跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳欣莓
研究生(外文):Hsin-Mei Chen
論文名稱:探討含隨機報廢並(n+1)次配送之多樣產品生產之共同 週期和最佳配送策略與含機器當機、報廢品並多次配送之整合買賣方供應鏈系統之最佳生產時間
論文名稱(外文):Determining common cycle and (n+1) deliveries for a multi-item system with scrap, and the optimal run time for single-vendor-single-buyer integrated system with machine breakdowns, multi-delivery policy and scrap.
指導教授:邱元錫邱元錫引用關係
指導教授(外文):Yuan-Shyi Peter Chiu
口試委員:鄭豐聰王聖嘉
口試委員(外文):Feng-Tsueng ChengSinga-Wang Chiu
口試日期:2014-04-25
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:多樣產品隨機報廢(n+1)次配送共同週期最佳配送策略機器當機最佳生產時間AR模式
外文關鍵詞:Multi-item productionScrap(n+1) deliveryCommon cycle timeMulti-deliveryBreakdownOptimal production timeAR policy
相關次數:
  • 被引用被引用:3
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討含隨機報廢並(n+1)次配送之多樣產品生產之最佳生產配送策略與含機器當機、報廢品並多次配送之整合買賣方供應鏈系統之最佳生產時間。為了更符合實際情況,本研究將傳統EPQ模型的假設進行延伸,在不完美的生產過程中,有不良品的產生,所有不良品皆假設為完全報廢,且生產過程中機器具隨機性當機的機會,並以AR(abort/resume)模式作為機器維修後的處理方式,即當機器維修完成後繼續先前未完成之生產程序。而配送方式假設為多次配送,並整合買賣雙方供應鏈系統。依以上諸項假設建立數學模式。 本研究針對上述假設建立了兩種數學模式:(1) 延伸學者黃朝治(2011)之研究,在不良品完全報廢後,進行多樣產品(n+1)次配送並包含顧客端持有存貨之最佳生產週期與配送策略,並進行比較分析;(2)延伸學者宋銘玄(2012)之研究,整合買賣雙方供應鏈之最佳生產時間。最後針對此兩種數學模式提出數值實例來加以驗證,並針對參數值進行敏感度分析,期望本研究的數學模式能夠符合實際情況,以提供業界實務上決策之參考。
This study determines the common cycle and (n+1) deliveries for a multi-item manufacturing system with scrap, and the optimal run time for single-vendor-single-buyer integrated system with machine breakdowns, multi-delivery policy and scrap. For more in line with the actual situation, this study extends traditional EPQ model to a production process which is not perfect i.e. with defective items and all defective products are assumed to be scrap. The second part of this study considers a production system with stochastic machines breakdown, under AR (abort / resume) policy, and when the machine breakdowns, it is under repair immediately, after repair it continues to complete the production of unfinished lot. The product distribution adopts multiple distribution methods, and the model integrates supply chain system between buyers and sellers. Mathematical modeling is used in this study. Two mathematical models are developed, respectively: (1)Part 1 of this paper extends prior work of Chao-Chih Huang (2011), our decision making focus on common cycle and (n+1) deliveries for a multi-item production system with scrap. (2) Part 2 of this paper extends the work of Ming-Syuan Song (2012) concentrates on the optimal run time for single-vendor-single-buyer integrated system with machine breakdowns, multi-delivery policy and scrap. Numerical example with sensitivity analyses are provided to demonstrate practical usages of our obtained results.
中文摘要 ............................................................................................... I
ABSTRACT ............................................................................................. II
謝誌 .................................................................................................. III
目錄 ....................................................................................................... IV
圖目錄 ..................................................................................................... VIII
表目錄 ................................................................................................ XII
第一章 緒論 .............................................................................................. 1
1.1 研究動機與目的 ...................................................................................... 1
1.2 研究範圍界定與假設 ............................................................................... 2
1.3 研究方法 ............................................................................................ 4
1.4 研究流程與架構 ..................................................................................... 5
第二章 文獻探討 ......................................................................................... 8
2.1 多樣產品之相關文獻 ................................................................................. 9
2.2 不良品之相關文獻 ................................................................................... 10
2.3 當機之相關文獻 ..................................................................................... 12
2.4 多次配送之相關文獻 .......................................................................... 14
第三章 模式的建立與推導 ............................................................................... 19
3.1 模式一建構 ......................................................................................... 19
3.1.1 問題描述 ......................................................................................... 19
3.1.2 符號說明 ......................................................................................... 19
3.1.3 模式一假設與推導 ............................................................................ 21
3.1.4模式一多樣產品設備使用率 ............................................................. 29
3.2 模式二建構 ......................................................................................... 30
3.2.1 問題描述 ......................................................................................... 30
3.2.2 符號說明 ......................................................................................... 30
3.2.3 模型建立 ......................................................................................... 33
3.2.4 情況一假設與推導 ............................................................................ 34
3.2.5 情況二假設與推導 ............................................................................ 37
3.2.6 整合情況一與情況二 ........................................................................ 41
3.2.7 求得最佳生產週期 ............................................................................ 42
第四章 實例驗證與敏感度分析 ....................................................................... 44
4.1 模式一實例驗證與敏感度分析 ............................................................... 45
4.2模式一數值分析與比較 ........................................................................... 53
4.2.1模式一數值分析與比較(比較一) ...................................................... 54
4.2.2模式一數值分析與比較(比較二) ...................................................... 57
4.2.3模式一數值分析與比較(比較三) ...................................................... 61
4.4 模式二實例驗證與敏感度分析 ............................................................... 64
4.4.1 判斷模式二是否存在極小值 ............................................................ 65
4.4.2最佳生產時間的搜尋 ......................................................................... 65
4.4.3模式二之數值驗證與敏感度分析 ..................................................... 66
4.5 模式二數值分析與比較 ........................................................................... 71
第五章 結論與未來研究方向 ........................................................................... 75
5.1 模式一之分析結論 ................................................................................... 75
5.2 模式二之分析結論 ................................................................................... 78
5.3 本研究模式之貢獻 ................................................................................... 80
5.3.1模式一之貢獻 ..................................................................................... 80
5.3.2 模式二之貢獻 .................................................................................... 80
5.4 未來研究方向 ........................................................................................ 81
參考文獻 .............................................................................................. 82
【附錄A】模式一之公式推導.................................................................... A-1
【附錄B】模式二生產過程發生當機之公式推導 .................................... B-1
【附錄C】模式二生產過程未發生當機之公式推導................................ C-1
【附錄D】情況一與情況二整合公式推導 ............................................... D-1
【附錄E】條件式驗證公式演算推導 ........................................................ E-1
【附錄F】模式一加入安全存貨持有成本之公式推導 ............................ F-1
【附錄G】模式二加入安全存貨持有成本之公式推導 ........................... G-1
[1] Abboud, N.E., A simple approximation of the EMQ model with Poisson machine failures. (1997) Production Planning and Control, 8 (4) 385-397.
[2] Agnihothri, S. R. and Kenett, R. S., “The impact of defects on a process with rework”, European Journal of Operational Research, Vol. 80, Issue 2, pp. 308-327 (1995).
[3] Arreola-Risa, A., DeCroix, G.A., Inventory management under random supply disruptions and partial backorders. (1998) Naval Research Logistics, 45 (7) 687-703.
[4] Bhaba R. Sarker, Gyana R. Parija, “Optimal batch size and raw material ordering policy for a production system with a fixed-interval, lumpy demand delivery system”, European Journal of Operational Research, 89, 593-608 (1996)
[5] Chakraborty, T., Giri, B.C. (2012) Joint determination of optimal safety stocks and production policy for an imperfect production system. (2012) Applied Mathematical Modelling, 36 (2), pp. 712-722.
[6] Chakraborty, T., Chauhan, S.S., Giri, B.C. (2013) Joint effect of stock threshold level and production policy on an unreliable production environment. Applied Mathematical Modelling, 37 (10-11), pp6593-6608.
[7] Chen, J.-M., Chen, T.-H. The profit-maximization model for a multi-item distribution channel. Transportation Research Part E: Logistics and Transportation Review, 43 (4), 338-354 (2007).
[8] Chiu, S.W. and Chiu, Y.P., “An economic production quantity model with the rework process of repairable defective items”, Journal of information & optimization sciences, Vol. 24, No. 3, pp.569-582 (2003).
[9] Chiu, S.W., Chen, K.K and Lin, H.D., Numerical method for determination of the optimal lot size for a manufacturing system with discontinuous issuing policy and rework. Int. J. Numer. Meth Biomed. Engng. 2011 ; 27:1545-1557.
[10] Chiu, S.W., Lin H.D., Wu M.F., Yang J.Ch., Determining replenishment lot size and shipment policy for an extended EPQ model with delivery and quality assurance issus. Scientia Iranica , Article In Press (2011).
[11] Chiu, S.W., Gong, D.C., Determining the optimal lot size for the finite production model with an imperfect rework process of defective items. Journal of Information & Optimization Science. Vol. 25, No.1, pp. 105-19 (2004).
[12] Chiu,S.W., Robust planning in optimization for production system subject to random machine breakdown and failure in rework. Computer & Operations Research 37 899-908 (2010).
[13] Chiu, Y.-S.P., Lin, H.-D., Cheng, F.-T., Hwang, M.-H. (2013) Optimal common cycle time for a multi-item production system with discontinuous delivery policy and failure in rework. Journal of Scientific and Industrial Research, 72 (7), pp. 435-440.
[14] Chung, K.-J., Bounds for production lot sizing with machine breakdowns. (1997) Computers and Industrial Engineering, 32 (1) 139-144.
[15] Chung, C.-J., Wee, H.-M. (2012) Economic replenishment plan with imperfect production process and business-return dependent demand. Asia-Pacific Journal of Operational Research, 29 (6), art. no. 1250036, .
[16] Ertogral, K., Darwish, M., Ben-Daya, M., “Production and shipment lot sizing in a vendor–buyer supply chain with transportation cost”, European Journal of Operational Research, 176, 1592–1606 (2007).
[17] Farsijani, H., Nikabadi, M.S., Ayough, A. (2012) A simulated annealing approach to optimize multi-products EPQ model with discrete delivery orders, imperfect production processes and service level constraint. World Applied Sciences Journal, 16 (8), pp. 1142-1157.
[18] Giri, B.C., Maiti, T. (2012) Supply chain model for a deteriorating product with time-varying demand and production rate. Journal of the Operational Research Society, 63 (5), pp. 665-673.
[19] Goyal, S.K. and Nebebe, F. Determination of economic production–shipment policy for a single-vendor-single-buyer system. European Journal of Operational Research, 121 (1), 175-178 (2000).
[20] Groenevelt, H., Pintelon, L., Seidmann, A., Production lot sizing with machine breakdowns, Management Sciences 38, 104-123 (1992).
[21] Grunder, O., Wang, D., El Moudni, A. (2013) Production scheduling problem with delivery considerations in a mono-product supply chain environment to minimise the total joint cost. European Journal of Industrial Engineering, 7 (5), pp. 615-634.
[22] Guder, F., Zydiak, J., Chaudhry, S. (1995) Non-stationary ordering policies for multi-item inventory systems subject to a single resource constraint. Journal of the Operational Research Society, 46 (9), pp. 1145-1152.
[23] Harris, Ford W., “How many parts to make at once”, The Magazines of Management, Vol.10, pp. 135-152 (1913).
[24] Hill, R.M. Optimizing a production system with a fixed delivery schedule. Journal of the Operational Research Society, 47(7),PP.954-960.
[25] Hoque, M.A., Goyal, S.K. Optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transport equipment. International Journal of Production Economics, 65 (3), 305-315 (2000).
[26] Hsu, J.T., Hsu, L.F. (2012) An integrated single-vendor single-buyer production-inventory model for items with imperfect quality and inspection errors. International Journal of Industrial Engineering Computations, 3 (5), pp. 703-720.
[27] Hsu, J.-T., Hsu, L.-F. (2013) An integrated vendor-buyer cooperative inventory model in an imperfect production process with shortage backordering. International Journal of Advanced Manufacturing Technology, 65 (1-4), pp. 493-505.
[28] Huang, C.-K. An integrated vendor-buyer cooperative inventory model for items with imperfect quality. Production Planning and Control, 13 (4), 355-361 (2002).
[29] Huang C-K An optimal policy for a single-vendor single-buyer integrated production–inventory problem with process unreliability consideration. International Journal of Production Economics, 91(1), 91-98 (2004).
[30] Khan, L.R., Sarker, R.A. An optimal batch size for a production system operating under periodic delivery policy Comput Ind Eng, 37, pp. 711-730 (1999).
[31] Koulamas, C.P. (1992) Lot sizing and machining economics: the multi-item, multi-stage cost minimization case. International Journal of Production Research, 30 (10), pp. 2265-2280.
[32] Li, C.L., Vairaktarakis, G., & Lee, C.Y. (2005). Machine scheduling with deliveries to multiple customer locations. European Journal of Operational Research,164(1),39-51.
[33] Lin, Y.-J., Ouyang, L.-Y., Dang, Y.-F. (2012) A joint optimal ordering and delivery policy for an integrated supplier-retailer inventory model with trade credit and defective items. Applied Mathematics and Computation, 218 (14), pp. 7498-7514.
[34] Muckstadt, John A., Roundy, Robin O. (1987) Multi-item, one-warehouse, multi-retailer distribution systems. Management Science, 33 (12), pp. 1613-1621.
[35] Maes, Johan, Van Wassenhove, Luk N. (1986) Multi-item single-level capacitated dynamic lot-sizing heuristics: a computational comparison (Part II: rolling horizon). IIE Transactions, 18 (2), pp. 124-129.
[36] Ojha, D., Sarker, B.R., and Biswas, P. An optimal batch size for an imperfect production system with quality assurance and rework. (2007) International Journal of Production Research, 45 (14), 3191-3214.
[37] Parija, G.R. and Sarker, B.R. Operations planning in a supply chain system with fixed-interval deliveries of finished goods to multiple customers. IIE Transactions, 31(11), 1075-1082 (1999).
[38] Rivera-Gómez, H., Gharbi, A., Kenné, J.P. (2013) Production and quality control policies for deteriorating manufacturing system. International Journal of Production Research, 51 (11), pp. 3443-3462.
[39] Rosenblatt, Meir J., Finger, Nachum, 1983. Application of a Grouping Procedure to a Multi-item Production System. International Journal of Production Research, 21 (2), 223-229.
[40] Swenseth, R.S., Godfrey, R.M. Incorporating transportation costs into inventory replenishment decisions International Journal of Production Economics, 77 (2), pp. 113-130 (2002).
[41] Sarker, R.A. Note on: An optimal batch size for a production system operating under periodic delivery policy International Journal of Production Economics, 77 (1), pp. 193-195 (2002).
[42] Taft, E.W., “The most economical production lot”, The Iron Age, Vol. 101, May 30, pp.1410-1412 (1918).
[43] Thomas D.J. and Hackman S.T. A committed delivery strategy with fixed frequency and quantity. European Journal of Operational Research, 148 (2), 363-373 (2003).
[44] Viswanathan, S., Piplani, R. Coordinating supply chain inventories through common replenishment epochs. (2001) European Journal of Operational Research, 129 (2), 277-286.
[45] Wang, D., Grunder, O., El Moudni, A. (2013) Single-item production-delivery scheduling problem with stage-dependent inventory costs and due-date considerations. International Journal of Production Research, 51 (3), pp. 828-846.
[46] Widyadana, G.A., Wee, H.M. (2012) An economic production quantity model for deteriorating items with preventive maintenance policy and random machine breakdown. International Journal of Systems Science, 43 (10), pp. 1870-1882.
[47] Yang P.C., Wee H.M. A single-vendor and multiple-buyers production-inventory policy for a deteriorating item. (2002) European Journal of Operational Research, 143 (3), 570-581.
[48] Yu, Y., Chu, F., Chen, H. On improving an integrated inventory model for a single vendor and multiple buyers with a relaxed material ordering cycle policy. (2006) Journal of Systems Science and Systems Engineering, 15 (3), 298-313.
[49] Yu, K-Y. C., Bricker, D.L. Analysis of a markov chain model of a multistage manufacturing system with inspection, rejection, and rework. (1993) IIE Transactions (Institute of Industrial Engineers), 25 (1), 109-112.
[50] 許志源,「探討多樣產品於同一生產設備上之經濟生產批量」,碩士論文,朝陽科技大學工管所,台中(2003)。
[51] 曾建源,「含機器當機(AR型)及不完美重工程序之EPQ模式的最佳生產週期探討,碩士論文,朝陽科技大學工管所,台中(2006)。
[52] 劉文傑,「研究含機器當機(AR型)級不良品可完全重工修復之經濟生產批量模式之最佳生產週期」,碩士論文,朝陽科技大學工管所,台中(2006)。
[53] 劉尚智,「研究定量多次配送與含不良品重工失敗率因素之最佳生產批量決策」,碩士論文,朝陽科技大學工管所,台中(2007)。
[54] 李俊逸,「含不良品部分可重工修復與良品分期配送之經濟生產批量最佳化」,碩士論文,朝陽科技大學工管所,台中(2007)。
[55] 張瀞云,「探討多次定期等量運送對不良品部分可重工修復之生產系統的批量與運送次數之最佳決策」,碩士論文,朝陽科技大學工管所,台中(2009)。
[56] 江國偉,「探討整合供應商與多個顧客在含部份報廢部分可重工修復之生產系統的(n+1)次配送與整合多樣產品生產含重工修復並多次配送的最佳生產與配送策略」,碩士論文,朝陽科技大學工管所,台中(2011)。
[57] 黃朝治,「整合製造商與多個購買者在不完美重工生產系統之(n+1)次配送與整合多樣產品生產含隨機報廢並多次配送的最佳生產與配送策略」,碩士論文,朝陽科技大學工管所,台中(2011)。
[58] 潘農,「整合單一供應商與多個買家在不良品完美重工之生產系統下(n+1)次配送與整合多樣產品生產可重工修復並多次配送的最佳生產與配送策略」,碩士論文,朝陽科技大學工管所,台中(2011)。
[59] 郭奕裕,「在供應鏈環境中生產多樣產品含報廢品n次配送策略之最佳生產週期決策」,碩士論文,朝陽科技大學工管所,台中(2011)。
[60] 宋銘玄,「求解多樣產品含部分報廢之生產系統的共同週期與配送問題與含設備當機即完全報廢之最佳生產時間」,碩士論文,朝陽科技大學工管所,台中(2012)。
[61] 張智凱,「研究多樣產品不完美重工系統的配送與共同週期決策與含當機且完全重工之多次配送最佳生產策略」,碩士論文,朝陽科技大學工管所,台中(2012) 。
[62] 陳信偉,「探討整合多樣產品生產且含不完美重工之共同週期和最佳配送策略與含機器當機且不完美重工後多次配送之最佳生產時間」,碩士論文,朝陽科技大學工管所,台中(2012) 。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 研究定量多次配送與含不良品重工失敗率因素之最佳生產批量決策
2. 含機器當機(AR型)及不完美重工程序之EPQ模式的最佳生產週期探討
3. 研究含機器當機(AR型)及不良品可完全重工修復之經濟生產批量模式之最佳生產週期
4. 含不良品部分可重工修復與良品分期配送之經濟生產批量最佳化
5. 探討多樣產品於同一生產設備上之經濟生產批量
6. 探討整合供應商與多個顧客在含部份報廢部分可重工修復之生產系統的(n+1)次配送與整合多樣產品生產含重工修復並多次配送的最佳生產與配送策略
7. 探討多次定期等量運送對不良品部分可重工修復之生產系統的批量與運送次數之最佳決策
8. 求解多樣產品含部分報廢之生產系統的共同週期與配送問題與含設備當機及完全報廢之最佳生產時間
9. 整合製造商與多個購買者在不完美重工生產系統之(n+1)次配送與整合多樣產品生產含隨機報廢並多次配送的最佳生產與配送策略
10. 研究多樣產品不完美重工系統的配送與共同週期決策與含當機且完全重工之多次配送最佳生產策略
11. 整合單一供應商與多個買家在不良品完美重工之生產系統下(n+1)次配送與整合多樣產品生產可重工修復並多次配送的最佳生產與配送策略
12. 在供應鏈環境中生產多樣產品含報廢品n次配送策略之最佳生產週期決策
13. 探討整合多樣產品生產且含不完美重工之生產週期和最佳配送策略與含機器當機且不完美重工後多次配送之最佳生產時間
14. 探討生產系統中含機器設備隨機當機且不良品完全報廢的(n+1)次配送策略之最佳生產時間
15. 探討不完美重工之多樣產品生產系統並(n+1)次配送之生產週期和最佳配送策略與含機器當機不完美重工並多次配送策略之整合買賣方供應鏈系統之最佳生產時間
 
無相關期刊