan, Unbordered factors of the characteristic sequences of irrational numbers, Theor. Comput. Sci. 205 (1998) 337-344. [11] W.-F. Chuan, Sturmian morphisms and α-words, Theor. Comput. Sci. 225 (1999) 129-148. [12] W.-F. Chuan, Characterizations of α-words, moments, and determinants, Fibonacci Quart. 41.3 (2003) 194-208. [13] W.-F. Chuan, C.-H. Chang, Y.-L. Chang, Suffixes of Fibonacci word patterns, Fibonacci Quart. 38.5 (2000) 432-438. [14] W.-F. Chuan, Factors of characteristic words of irrational numbers, Theor. Comput. Sci. 337 (2005) 169-182. [15] W.-F. Chuan, H.-L. Ho, Factors of characteristic words: location and decompositions, Theor. Comput. Sci. 411 (2010) 2827-2846. [16] W.-F. Chuan, H.-L. Ho, Locating factors of a characteristic word via the Zeckendorf representation of numbers, Theor. Comput. Sci. 440-441 (2012) 39-51. [17] W.-F. Chuan, F.-Y. Liao, The D-representation of nonnegative integers and the Fibonacci factorization of suffixes of infinite Fibonacci words, Discrete Appl. Math., to appear. [18] W.-F. Chuan, F.-Y. Liao, H.-L. Ho, F. Yu, Fibonacci word patterns in two-way infinite Fibonacci words, Theor. Comput. Sci. 437 (2012) 69-81. [19] W.-F. Chuan, F. Yu, Three new extraction formulae, Fibonacci Quart. 45.1 (2007) 76-84. [20] A. de Luca, A division property of the Fibonacci word, Inform. Process. Lett. 54 (1995) 307-312. [21] N.P. Fogg, V. Berthe, S. Ferenczi, C. Mauduit, A. Siegel, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, Vol. 1794 (2002), Chapter 6. [22] A.S. Fraenkel, Systems of numeration, Am. Math. Mon. 92 (1985) 105-114. [23] A.S. Fraenkel, I. Borosh, A generalization of Wythoff's game, J. Comb. Theory A 15 (1973) 175-191. [24] A.S. Fraenkel, J. Levitt, M. Shimshoni, Characterization of the set of values f=[nα], n=1, 2,…, Discrete Math. 2 (1972) 335-345. [25] Amy Glen, Occurrences of palindromes in characteristic Sturmian words, Theor. Comput. Sci. 352 (2006) 31-46. [26] V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, New York, Houghton Mifflin Company, 1969. [27] S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y], Jpn. J. Math 16 (1990) 287-306. [28] M. Lothaire, Combinatorics on Words, Cambridge Univ. Press, 2002, Chapter 2. [29] G. Melancon, Viennot factorization of infinite words, Inform. Process. Lett. 60 (1996) 53-57. [30] G. Melancon, Lyndon words and singular factors of Sturmian words, Theor. Comput. Sci. 218 (1999) 41-59. [31] G. Melancon, Lyndon factorization of Sturmian words, Discrete Math. 210 (2000) 137-149. [32] H.-J. Shyr, Free Monoids and Languages, Lecture Notes, Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan, ROC (1991). [33] K. Tognetti, G. Winley, T. van Ravenstein, The Fibonacci Tree, Hofstader and the Golden String, in: G.E. Bergum, A.N. Philippou, A.F. Horadam (Eds.), Applications of Fibonacci numbers, Vol.3 (Kluwer, Dordrecht, 1990) 325-334. [34] J.C. Turner, Fibonacci word patterns and binary sequences, Fibonacci Quart. 26.3 (1988) 233-246. [35] J.C. Turner, The alpha and the omega of the Wythoff pairs, Fibonacci Quart. 27.1 (1989) 76-86. [36] B.A. Venkov, Elementary Number Theory, Wolters-Noorhoff, Groningen, 1970. [37] Z.-X. Wen, Z.-Y. Wen, Some properties of the singular words of the Fibonacci word, Eur. J. Combin. 15 (1994) 587-598.
|
| |