(3.238.173.209) 您好!臺灣時間:2021/05/16 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳致瑋
研究生(外文):Zhi-Wei Chen
論文名稱:螢光金奈米團簇應用於金奈米棒表面生物接枝技術探討
論文名稱(外文):Surface Coating and Bioconjugation of Gold Nanorod via Ultrasmall Fluorescent Gold Nanoclusters
指導教授:林政鞍張恒雄
指導教授(外文):Cheng-An J. LinWalter H. Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:94
中文關鍵詞:聚乙二醇化表面電漿共振效應十六烷三甲基溴化銨金奈米團簇巰基化合物金奈米棒
外文關鍵詞:SPRmercapto compoundsgold nanoclustersCTABPEGylationgold nanorod
相關次數:
  • 被引用被引用:1
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來奈米科技蓬勃發展,金奈米材料優異生物相容性被受重視,根據結構及粒徑大小而有更多元的應用性。金奈米棒依據入射光頻率產生表面電漿共振效應(SPR)吸收,其SPR吸收波段介於可見光與近紅外光間,廣泛應用於生醫、光電及顯影技術。包覆金奈米棒表面介面活性劑-十六烷三甲基溴化銨(CTAB),易脫附金奈米棒表面因而產生細胞毒性,因此發展各種金奈米棒表面方法,如聚電解質(polyelectrolyte)包覆、二氧化矽(silica)殼層,配位鍵結硫醇基(-SH)分子及親疏水性作用力的磷脂質(phospholipid)批覆,種種改質辦法皆克服了金奈米棒表面改質的問題,但反應時間過於冗長及其改質辦法影響金奈米棒原有光學特性。本論文提出新型、簡便且快速的表面改質辦法,以靜電作用力(electrostatic force)的原理,合成具有羧基表面的螢光金奈米團簇(AuNCs@DHLA)吸附於金奈米棒表面的CTAB,以紫外光-可見光吸收光光譜儀分析奈米粒子特徵吸收波峰變化量,穿隧式電子顯微鏡觀察奈米粒子結構,瓊脂糖凝膠電泳分析奈米粒子表面官能化特性及其泳動狀況;市售巰基化合物(TMAC)取代金奈米棒表面CTAB,提供良好的穩定性於金奈米棒且解決了介面活性劑脫附的現象;本論文也比較了六奈米金粒子與AuNCs@DHLA吸附金奈米棒之差異性,結果發現AuNCs@DHLA提供的單位電荷密度優於於六奈米金粒子,並且其羧基表面黏附金奈米棒效果優於其他的螢光金奈米團簇,如AuNCs@BSA、AuNCs@GSH。最後,使用本研究中最佳的AuNCs@DHLA吸附於以CTAB和TMAC修飾後的金奈米棒,並進行各種聚乙二醇化的探討,以提供良好的生物介面於各種應用。


In recent years nanotechnology is flourishing, gold based materials have excellent biocompatibility. By tuning the particle size and shape, a diverse range of applications are readily available. For a certain range of frequency of an incident light irradiated upon gold nanorod (AuNR), surface plasmon resonance (SPR) effect can be produced. The SPR effect was utilized to acquire the absorption bands between visible and near-infrared light (NIR) of the AuNR for biomedical, optical electronics, and imaging applications. Capping agents like cetyltrimethylammonium bromide (CTAB) enhances the stability of gold nanorod but the problem is its cytotoxicity, so CTAB was replaced by a surface modification method using polyelectrolyte coating, silica shell, and dative bonding of thiol group molecules or hydrophilic and hydrophobic phospholipid coating. Most modifications to overcome gold nanorod surface problems took long reaction time and it influenced the original optical properties of gold nanorod. This research proposed a novel, simple, electrostatic force based principle approach to modify the surface of the AuNR, the surface of gold nanoclusters (AuNCs@DHLA) contain carboxyl groups which are anionic and were used to attach on the AuNR’ cationic surface, AuNCs@DHLA is more efficient than other gold nanoclusters. To verify the nanoparticle specific absorption wavelength, structure, functionalization and mobility status; UV-Vis absorption spectra, transmission electron microscopy and agarose gel electrophoresis was done respectively. The commercialized mercapto compounds (N, N, N-trimethyl (11-mercaptoundecyl) ammonium chloride, TMAC) replaced the AuNR’ CTAB on the surface, then the attachment efficiency and bio-functionalization of TMAC to gold nanoclusters was analyzed. The attachment efficiency between 6 nm nanoparticles and AuNCs@DHLA was compared. As a result, AuNCs@DHLA provides superior unit charge density than 6 nm gold nanoparticles, carboxylic groups attached more efficiently on AuNR compared to other gold nanoclusters (AuNCs@BSA, AuNCs@GSH). Finally, AuNCs@DHLA was attached on the gold nanorod surface containing CTAB or TMAC, and a variety of PEGylation was done. As a result, better biological interface can be provided in a variety of applications.


摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 前言 1
1-1研究背景 1
1-1-1金奈米粒子之進展 1
1-1-2金奈米棒之表面特性 2
1-1-3金奈米棒複合材料 3
1-2研究目的 5
第二章 文獻回顧 6
2-1金屬奈米粒子 6
2-1-1奈米金屬材料-金奈米棒 8
2-2金奈米棒表面修飾與衍生化 10
2-2-1金奈米棒表面改質聚電解質(polyelectrolyte) 13
2-2-2金奈米棒表面改質巰基化合物(alkanethiol) 15
2-2-3金奈米棒表面改質磷脂體(phospholipid) 17
2-2-4金奈米棒表面改質二氧化矽(silica)殼層 19
2-3陽離子介面活性劑(CTAB) 20
2-4螢光奈米材料 22
2-4-1螢光金屬奈米團簇合成 23
2-4-2藍色螢光金奈米團簇 24
2-4-3綠色螢光金奈米團簇 25
2-4-4紅色螢光金奈米團簇 27
2-5螢光金奈米團簇生物接枝 29
第三章 研究材料與方法 30
3-1研究架構 30
3-2製備金奈米棒複合材料與方法 31
3-2-1合成金奈米棒(AuNR@CTAB) 31
3-2-2水相金奈米粒子(AuNP@CTAB) 32
3-2-3合成六奈米金粒子(6 nm AuNP)&;水相改質 34
3-2-4合成兩性高分子 34
3-2-5螢光金奈米團簇合成 35
3-2-6紅色螢光金奈米團簇(AuNCs@DHLA)表面修飾雙官能化聚乙二醇(NH2-PEG6k-NH2, NH2-PEG5k-Biotin, NH2-PEG5k-OCH3) 37
3-2-7巰基化合物表面改質 38
3-2-8金奈米粒子與螢光金奈米團簇之複合物 39
3-2-9聚乙二醇化金奈米棒複合材料 40
3-3分析金奈米粒子複合物材料與方法 41
3-3-1瓊脂糖凝膠電泳分析(Agarose gel electrophoresis) 41
3-3-2紫外光-可見光吸收光光譜儀分析(UV-Vis absorption spectra) 41
3-3-3穿透式電子顯微鏡(Transmission electron microscopy) 41
第四章 結果與討論 42
4-1金奈米棒 42
4-2金奈米棒表面吸附螢光金奈米團簇(AuNCs@DHLA)或聚乙二醇(HS-PEG3k-COOH)之比較 43
4-3金奈米棒與螢光金奈米團簇交互作用之複合物 45
4-4不同粒徑及特性金奈米粒子吸附金奈米棒表面之比較 49
4-5金奈米棒表面四級銨結構探討 52
4-6螢光金奈米團簇與金奈米棒之濃度比 55
4-7金奈米棒複合粒子(AuNR@CTAB@NC, AuNR@TMAC@NC)聚乙二醇化(NH2-PEGn-CH3O, n=2k, 5k, 10k, 20k) 58
4-8水相金奈米粒子(AuNP@CTAB)吸附螢光金奈米團簇之探討 63
4-9紅色螢光金奈米團簇(AuNCs@DHLA)表面修飾雙官能化聚乙二醇(NH2-PEG6k-NH2, NH2-PEG5k-Biotin, NH2-PEG5k-OCH3)吸附於金奈米棒表面 65
第五章 結論 69
參考文獻 71
附錄一、實驗藥品 80
附錄二、實驗儀器 82

1Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J. &; El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41, 2740-2779, doi:Doi 10.1039/C1cs15237h (2012).
2Grzelczak, M., Perez-Juste, J., Mulvaney, P. &; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem Soc Rev 37, 1783-1791, doi:Doi 10.1039/B711490g (2008).
3Gou, L. &; Murphy, C. J. Fine-Tuning the Shape of Gold Nanorods. Chem Mater 17, 3668-3672, doi:10.1021/cm050525w (2005).
4Murphy, C. J. et al. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts Chem Res 41, 1721-1730, doi:Doi 10.1021/Ar800035u (2008).
5Nehl, C. L. &; Hafner, J. H. Shape-dependent plasmon resonances of gold nanoparticles. Journal of materials chemistry 18, 2415-2419, doi:Doi 10.1039/B714950f (2008).
6Tao, A. R., Habas, S. &; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 4, 310-325, doi:DOI 10.1002/smll.200701295 (2008).
7Lohse, S. E. &; Murphy, C. J. The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem Mater 25, 1250-1261, doi:Doi 10.1021/Cm303708p (2013).
8Eustis, S. &; el-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35, 209-217, doi:10.1039/b514191e (2006).
9Sun, X. L. et al. Longitudinal surface plasmon resonance assay enhanced by magnetosomes for simultaneous detection of Pefloxacin and Microcystin-LR in seafoods. Biosensors &; bioelectronics 47, 318-323, doi:DOI 10.1016/j.bios.2013.03.046 (2013).
10Murphy, C. J. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 109, 13857-13870, doi:10.1021/jp0516846 (2005).
11Kumar, J. &; Thomas, K. G. Surface-Enhanced Raman Spectroscopy: Investigations at the Nanorod Edges and Dimer Junctions. J Phys Chem Lett 2, 610-615, doi:Doi 10.1021/Jz2000613 (2011).
12Mueller, J. E., van Duin, A. C. T. &; Goddard, W. A. Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel. J Phys Chem C 114, 4939-4949, doi:Doi 10.1021/Jp9035056 (2010).
13Wild, B. et al. Propagation Lengths and Group Velocities of Plasmons in Chemically Synthesized Gold and Silver Nanowires. Acs Nano 6, 472-482, doi:Doi 10.1021/Nn203802e (2012).
14Khlebtsov, N. &; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40, 1647-1671, doi:Doi 10.1039/C0cs00018c (2011).
15Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35, 1084-1094, doi:Doi 10.1039/B517615h (2006).
16Burda, C., Chen, X., Narayanan, R. &; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem Rev 105, 1025-1102, doi:10.1021/cr030063a (2005).
17Shan, G., Zheng, S., Chen, S., Chen, Y. &; Liu, Y. Detection of label-free H2O2 based on sensitive Au nanorods as sensor. Colloids and surfaces. B, Biointerfaces 102, 327-330, doi:10.1016/j.colsurfb.2012.07.041 (2013).
18Smitha, S. L., Gopchandran, K. G., Smijesh, N. &; Philip, R. Size-dependent optical properties of Au nanorods. Prog Nat Sci-Mater 23, 36-43, doi:DOI 10.1016/j.pnsc.2013.01.005 (2013).
19Niu, W. X., Zhang, L. &; Xu, G. B. Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale 5, 3172-3181, doi:Doi 10.1039/C3nr00219e (2013).
20Murphy, C. J., Gole, A. M., Hunyadi, S. E. &; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45, 7544-7554, doi:Doi 10.1021/Ic0519382 (2006).
21Dreaden, E. C., Mackey, M. A., Huang, X. H., Kang, B. &; El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem Soc Rev 40, 3391-3404, doi:Doi 10.1039/C0cs00180e (2011).
22Zhong, Y. N. et al. Gold Nanorod-Cored Biodegradable Micelles as a Robust and Remotely Controllable Doxorubicin Release System for Potent Inhibition of Drug-Sensitive and -Resistant Cancer Cells. Biomacromolecules 14, 2411-2419, doi:Doi 10.1021/Bm400530d (2013).
23El-Sayed, B. N. a. M. A. Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods. Langmuir 17, 6368-6374 (2001).
24Nikoobakht, B. &; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem Mater 15, 1957-1962, doi:10.1021/cm020732l (2003).
25Gao, J. X., Bender, C. M. &; Murphy, C. J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19, 9065-9070, doi:Doi 10.1021/La034919i (2003).
26Li, X., Qian, J. &; He, S. Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing. Nanotechnology 19, 355501, doi:10.1088/0957-4484/19/35/355501 (2008).
27Bogliotti, N. et al. Optimizing the formation of biocompatible gold nanorods for cancer research: functionalization, stabilization and purification. Journal of colloid and interface science 357, 75-81, doi:10.1016/j.jcis.2011.01.053 (2011).
28Orendorff, C. J., Alam, T. M., Sasaki, D. Y., Bunker, B. C. &; Voigt, J. A. Phospholipid-Gold Nanorod Composites. Acs Nano 3, 971-983, doi:Doi 10.1021/Nn900037k (2009).
29Lee, S. E. et al. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. Journal of the American Chemical Society 131, 14066-14074, doi:10.1021/ja904326j (2009).
30Truby, R. L., Emelianov, S. Y. &; Homan, K. A. Ligand-Mediated Self-Assembly of Hybrid Plasmonic and Superparamagnetic Nanostructures. Langmuir, doi:10.1021/la3037549 (2013).
31Zong, S. F. et al. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. Biosensors &; bioelectronics 41, 745-751, doi:DOI 10.1016/j.bios.2012.09.057 (2013).
32Zhang, B. Q., Li, S. B., Xiao, Q., Li, J. &; Sun, J. J. Rapid synthesis and characterization of ultra-thin shell Au@SiO2 nanorods with tunable SPR for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J Raman Spectrosc 44, 1120-1125, doi:Doi 10.1002/Jrs.4336 (2013).
33Gole, A. &; Murphy, C. J. Azide-derivatized gold nanorods: Functional materials for "Click" chemistry. Langmuir 24, 266-272, doi:Doi 10.1021/La7026303 (2008).
34Goodwin, A. P. et al. Phospholipid-Dextran with a Single Coupling Point: A Useful Amphiphile for Functionalization of Nanomaterials. Journal of the American Chemical Society 131, 289-296, doi:Doi 10.1021/Ja807307e (2009).
35Takahashi, H. et al. Modification of gold nanorods using phospatidylcholine to reduce cytotoxicity. Langmuir 22, 2-5, doi:Doi 10.1021/La0520029 (2006).
36Ling Tong, Q. W., Alexander Wei and Ji-Xin Cheng. Gold Nanorods as Contrast Agents for Biological Imaging Optical Properties, Surface Conjugation and Photothermal Effects. Photochem Photobiol (2009).
37Gittins, D. I. &; Caruso, F. Biological and physical applications of water-based metal nanoparticles synthesised in organic solution. Chemphyschem 3, 110-113, doi:10.1002/1439-7641(20020118)3:1<110::AID-CPHC110>3.0.CO;2-Q (2002).
38Alkilany, A. M. &; Murphy, C. J. Gold nanoparticles with a polymerizable surfactant bilayer: synthesis, polymerization, and stability evaluation. Langmuir 25, 13874-13879, doi:10.1021/la901270x (2009).
39Chen, X. J., Lawrence, J., Parelkar, S. &; Emrick, T. Novel Zwitterionic Copolymers with Dihydrolipoic Acid: Synthesis and Preparation of Nonfouling Nanorods. Macromolecules 46, 119-127, doi:Doi 10.1021/Ma301288m (2013).
40Karakoti, A. S., Das, S., Thevuthasan, S. &; Seal, S. PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl 50, 1980-1994, doi:10.1002/anie.201002969 (2011).
41Pierrat, S., Zins, I., Breivogel, A. &; Sonnichsen, C. Self-assembly of small gold colloids with functionalized gold nanorods. Nano Lett 7, 259-263, doi:Doi 10.1021/Nl062131p (2007).
42Wang, C., Chen, J., Talavage, T. &; Irudayaraj, J. Gold nanorod/Fe3O4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed Engl 48, 2759-2763, doi:10.1002/anie.200805282 (2009).
43Kim, J. et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Edit 45, 7754-7758, doi:DOI 10.1002/anie.200602471 (2006).
44Xu, C. et al. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Edit 47, 173-176, doi:DOI 10.1002/anie.200704392 (2008).
45Liong, M. et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano 2, 889-896, doi:Doi 10.1021/Nn800072t (2008).
46Larson, T. A., Bankson, J., Aaron, J. &; Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18, doi:Artn 325101 Doi 10.1088/0957-4484/18/32/325101 (2007).
47Wang, L. Y., Bai, J. W., Li, Y. J. &; Huang, Y. Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew Chem Int Edit 47, 2439-2442, doi:DOI 10.1002/anie.200800014 (2008).
48Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538-544, doi:DOI 10.1126/science.1104274 (2005).
49Wang, L. et al. Watching silica nanoparticles glow in the biological world. Analytical chemistry 78, 646-654, doi:Doi 10.1021/Ac0693619 (2006).
50Tan, W. H. et al. Bionanotechnology based on silica nanoparticles. Med Res Rev 24, 621-638, doi:Doi 10.1002/Med.20003 (2004).
51Xia, Y., Song, L. &; Zhu, C. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Analytical chemistry 83, 1401-1407, doi:10.1021/ac1028825 (2011).
52Tang, L., Casas, J. &; Venkataramasubramani, M. Magnetic Nanoparticle Mediated Enhancement of Localized Surface Plasmon Resonance for Ultrasensitive Bioanalytical Assay in Human Blood Plasma. Analytical chemistry 85, 1431-1439, doi:Doi 10.1021/Ac302422k (2013).
53Liang, G. X. et al. Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Biosensors &; bioelectronics 24, 3693-3697, doi:DOI 10.1016/j.bios.2009.05.008 (2009).
54Zeng, Q. et al. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chem Commun (Camb) 48, 1781-1783, doi:10.1039/c2cc16271g (2012).
55Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271, 933-937 (1996).
56Klein, D. L., McEuen, P. L., Katari, J. E. B., Roth, R. &; Alivisatos, A. P. An approach to electrical studies of single nanocrystals. Applied Physics Letters 68, 2574-2576 (1996).
57Alkilany, A. M., Lohse, S. E. &; Murphy, C. J. The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano-Bio Interface. Accounts Chem Res 46, 650-661, doi:Doi 10.1021/Ar300015b (2013).
58Link, S., Wang, Z. L. &; El-Sayed, M. A. Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. J. Phys. Chem. B 103, 3529-3533 (1999).
59Huang, X., Neretina, S. &; El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Advanced Materials 21, 4880-4910, doi:10.1002/adma.200802789 (2009).
60Yu, Y.-Y., Chang, S.-S., Lee, C.-L. &; Wang, C. R. C. Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 101, 6661-6664 (1997).
61Ser-Sing Chang, C.-W. S., Cheng-Dah Chen, Wei-Cheng Lai, and &; Wang, C. R. C. The Shape Transition of Gold Nanorods. Langmuir 15, 701-709 (1999).
62Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M. &; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin Chem Rev 249, 1870-1901, doi:DOI 10.1016/j.ccr.2005.01.030 (2005).
63Pérez-Juste, J., Liz-Marzán, L. M., Carnie, S., Chan, D. Y. C. &; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 14 (2004).
64Jana, N. R., Gearheart, L. &; Murphy, C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 13, 1389-1393 (2001).
65Jana, N. R., Gearheart, L. &; Murphy, C. J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B 105, 4065-4067 (2001).
66Kim, F., Song, J. H. &; Yang, P. Photochemical synthesis of gold nanorods. Journal of the American Chemical Society 124, 14316-14317 (2002).
67Niidome, Y., Nishioka, K., Kawasaki, H. &; Yamada, S. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem Commun (Camb), 2376-2377 (2003).
68Murphy, C. J. &; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials 14, 80-82, doi:Doi 10.1002/1521-4095(20020104)14:1<80::Aid-Adma80>3.0.Co;2-# (2002).
69Sau, T. K. &; Murphy, C. J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 2923-2929, doi:Doi 10.1021/La047488s (2005).
70Huang, H. C., Barua, S., Kay, D. B. &; Rege, K. Simultaneous Enhancement of Photothermal Stability and Gene Delivery Efficacy of Gold Nanorods Using Polyelectrolytes. Acs Nano 3, 2941-2952, doi:Doi 10.1021/Nn900947a (2009).
71Boev, V. I. et al. Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles. Langmuir 20, 10268-10272, doi:Doi 10.1021/La048902r (2004).
72Zhan, Q., Qian, J., Li, X. &; He, S. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology 21, 055704, doi:10.1088/0957-4484/21/5/055704 (2010).
73Murphy, A. G. a. C. J. Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization. Chem Mater 17, 1325-1330 (2005).
74Wijaya, A. &; Hamad-Schifferli, K. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir 24, 9966-9969, doi:10.1021/la8019205 (2008).
75Liu, J., Chang, M. J., Gao, B., Xu, Z. G. &; Zhang, H. L. Sonication-assisted synthesis of multi-functional gold nanorod/silica core-shell nanostructures. J Alloy Compd 551, 405-409, doi:DOI 10.1016/j.jallcom.2012.11.042 (2013).
76Khan, Z., Singh, T., Hussain, J. I. &; Hashmi, A. A. Au(III)-CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. Colloid Surface B 104, 11-17, doi:DOI 10.1016/j.colsurfb.2012.11.017 (2013).
77Zhai, C. X. et al. One-Pot Synthesis of Biocompatible CdSe/CdS Quantum Dots and Their Applications as Fluorescent Biological Labels. Nanoscale Res Lett 6, doi:Artn 31 Doi 10.1007/S11671-010-9774-Z (2011).
78Lin, C. A. J. et al. Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. J Med Biol Eng 29, 276-283 (2009).
79Mooradian, A. Photolumuinescence of Metals. Phys Rev Lett 22, 185-187 (1969).
80Zheng, J., Petty, J. T. &; Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. Journal of the American Chemical Society 125, 7780-7781, doi:10.1021/ja035473v (2003).
81Jie Zheng, C. Z., and Robert M. Dickson. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93, 077402 (2004).
82Bao, Y. P. et al. Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C 111, 12194-12198, doi:Doi 10.1021/Jp071727d (2007).
83Huang, C. C., Yang, Z., Lee, K. H. &; Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed Engl 46, 6824-6828, doi:10.1002/anie.200700803 (2007).
84Huang, C. C. et al. Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. Journal of materials chemistry 19, 755-759, doi:Doi 10.1039/B808594c (2009).
85Negishi, Y., Nobusada, K. &; Tsukuda, T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. Journal of the American Chemical Society 127, 5261-5270, doi:10.1021/ja042218h (2005).
86Negishi, Y. et al. Magic-numbered Au(n) clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. Journal of the American Chemical Society 126, 6518-6519, doi:10.1021/ja0483589 (2004).
87Link, S. et al. Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106, 3410-3415, doi:Doi 10.1021/Jp014259v (2002).
88Whetten*, T. P. B. a. R. L. Near-Infrared Luminescence from Small Gold Nanocrystals. J. Phys. Chem. B 104, 6983-6986 (2000).
89Negishi, Y. &; Tsukuda, T. Visible photoluminescence from nearly monodispersed Au-12 clusters protected by meso-2,3-dimercaptosuccinic acid. Chemical Physics Letters 383, 161-165, doi:DOI 10.1016/j.cplett.2003.10.136 (2004).
90Wang, G. L., Guo, R., Kalyuzhny, G., Choi, J. P. &; Murray, R. W. NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au-38 and Au-140 quantum dots. J Phys Chem B 110, 20282-20289, doi:Doi 10.1021/Jp0640528 (2006).
91Wang, G. L., Huang, T., Murray, R. W., Menard, L. &; Nuzzo, R. G. Near-IR luminescence of monolayer-protected metal clusters. Journal of the American Chemical Society 127, 812-813, doi:Doi 10.1021/Ja0452471 (2005).
92Murray*, T. H. a. R. W. Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters. J. Phys. Chem. B 105, 12498-12502 (2001).
93Lin, C. A. et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Acs Nano 3, 395-401, doi:10.1021/nn800632j (2009).
94Jana, N. R. &; Peng, X. G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. Journal of the American Chemical Society 125, 14280-14281, doi:Doi 10.1021/Ja038219b (2003).
95Xie, J. P., Zheng, Y. G. &; Ying, J. Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society 131, 888-+, doi:Doi 10.1021/Ja806804u (2009).
96Cheng-An J. Lin, R. A. S., Jimmy K. Li, Ting-Ya Yang, Pei-Yun Li, Marco Zanella, Walter H. Chang, andWolfgang J. Parak. Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. Small 4, 301–384 (2008).
97Hafne, H. L. a. J. H. Gold Nanorod Bioconjugates. Chem Mater 17, 4636-4641 (2005).
98Thierry, B., Ng, J., Krieg, T. &; Griesser, H. J. A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chem Commun, 1724-1726 (2009).
99Luo, Z. et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. Journal of the American Chemical Society 134, 16662-16670, doi:10.1021/ja306199p (2012).
100Kuan, S. L., Wu, Y. Z. &; Weil, T. Precision Biopolymers from Protein Precursors for Biomedical Applications. Macromol Rapid Comm 34, 380-392, doi:DOI 10.1002/marc.201200662 (2013).
101Boca, S. C. &; Astilean, S. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21, 235601, doi:10.1088/0957-4484/21/23/235601 (2010).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊