|
1Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J. &; El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41, 2740-2779, doi:Doi 10.1039/C1cs15237h (2012). 2Grzelczak, M., Perez-Juste, J., Mulvaney, P. &; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem Soc Rev 37, 1783-1791, doi:Doi 10.1039/B711490g (2008). 3Gou, L. &; Murphy, C. J. Fine-Tuning the Shape of Gold Nanorods. Chem Mater 17, 3668-3672, doi:10.1021/cm050525w (2005). 4Murphy, C. J. et al. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts Chem Res 41, 1721-1730, doi:Doi 10.1021/Ar800035u (2008). 5Nehl, C. L. &; Hafner, J. H. Shape-dependent plasmon resonances of gold nanoparticles. Journal of materials chemistry 18, 2415-2419, doi:Doi 10.1039/B714950f (2008). 6Tao, A. R., Habas, S. &; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 4, 310-325, doi:DOI 10.1002/smll.200701295 (2008). 7Lohse, S. E. &; Murphy, C. J. The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem Mater 25, 1250-1261, doi:Doi 10.1021/Cm303708p (2013). 8Eustis, S. &; el-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35, 209-217, doi:10.1039/b514191e (2006). 9Sun, X. L. et al. Longitudinal surface plasmon resonance assay enhanced by magnetosomes for simultaneous detection of Pefloxacin and Microcystin-LR in seafoods. Biosensors &; bioelectronics 47, 318-323, doi:DOI 10.1016/j.bios.2013.03.046 (2013). 10Murphy, C. J. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 109, 13857-13870, doi:10.1021/jp0516846 (2005). 11Kumar, J. &; Thomas, K. G. Surface-Enhanced Raman Spectroscopy: Investigations at the Nanorod Edges and Dimer Junctions. J Phys Chem Lett 2, 610-615, doi:Doi 10.1021/Jz2000613 (2011). 12Mueller, J. E., van Duin, A. C. T. &; Goddard, W. A. Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel. J Phys Chem C 114, 4939-4949, doi:Doi 10.1021/Jp9035056 (2010). 13Wild, B. et al. Propagation Lengths and Group Velocities of Plasmons in Chemically Synthesized Gold and Silver Nanowires. Acs Nano 6, 472-482, doi:Doi 10.1021/Nn203802e (2012). 14Khlebtsov, N. &; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40, 1647-1671, doi:Doi 10.1039/C0cs00018c (2011). 15Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35, 1084-1094, doi:Doi 10.1039/B517615h (2006). 16Burda, C., Chen, X., Narayanan, R. &; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem Rev 105, 1025-1102, doi:10.1021/cr030063a (2005). 17Shan, G., Zheng, S., Chen, S., Chen, Y. &; Liu, Y. Detection of label-free H2O2 based on sensitive Au nanorods as sensor. Colloids and surfaces. B, Biointerfaces 102, 327-330, doi:10.1016/j.colsurfb.2012.07.041 (2013). 18Smitha, S. L., Gopchandran, K. G., Smijesh, N. &; Philip, R. Size-dependent optical properties of Au nanorods. Prog Nat Sci-Mater 23, 36-43, doi:DOI 10.1016/j.pnsc.2013.01.005 (2013). 19Niu, W. X., Zhang, L. &; Xu, G. B. Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale 5, 3172-3181, doi:Doi 10.1039/C3nr00219e (2013). 20Murphy, C. J., Gole, A. M., Hunyadi, S. E. &; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45, 7544-7554, doi:Doi 10.1021/Ic0519382 (2006). 21Dreaden, E. C., Mackey, M. A., Huang, X. H., Kang, B. &; El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem Soc Rev 40, 3391-3404, doi:Doi 10.1039/C0cs00180e (2011). 22Zhong, Y. N. et al. Gold Nanorod-Cored Biodegradable Micelles as a Robust and Remotely Controllable Doxorubicin Release System for Potent Inhibition of Drug-Sensitive and -Resistant Cancer Cells. Biomacromolecules 14, 2411-2419, doi:Doi 10.1021/Bm400530d (2013). 23El-Sayed, B. N. a. M. A. Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods. Langmuir 17, 6368-6374 (2001). 24Nikoobakht, B. &; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem Mater 15, 1957-1962, doi:10.1021/cm020732l (2003). 25Gao, J. X., Bender, C. M. &; Murphy, C. J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19, 9065-9070, doi:Doi 10.1021/La034919i (2003). 26Li, X., Qian, J. &; He, S. Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing. Nanotechnology 19, 355501, doi:10.1088/0957-4484/19/35/355501 (2008). 27Bogliotti, N. et al. Optimizing the formation of biocompatible gold nanorods for cancer research: functionalization, stabilization and purification. Journal of colloid and interface science 357, 75-81, doi:10.1016/j.jcis.2011.01.053 (2011). 28Orendorff, C. J., Alam, T. M., Sasaki, D. Y., Bunker, B. C. &; Voigt, J. A. Phospholipid-Gold Nanorod Composites. Acs Nano 3, 971-983, doi:Doi 10.1021/Nn900037k (2009). 29Lee, S. E. et al. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. Journal of the American Chemical Society 131, 14066-14074, doi:10.1021/ja904326j (2009). 30Truby, R. L., Emelianov, S. Y. &; Homan, K. A. Ligand-Mediated Self-Assembly of Hybrid Plasmonic and Superparamagnetic Nanostructures. Langmuir, doi:10.1021/la3037549 (2013). 31Zong, S. F. et al. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. Biosensors &; bioelectronics 41, 745-751, doi:DOI 10.1016/j.bios.2012.09.057 (2013). 32Zhang, B. Q., Li, S. B., Xiao, Q., Li, J. &; Sun, J. J. Rapid synthesis and characterization of ultra-thin shell Au@SiO2 nanorods with tunable SPR for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J Raman Spectrosc 44, 1120-1125, doi:Doi 10.1002/Jrs.4336 (2013). 33Gole, A. &; Murphy, C. J. Azide-derivatized gold nanorods: Functional materials for "Click" chemistry. Langmuir 24, 266-272, doi:Doi 10.1021/La7026303 (2008). 34Goodwin, A. P. et al. Phospholipid-Dextran with a Single Coupling Point: A Useful Amphiphile for Functionalization of Nanomaterials. Journal of the American Chemical Society 131, 289-296, doi:Doi 10.1021/Ja807307e (2009). 35Takahashi, H. et al. Modification of gold nanorods using phospatidylcholine to reduce cytotoxicity. Langmuir 22, 2-5, doi:Doi 10.1021/La0520029 (2006). 36Ling Tong, Q. W., Alexander Wei and Ji-Xin Cheng. Gold Nanorods as Contrast Agents for Biological Imaging Optical Properties, Surface Conjugation and Photothermal Effects. Photochem Photobiol (2009). 37Gittins, D. I. &; Caruso, F. Biological and physical applications of water-based metal nanoparticles synthesised in organic solution. Chemphyschem 3, 110-113, doi:10.1002/1439-7641(20020118)3:1<110::AID-CPHC110>3.0.CO;2-Q (2002). 38Alkilany, A. M. &; Murphy, C. J. Gold nanoparticles with a polymerizable surfactant bilayer: synthesis, polymerization, and stability evaluation. Langmuir 25, 13874-13879, doi:10.1021/la901270x (2009). 39Chen, X. J., Lawrence, J., Parelkar, S. &; Emrick, T. Novel Zwitterionic Copolymers with Dihydrolipoic Acid: Synthesis and Preparation of Nonfouling Nanorods. Macromolecules 46, 119-127, doi:Doi 10.1021/Ma301288m (2013). 40Karakoti, A. S., Das, S., Thevuthasan, S. &; Seal, S. PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl 50, 1980-1994, doi:10.1002/anie.201002969 (2011). 41Pierrat, S., Zins, I., Breivogel, A. &; Sonnichsen, C. Self-assembly of small gold colloids with functionalized gold nanorods. Nano Lett 7, 259-263, doi:Doi 10.1021/Nl062131p (2007). 42Wang, C., Chen, J., Talavage, T. &; Irudayaraj, J. Gold nanorod/Fe3O4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed Engl 48, 2759-2763, doi:10.1002/anie.200805282 (2009). 43Kim, J. et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Edit 45, 7754-7758, doi:DOI 10.1002/anie.200602471 (2006). 44Xu, C. et al. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Edit 47, 173-176, doi:DOI 10.1002/anie.200704392 (2008). 45Liong, M. et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano 2, 889-896, doi:Doi 10.1021/Nn800072t (2008). 46Larson, T. A., Bankson, J., Aaron, J. &; Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18, doi:Artn 325101 Doi 10.1088/0957-4484/18/32/325101 (2007). 47Wang, L. Y., Bai, J. W., Li, Y. J. &; Huang, Y. Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew Chem Int Edit 47, 2439-2442, doi:DOI 10.1002/anie.200800014 (2008). 48Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538-544, doi:DOI 10.1126/science.1104274 (2005). 49Wang, L. et al. Watching silica nanoparticles glow in the biological world. Analytical chemistry 78, 646-654, doi:Doi 10.1021/Ac0693619 (2006). 50Tan, W. H. et al. Bionanotechnology based on silica nanoparticles. Med Res Rev 24, 621-638, doi:Doi 10.1002/Med.20003 (2004). 51Xia, Y., Song, L. &; Zhu, C. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Analytical chemistry 83, 1401-1407, doi:10.1021/ac1028825 (2011). 52Tang, L., Casas, J. &; Venkataramasubramani, M. Magnetic Nanoparticle Mediated Enhancement of Localized Surface Plasmon Resonance for Ultrasensitive Bioanalytical Assay in Human Blood Plasma. Analytical chemistry 85, 1431-1439, doi:Doi 10.1021/Ac302422k (2013). 53Liang, G. X. et al. Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Biosensors &; bioelectronics 24, 3693-3697, doi:DOI 10.1016/j.bios.2009.05.008 (2009). 54Zeng, Q. et al. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chem Commun (Camb) 48, 1781-1783, doi:10.1039/c2cc16271g (2012). 55Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271, 933-937 (1996). 56Klein, D. L., McEuen, P. L., Katari, J. E. B., Roth, R. &; Alivisatos, A. P. An approach to electrical studies of single nanocrystals. Applied Physics Letters 68, 2574-2576 (1996). 57Alkilany, A. M., Lohse, S. E. &; Murphy, C. J. The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano-Bio Interface. Accounts Chem Res 46, 650-661, doi:Doi 10.1021/Ar300015b (2013). 58Link, S., Wang, Z. L. &; El-Sayed, M. A. Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. J. Phys. Chem. B 103, 3529-3533 (1999). 59Huang, X., Neretina, S. &; El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Advanced Materials 21, 4880-4910, doi:10.1002/adma.200802789 (2009). 60Yu, Y.-Y., Chang, S.-S., Lee, C.-L. &; Wang, C. R. C. Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 101, 6661-6664 (1997). 61Ser-Sing Chang, C.-W. S., Cheng-Dah Chen, Wei-Cheng Lai, and &; Wang, C. R. C. The Shape Transition of Gold Nanorods. Langmuir 15, 701-709 (1999). 62Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M. &; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin Chem Rev 249, 1870-1901, doi:DOI 10.1016/j.ccr.2005.01.030 (2005). 63Pérez-Juste, J., Liz-Marzán, L. M., Carnie, S., Chan, D. Y. C. &; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 14 (2004). 64Jana, N. R., Gearheart, L. &; Murphy, C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 13, 1389-1393 (2001). 65Jana, N. R., Gearheart, L. &; Murphy, C. J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B 105, 4065-4067 (2001). 66Kim, F., Song, J. H. &; Yang, P. Photochemical synthesis of gold nanorods. Journal of the American Chemical Society 124, 14316-14317 (2002). 67Niidome, Y., Nishioka, K., Kawasaki, H. &; Yamada, S. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem Commun (Camb), 2376-2377 (2003). 68Murphy, C. J. &; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials 14, 80-82, doi:Doi 10.1002/1521-4095(20020104)14:1<80::Aid-Adma80>3.0.Co;2-# (2002). 69Sau, T. K. &; Murphy, C. J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 2923-2929, doi:Doi 10.1021/La047488s (2005). 70Huang, H. C., Barua, S., Kay, D. B. &; Rege, K. Simultaneous Enhancement of Photothermal Stability and Gene Delivery Efficacy of Gold Nanorods Using Polyelectrolytes. Acs Nano 3, 2941-2952, doi:Doi 10.1021/Nn900947a (2009). 71Boev, V. I. et al. Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles. Langmuir 20, 10268-10272, doi:Doi 10.1021/La048902r (2004). 72Zhan, Q., Qian, J., Li, X. &; He, S. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology 21, 055704, doi:10.1088/0957-4484/21/5/055704 (2010). 73Murphy, A. G. a. C. J. Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization. Chem Mater 17, 1325-1330 (2005). 74Wijaya, A. &; Hamad-Schifferli, K. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir 24, 9966-9969, doi:10.1021/la8019205 (2008). 75Liu, J., Chang, M. J., Gao, B., Xu, Z. G. &; Zhang, H. L. Sonication-assisted synthesis of multi-functional gold nanorod/silica core-shell nanostructures. J Alloy Compd 551, 405-409, doi:DOI 10.1016/j.jallcom.2012.11.042 (2013). 76Khan, Z., Singh, T., Hussain, J. I. &; Hashmi, A. A. Au(III)-CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. Colloid Surface B 104, 11-17, doi:DOI 10.1016/j.colsurfb.2012.11.017 (2013). 77Zhai, C. X. et al. One-Pot Synthesis of Biocompatible CdSe/CdS Quantum Dots and Their Applications as Fluorescent Biological Labels. Nanoscale Res Lett 6, doi:Artn 31 Doi 10.1007/S11671-010-9774-Z (2011). 78Lin, C. A. J. et al. Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. J Med Biol Eng 29, 276-283 (2009). 79Mooradian, A. Photolumuinescence of Metals. Phys Rev Lett 22, 185-187 (1969). 80Zheng, J., Petty, J. T. &; Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. Journal of the American Chemical Society 125, 7780-7781, doi:10.1021/ja035473v (2003). 81Jie Zheng, C. Z., and Robert M. Dickson. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93, 077402 (2004). 82Bao, Y. P. et al. Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C 111, 12194-12198, doi:Doi 10.1021/Jp071727d (2007). 83Huang, C. C., Yang, Z., Lee, K. H. &; Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed Engl 46, 6824-6828, doi:10.1002/anie.200700803 (2007). 84Huang, C. C. et al. Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. Journal of materials chemistry 19, 755-759, doi:Doi 10.1039/B808594c (2009). 85Negishi, Y., Nobusada, K. &; Tsukuda, T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. Journal of the American Chemical Society 127, 5261-5270, doi:10.1021/ja042218h (2005). 86Negishi, Y. et al. Magic-numbered Au(n) clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. Journal of the American Chemical Society 126, 6518-6519, doi:10.1021/ja0483589 (2004). 87Link, S. et al. Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106, 3410-3415, doi:Doi 10.1021/Jp014259v (2002). 88Whetten*, T. P. B. a. R. L. Near-Infrared Luminescence from Small Gold Nanocrystals. J. Phys. Chem. B 104, 6983-6986 (2000). 89Negishi, Y. &; Tsukuda, T. Visible photoluminescence from nearly monodispersed Au-12 clusters protected by meso-2,3-dimercaptosuccinic acid. Chemical Physics Letters 383, 161-165, doi:DOI 10.1016/j.cplett.2003.10.136 (2004). 90Wang, G. L., Guo, R., Kalyuzhny, G., Choi, J. P. &; Murray, R. W. NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au-38 and Au-140 quantum dots. J Phys Chem B 110, 20282-20289, doi:Doi 10.1021/Jp0640528 (2006). 91Wang, G. L., Huang, T., Murray, R. W., Menard, L. &; Nuzzo, R. G. Near-IR luminescence of monolayer-protected metal clusters. Journal of the American Chemical Society 127, 812-813, doi:Doi 10.1021/Ja0452471 (2005). 92Murray*, T. H. a. R. W. Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters. J. Phys. Chem. B 105, 12498-12502 (2001). 93Lin, C. A. et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Acs Nano 3, 395-401, doi:10.1021/nn800632j (2009). 94Jana, N. R. &; Peng, X. G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. Journal of the American Chemical Society 125, 14280-14281, doi:Doi 10.1021/Ja038219b (2003). 95Xie, J. P., Zheng, Y. G. &; Ying, J. Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society 131, 888-+, doi:Doi 10.1021/Ja806804u (2009). 96Cheng-An J. Lin, R. A. S., Jimmy K. Li, Ting-Ya Yang, Pei-Yun Li, Marco Zanella, Walter H. Chang, andWolfgang J. Parak. Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. Small 4, 301–384 (2008). 97Hafne, H. L. a. J. H. Gold Nanorod Bioconjugates. Chem Mater 17, 4636-4641 (2005). 98Thierry, B., Ng, J., Krieg, T. &; Griesser, H. J. A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chem Commun, 1724-1726 (2009). 99Luo, Z. et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. Journal of the American Chemical Society 134, 16662-16670, doi:10.1021/ja306199p (2012). 100Kuan, S. L., Wu, Y. Z. &; Weil, T. Precision Biopolymers from Protein Precursors for Biomedical Applications. Macromol Rapid Comm 34, 380-392, doi:DOI 10.1002/marc.201200662 (2013). 101Boca, S. C. &; Astilean, S. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21, 235601, doi:10.1088/0957-4484/21/23/235601 (2010).
|