(3.236.214.19) 您好!臺灣時間:2021/05/07 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉婉甄
研究生(外文):Wan-Chen Liu
論文名稱:以電動力法去除下水污泥中重金屬之研究
論文名稱(外文):Removal of heavy metals from domestic sewage sludge by electrokinetic process
指導教授:章日行
指導教授(外文):Jih-Hsing Chang
口試委員:謝永旭程淑芬
口試委員(外文):Yung-Hsu HsiehShu-Fen Cheng
口試日期:2014-05-28
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:電動力法下水污泥重金屬污染物
外文關鍵詞:ElectrokineticDomestic sewage sludgeHeavy metals
相關次數:
  • 被引用被引用:2
  • 點閱點閱:274
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
由於下水污泥中含有高營養物質和有機物,可作為堆肥、建築材料等,具有相當的經濟效益。但污水處理場所產生之污泥,除了含有上述具經濟價值成分外,尚含有重金屬與其他有毒性物質存在,若無法將污泥中這些危害物質移除,不僅無法用於農業堆肥,且需以有害廢棄物方式處理,後續處理成本亦大幅提升。若不慎排放至環境中,其導致土壤或地下水污染,影響層面與後果更是不堪設想。本研究以含重金屬之下水污泥為整治試驗之主要標的污染物,利用電動力技術將下水污泥之重金屬移除,並探討不同操作條件之影響,冀使對污泥中之重金屬達到移除之成效。
本試驗以台中某實場下水污泥為對象,首先進行下水污泥樣品採集、前處理及分析下水污泥的基本物化特性,同時選用不鏽鋼作為陰極板材料,並配製0.01 M Na2CO3做為電解液,以不同種類之陽極電極板(石墨及DSA)於電壓梯度1.5 V cm-1下進行5天的試驗。結果顯示,使用DSA為操作之電極板時有較佳之去除效率,其中重金屬鎳、鎘和鉻去除效率最為顯著,分別為72.2%、56.8%及38.6%。接著選用DSA作為陽極板,探討以不同之操作電壓進行5天之電動力試驗(1.0 V cm-1、1.5 V cm-1、2.0 V cm-1、2.5 V cm-1),結果顯示,鎘、鎳、銅和鉛於電壓梯度2.0 V cm-1時有較好之去除率,分別為100%、96.7%、17.9%及52.9%;鉻及鋅則於2.5 V cm-1時去除效果較顯著,去除率為80.1%和44.1%。
在處理成本方面,利用電動力技術處理下水污泥中重金屬,以不同操作電壓梯度(1.0 V cm-1、1.5 V cm-1、2.0 V cm-1、2.5 V cm-1)進行5天之試驗,其所花之電費分別為7元、13元、21元及31元。

Domestic sludge contains a large number of nutrients and organic matter, which can be used as compost, construction materials, etc. However, the sludge composes a mass of harmful components such as heavy metals, pathogenic microorganism. If these hazardous substances can’t be removed from sludge, sludge not only can’t be used as the compost but also increase treatment and disposal costs. The main purpose of this study is to investigate the removal efficiency of heavy metals from domestic sewage sludge by electrokinetic process. Moreover, we discussed the removal efficiency associated with different operating conditions to find out the appropriate operational parameters.
Sludge samples were collected from the real-site of a sewage treatment plant in Taichung City. First of all, heavy metals content and the physico-chemical characteristics of sludge samples were analyzed. In the electrokenetic system, the stainless steel was served as the cathode, and 0.01 M Na2CO3 was prepared as the electrolyte solution. Different types of anode electrode plate materials including graphite and dimensionally stable anode (DSA) was respectively applied with 1.5 V cm-1 voltage gradient for 5-day treatment. Results showed that DSA anode could effectively remove the heavy metals in domestic sewage sludge; the removal efficiency of nickel, cadmium and chromium in the sludge was about 72.2%, 56.8% and 38.6%, respectively. For the consideration of DSA system, different operating voltages of electrical power (i.e., 1.0 V cm-1, 1.5 V cm-1, 2.0 V cm-1and 2.5 V cm-1) were conducted. Experimental results showed that the removal efficiency of cadmium, nickel, copper and lead, was respectively around 100%, 96.7%, 17.9% and 52.9% under the voltage gradient of 2.0 V cm-1. When the use of 2.5 V cm-1 voltage gradient was applied, the removal efficiency of chromium and zinc was around 80.1% and 44.1% respectively. Based on the above situation, the operating costs ranged from 7 to 31 dollars per 100 mg kg-1 of heavy metals.

總目錄
摘要 ....................................................................................................................I
Abstract .......................................................................................................... III
表目錄............................................................................................................VII
圖目錄.......................................................................................................... VIII
第一章 緒論.................................................................................................... 1
1-1 研究緣起.............................................................................................. 1
1-2 研究目的.............................................................................................. 4
第二章 文獻回顧............................................................................................ 5
2-1 下水污泥之介紹.................................................................................. 5
2-1-1 下水污泥之來源及產量............................................................ 5
2-1-2 下水污泥之物化特性................................................................ 8
2-1-3 下水污泥中有害物質................................................................ 9
2-1-4 下水污泥之處理方法.............................................................. 11
2-1-5 下水污泥之最終處置方法...................................................... 13
2-1-6 下水污泥之再利用方式.......................................................... 15
2-2 重金屬之介紹.................................................................................... 18
2-2-1 重金屬引起之危害.................................................................. 18
2-2-2 重金屬污染污泥常見之整治技術介紹................................... 23
2-2-3 重金屬相關法規...................................................................... 27
2-3 電動力技術之介紹............................................................................ 31
2-3-1 電動力技術的演進.................................................................. 32
2-3-2 電動力技術之原理與反應機制............................................... 33
2-3-3 影響電動力法之操作因子...................................................... 38
2-3-4 電動力技術之應用及成效...................................................... 40

表目錄
表2-1台灣地區污水下水道建設普及率統計.................................................. 7
表2-2去除污泥中重金屬各種方法之相關文獻............................................ 25
表2-3事業、污水下水道系統及建築物污水處理設施之放流水標準......... 28
表2-4保護人體健康之地面水體相關環境基準............................................ 28
表2-5土壤污染管制標準............................................................................... 29
表2-6土壤污染監測基準............................................................................... 29
表2-7地下水污染管制標準........................................................................... 30
表2-8電動力技術處理各種污染物之相關文獻............................................ 41
表3-1污泥基本性質分析............................................................................... 46
表3-2試驗儀器設備表................................................................................... 48
表3-3試驗藥品資料表................................................................................... 49
表4-1不同電極板之下水污泥中重金屬去除率............................................ 66
表4-2施加不同電壓梯度之總電壓及平均電流............................................ 80
表4-3不同電壓梯度移除100 mg kg-1重金屬所需用電量之費用估算........ 80

圖目錄
圖2-1電動力法處理污染物程序示意圖....................................................... 31
圖2-2電雙層構造示意圖............................................................................... 34
圖2-3電滲透流示意圖................................................................................... 36
圖2-4離子遷移示意圖................................................................................... 37
圖3-1研究架構.............................................................................................. 44
圖3-2電動力反應系統示意圖....................................................................... 51
圖3-3電動力技術試驗流程........................................................................... 54
圖4-1不同電極板之下水污泥中鎘濃度變化圖............................................ 59
圖4-2不同電極板之下水污泥中鉻濃度變化圖............................................ 60
圖4-3不同電極板之下水污泥中鎳濃度變化圖............................................ 61
圖4-4不同電極板之下水污泥中銅濃度變化圖............................................ 62
圖4-5不同電極板之下水污泥中鉛濃度變化圖............................................ 63
圖4-6不同電極板之下水污泥中鋅濃度變化圖............................................ 64
圖4-7不同電壓梯度之電解液pH值變化圖................................................... 69
圖4-8不同電壓梯度之電解液導電度變化圖................................................ 70
圖4-9不同電壓梯度之下水污泥中鎘濃度變化圖........................................ 72
圖4-10不同電壓梯度之下水污泥中鉻濃度變化圖...................................... 72
圖4-11不同電壓梯度之下水污泥中鎳濃度變化圖...................................... 73
圖4-12不同電壓梯度之下水污泥中銅濃度變化圖...................................... 75
圖4-13不同電壓梯度之下水污泥中鉛濃度變化圖...................................... 77
圖4-14不同電壓梯度之下水污泥中鋅濃度變化圖...................................... 77
圖4-15電動力系統中不同電壓梯度之電流變化圖...................................... 79
英文文獻
Acar, Y. B., “Milestone developments, myths, and future directions of electrokinetic remediation, ” Separation and Purification Technology, Vol. 79, pp. 124-132 (2011).
Acar, Y. B., and Alshawabkeh, A. N., “Electrokinetic remediation technology has recently made significant strides, ” Environmental Science & Technology, Vol. 27, No. 13, pp. 2638-2647(1993).
Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka, M., and Parker, R., “Electrokinetic remediation: Basics and technology status, ” Journal of Hazardous Materials, Vol. 40, pp. 117- I37(1995).
Alcántara, M T.., Gómez, J., Pazos, M., and Sanromán, M. A., “Electrokinetic remediation of PAH mixtures from kaolin, ” Journal of Hazardous Materials, Vol. 179, pp. 1156-1160(2010).
Amaral, F. A. D., Santos, V. S. d., and Bernardes, A. M., “Metals recovery from galvanic sludge by sulfate roasting and thiosulfate leaching, ” Minerals Engineering, Vol. 60, pp. 1-7(2014).
Bernardo, E., and Maschio, R. D., “Glass–ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses, ” Waste Management, Vol. 31, pp. 2245-2252(2011).
Boening, D. W., “Ecological effects, transport, and fate of mercury: a general Review, ” Chemosphere, Vol. 40, pp. 1335-1351 (2000).
Campos,. J. L., Otero, L., Franco, A., Mosquera-Corral, A., and Roca, E. “Ozonation strategies to reduce sludge production of a seafood industry WWTP, ” Bioresource Technology, Vol. 100, pp. 1069-1073(2009).
Casagrande, L., “Electro-osmotic stabilization of soils, ” Journal of the Boston Society of Civil Engineers, ASCE, Vol. 39, No 1, pp. 51-83(2004).
Casagrande, L., “Stabilization of soils by means of electro-osmosis—state of the art, ” Journal of the Boston Society of Civil Engineers, ASCE, Vol. 69, pp. 255–302(1983).
Chen, H., Ma, X., and Dai, H., “Reuse of water purification sludge as raw material in cement production, ” Cement & Concrete Composites, Vol. 32, pp. 436-439(2010).
Cherifi, M., Hazourli, S., and Hazourli, M., “Initial Water Content and Temperature Effects on Electrokinetic Removal of Aluminium in Drinking Water Sludge, ” Physics Procedia, Vol. 2, pp. 1021-1030(2009).
Choi, Y. S., and Lui, R., “A mathematical model for the electrokinetic remediation of contaminated soil, ” Journal of Hazardous Materials,Vol. 44, pp. 61-75(1995).
Coelho, D., Shapiro, M., Thovert, J. F., Adler, P. M., “Electroosmotic Phenomena in Porous Media, ” Journal of Colloid and Interface Science, Vol. 181, pp. 169-190(1996).
Darmawan and Wada, S. I., “Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology, ” Applied Clay Science, Vol. 20, pp. 283-293(2002).
Deng, J., Feng, X., and Qiu, X., “Extraction of heavy metal from sewage sludge using ultrasound-assisted nitric acid, ” Chemical Engineering Journal, Vol. 152, pp. 177–182(2009).
Dolgen, D., Alpaslan, M. N., and Delen, N., “Agricultural recycling of treatment-plant sludge: A case study for a vegetable-processing factory, ” Journal of Environmental Management, Vol. 84, pp. 274-281(2007).
Du, W., Jiang, J., and Gong, C., “Primary research on agricultural effect of Sludge impact of sludge application on crop seeds germination and seedling growth, ” Procedia Environmental Sciences, Vol. 16, pp. 340-345(2012)
European commission, Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment, as amended by Commission Directive 98/15/EC of 27 February 1998, European Communities, Italy(1998).
Fischer, F., Bastian, C., Happe, M., Mabillard, E., and Schmidt, N., “Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite, ” Bioresource Technology, Vol. 102, pp. 5824-5830(2011).
Gao, J., Luo, Q. S., Zhu, J., Zhang, C. B., and Li, B. Z., “Effects of electrokinetic treatment of contaminated sludge on migration and transformation of Cd, Ni and Zn in various bonding states, ” Chemosphere, Vol. 93, pp. 2869-2876(2013).
Gao, J., Luo, Q., Zhang, C., Li, B., and Meng, L., “Enhanced electrokinetic removal of cadmium from sludge using a coupled catholyte circulation system with multilayer of anion exchange resin, ” Chemical Engineering Journal, Vol. 234, pp. 1-8(2013).
García-Delgado, M., Rodríguez-Cruz, M. S., Lorenzo, L. F., Arienzo, M., and Sánchez-Martín, M. J., “Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants, ” Science of the Total Environment, Vol. 382, pp. 82-92(2007).
Garcia-Gutierrez,, M. D., Gomez-Lahoz, C., Rodriguez-Maroto, J. M., Vereda-Alonso, C., and Garcia-Herruzo, F., “Electrokinetic remediation of a soil contaminated by the pyritic sludge spill of Aznalcollar (SW, Spain), ” Electrochimica Acta, Vol. 52, pp. 3372-3379(2007).
Ghosh, P. K., Balagurunathan, S., and Basha, C. A., “Electrokinetic Migration of Nickel [Ni(II)] in Contaminated Sludge, ” Journal of Hazardous, Toxic, and Radioactive Waste, ASCE, Vol. 16, pp. 201-206(2012).
Giannis, A., Nikolaou, A., Pentari, D., and Gidarakos, E., “Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils, ” Environmental Pollution, Vol. 157, pp. 3379-3386(2009).
Goldstone, M.E., Kirk, P.W.W., and Lester, J.N.,a “The behaviour of heavy metals during wastewater treatment I. Cadmium, chromium and copper, ” Science of The Total Environment, Vol. 95, pp. 233-252(1990).
Goldstone, M.E., Kirk, P.W.W., and Lester, J.N.,b “The behaviour of heavy metals during wastewater treatment II. Lead, nickel and zinc, ” Science of The Total Environment, Vol. 95, pp. 253-270(1990).
González-Corrochano, B., Alonso-Azcárate, J., and Rodas, M., “Chemical partitioning in lightweight aggregates manufactured from washing aggregate sludge, fly ash and used motor oil, ” Journal of Environmental Management, Vol. 109, pp. 43-53(2012).
Gray, N. F., Water Technology (Third Edition), Butterworth-Heinemann, pp. 645-685(2010).
Guedes, P., Couto, N., Ottosen, L. M., and Ribeiro, A. B., “Phosphorus recovery from sewage sludge ash through an electrodialytic process, ” Waste Management, Vol. 34, pp. 886-892(2014).
Hamed, J. T., and Bhadra, A., “Influence of current density and pH on electrokinetics, ” Journal of Hazardous Materials, Vol. 55, pp. 279-294(1997).
Hanay, O., Hasar, H., and Kocer, N. N., “Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic,” Journal of Hazardous Materials, Vol. 169, pp. 703-710(2009).
Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., and Daniels, R. B., Cadmium, Lead, Zinc, Copper, and Nickel in Agricultural Soils of the United States of America, ” Published in J. Environ, Vol. 22, pp. 335-348(1993).
Houhou, J., Lartiges, B. S., Montarges-Pelletier, E., Sieliechi, J., Ghanbaja, J., and Kohler, A., “Sources, nature, and fate of heavy metal-bearing particles in the sewer system, ” Science of the Total Environment, Vol. 407, pp. 6052-6062(2009).
Huang, H., Yuan, X., Zeng, G., Zhu, H., Li, H., Liu, Z., Jiang, H., Leng, L., and Bi, W., “Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge,” Bioresource Technology, Vol. 102, pp. 10346-10351(2011).
Internatcnal Agency for Research on Cancer(ICRA), “IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, ” ICRA, Lyon, Vol. 58 (1993).
Internatcnal Agency for Research on Cancer(ICRA), “IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, ” ICRA, Lyon, Vol. 49(1990).
Internatcnal Agency for Research on Cancer(ICRA), “IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, ” ICRA, Lyon, Vol. 87(2006).
Kim, G. N., Kim, S. S., Park, H. M., Kim, W. S., Park, U. R., and Moon, J. K., “Cs-137 and Cs-134 removal from radioactive ash using washing–electrokinetic equipment, ” Annals of Nuclear Energy, Vol. 57, pp. 311-317(2013).
Laurent, J., Casellas, M., and Dagot, C., “Heavy metals biosorption on disintegrated activated sludge: Description of a new equilibrium model, ” Chemical Engineering Journal, Vol. 164, pp. 63-69(2010).
Li, L., Xu, Z. R., Chunlei, Z., Bao, J., and Dai, X., “Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge, ” Bioresource Technology, Vol. 121, pp. 169-175(2012).
Li, Z., Yu, J. W., and Neretnieks, I., “A new approach to electrokinetic remediation of soils polluted by heavy metals, ” Journal of Contaminant Hydrology, Vol. 22, pp. 241-253(1996).
Liang, X., Ning, X. A., Chen, G., Lin, M., Liu, L., and Wang, Y., “Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants, ” Ecotoxicology and Environmental Safety, Vol. 98, pp. 128-134(2013).
Lumley, N. P. G., Ramey, D. F., Prieto, A. L., Braun, R. J., Cath, T. Y., and Porter, J. M., “Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective, ” Bioresource Technology, Vol. 161, pp. 385-394 (2014).
Mahapatra, K., Ramteke, D. S., Paliwal, L. J., and Naik, N. K., “Agronomic application of food processing industrial sludge to improve soil quality and crop productivity, ” Geoderma, Vol. 207-208, pp. 205-211(2013).
McCook, D. K., “Surficial Stability of Compacted Clay: Case Study, ” Journal of Geotechnical Engineering, ASCE, Vol. 122, pp. 246-247(1996).
Mondala, A., Liang, K., Toghiani, H., Hernandez, R., and French, T., “Biodiesel production by in situ transesterification of municipal primary and secondary sludges, ” Bioresource Technology, Vol. 100, pp. 1203-1210(2009).
Moreno, F., Rubio, M. C., Martinez-Echevarria, M. J., “Reuse of sludge from the decorative quartz industry in hot bituminous mixes, ” Construction and Building Materials, Vol. 25, pp. 2465-2471(2011).
Nemerow, N. L., Industrial Waste Treatment, Butterworth-Heinemann, pp. 149-174(2007).
Nriagu, J. O., “A global assessment of natural sources of atmospheric trace metals, ” Nature, Vol. 338, pp. 47-49(1989).
Olawoyin, R., Oyewole, S. A., and Grayson, R. L., “Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta, ” Ecotoxicology and Environmental Safety, Vol. 85, pp. 120-130(2012).
Ottosen, L. M., Hansen, H. K., Ribeiro, A. B., and Villumsen, A., “Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils, ” Journal of Hazardous Materials, Vol. 85, 291-299(2001).
Pavšič, P., Mladenovič, A., Mauko, A., Kramar, S., Dolenec, M., Vončina, E., Vrtač, K. P., and Bukovec, P., “Sewage sludge/biomass ash based products for sustainable construction, ” Journal of Cleaner Production, Vol. 67, pp. 117-124(2014).
Peng, G., Tian, G., Liu, J., Bao, Q., and Zang, L., “Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology, ” Desalination, Vol. 271, pp. 100-104(2011).
Protasowicki, M., Toxins in Food, CRC Press LLC, Chapter 10(2005)
Ratnayaka, D. D., Brand, M. J., and Johnson, K. M., Water Supply (Sixth Edition), Butterworth-Heinemann, pp. 351-363(2009).
Reddy, K. R., Parupudi, U. S., Devulapalli, S. N., and Xu, C. Y., “Effects of soil composition on the removal of chromium by electrokinetics, ” Journal of Hazardous Materials, Vol. 55, pp. 135-158(1997).
Reuss, F. F., “Sur un nouveleffet de l’electricitéglavanique, ” Mém. Soc., Vol. 2, 327-337(1809).
Sastre, J., Sahuquillo, A., Vidal, M., and Rauret, G., “Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction, ” Analytica Chimica Acta, Vol. 462, pp. 59-72(2002).
Sawyer, C. N., McCarty, P. L., and Parkin, G. F., Chemistry for Environmental Engineering, McGraw-Hill, Singapore, pp. 332-334(1994).
Scholz, M., Wetland Systems to Control Urban Runoff, Elsevier, pp. 163-174(2006).
Shapiro, A. P. and Probstein, R. F., “Removal of Contaminants from Saturated Clay by Electroosmosis, ” Environmental Science & Technology, Vol. 27, No.2, pp. 283-291(1993).
Shukla, O. P., Juwarkar, A. A., Singh, S. K., Khan, S., and Rai, U. N., “Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge, ” Waste Management, Vol. 31, pp. 115-123(2011).
Shun-gui, Z., Li-xiang, Z., Shi-mei, W., and Di, F., “Removal of Cr from tannery sludge by bioleaching method, ” Journd qffnvironmentd Scierums, Vol. 18, No. 5, pp. 885-890(2006).
Soderman, L. G., and Milligan, L., “Capacity of friction piles in varved clay increased by electro-osmosis, ” Proceedings of the 5th International Conference on Soil Mech on Soil Mechanics and Foundation Engineering, Paris, France, pp. 143-147(1961).
Sörme, L., and Lagerkvist, R., “Sources of heavy metals in urban wastewater in Stockholm, ” The Science of the Total Environment, Vol. 298, pp. 131-145(2002).
Stylianou, M. A., Kollia, D.", Haralambous, K. J., Inglezakis, V. J., Moustakas, V. J., and Loizidou, M. D., “Effect of acid treatment on the removal of heavy metals from sewage sludge, ” Desalination, Vol. 215, pp. 73-81(2007).
Uggetti, E., Ferrer, I., Nielsen, S., Arias, C., Brix, H., and García, J., “Characteristics of biosolids from sludge treatment wetlands for agricultural reuse, ” Ecological Engineering, Vol. 40, pp. 210-216(2012).
Virkutyte, J., Sillanpää, M., and Latostenmaa, P. ” Electrokinetic soil remediation - critical overview, ” The Science of the Total Environment, Vol. 289, pp. 97-121(2002).
Wan, C., Du, M., Lee, D. J., Yang, X., Ma, W., and Zheng, L., “Electrokinetic remediation of β-cyclodextrin dissolved petroleum hydrocarbon-contaminated soil using multiple electrodes, ” Journal of the Taiwan Institute of Chemical Engineers, Vol. 42, pp. 972-975(2011).
Wang, J. Y., Zhang, D. S., Stabnikova, and O., Tay, J. H., ” Evaluation of electrokinetic removal of heavy metals from sewage sludge, “ Journal of Hazardous Materials, Vol. 124, pp. 139-146(2005).
Waqas, M., Khan, S., Qing, H., Reid, B. J. and Chao, C., “The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L, ” Chemosphere, Vol. 105, pp. 53-61(2014).
Weiner, R. F., and Matthews, R. A., Environmental Engineering (Fourth Edition), Industrial Waste Treatment, Butterworth-Heinemann, pp. 205-232(2003).
Yeung, A. T. and Mitchell, J. K. “Coupled fluid, Electrical and Chemical Flow in Soils,” Geotechnique, Vol. 43, No.1 (1993)
Yeung, A. T., “Milestone developments, myths, and future directions of electrokinetic remediation, ” Separation and Purification Technology, Vol. 79, pp. 124-132 (2011).
Yeung, A. T., Darilek, G. T., and Corapcioglu, M.Y. “Electrophoresis: Innovative Technique to Repair Leaking Impoundments, ” Geotechnical Special Publication, ASCE, No. 71, pp. 560-573(1997).
Yoshida, H., Christensen a, T. H., Guildal, T., and Scheutz, C., “A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant, ” Chemosphere, In Press (2013).
中文文獻
林世平,「改良電壓操作方式對電動力處理受污染底泥之影響」,碩士論文,國立中興大學環境工程學系,臺中(2004)。
林建三、林建榮,固體廢棄物處理,高立圖書有限公司,臺北,第103-134頁(2008)
林裕雄,「以電動力法處理受三氯乙烯及單氯酚污染粘質土壤之研究」,碩士論文,國立中興大學環境工程研究所,台中(2000)。
邱太銘,「電漿焚化熔融技術於廢棄物處理之應用」,核研季刊,第二十七卷,第23-34頁(1998)。
許哲綸、高雅敏、周秀冠、鄭守訓、徐錦豐、施養志,「食米中重金屬(鎘、汞、鉛)含量之調查」,藥物食品檢驗局調查研究年報,第二十七卷,第205-215頁(2009)。
陳證元,「下水污泥調質堆置及堆肥化之研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄(2009)。
傅怡菁,「多變量統計方法應用於台灣土壤重金屬污染特性及評價模式之分析」,碩士論文,國立屏東科技大學環境工程與科學系,屏東(2012)。
黃建賓,「以赤子愛勝蚓去除工業污泥中重金屬之研究」,碩士論文,國立屏東科技大學環境工程與科學系,屏東(2012)。
廖盈智,「循環改良式電動力系統之電化學反應」,碩士論文,私立朝陽科技大學環境工程與管理系,台中(2003)。
劉奇岳,「電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土壤之最佳操作條件探討」,碩士論文,國立中山大學環境工程研究所,高雄(1999)。
劉永章,葛煥彰,「電動力現象的基本理論」,化工,第四十五卷,第二期,第77-83頁(1998)。
歐陽嶠暉,下水道工程學(水環境再生工程學),長松文化興業股份有限公司,臺北,第467-523頁(2005)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔