跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳婉祺
研究生(外文):Wan Chi Wu
論文名稱:應用水溶性消失模於中空複合材料結構之製程開發
論文名稱(外文):The Developments of Manufacturing Processes of Cavity Composite Structures with Lost Core Technologies
指導教授:王正賢王正賢引用關係
指導教授(外文):Jean Shyan Wang
口試委員:王正賢鄧志堅洪銘澤
口試委員(外文):Jean Shyan WangJyh Jeng DengMing Ze Hung
口試日期:2014-01-10
學位類別:碩士
校院名稱:大葉大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:94
中文關鍵詞:複合材料消失模發泡水溶芯發泡
外文關鍵詞:compositelost corefoamable water-soluble coresfoaming
相關次數:
  • 被引用被引用:2
  • 點閱點閱:783
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
隨材料技術的發展,結構零件或產品逐漸朝向結構強度堅固且輕量化的材料,如鋁合金與複合材料,因此本研究針對輕量化之中空複合材料結構件開發一個可發泡水溶性消失模之內充壓製程,其固化過程中,該發泡水溶芯可提供中空複材零件內部充壓成形的壓力來源。此方法採用聚乙烯醇(Polyvinyl Alcohol,簡稱PVA)、氧化鋁粉末與發泡劑混鍊成水溶性發泡母粒製作發泡水溶芯,在複材零件成化過程中,水溶芯將發泡膨脹使複材零件固化定型,其後使用熱水快速溶解取出,以克服傳統吹袋成型、泡棉充壓成型產生管壁內部皺摺及核芯物無法取出等缺點,製造一具備輕量化、造型複雜和內壁平滑之複材構件,並提升產品之穩定性,以滿足業界在內流道、多歧管等使用需求。
本文以三方面加以探討(1)發泡壓力與溫度(2)發泡水溶芯之剛性(3)發泡水溶芯之溶解溫度。以發泡劑發氣量與大量發泡溫度為基礎,藉由熔體壓力實驗獲取水溶性發泡母粒之發泡壓力、發泡溫度、發泡時間與加溫梯度之間的關係,其後依不同比例之氧化鋁粉末進行水溶解速度與溫度之關係,以及藉由量測發泡水溶芯之等效剛性,使之可承受包覆複材的施力,由以上實驗之結果作為本製程加工參數之依據。
結果顯示6wt%發泡劑水溶芯之膨脹壓力可達26.16bar,而23wt%氧化鋁粉末芯材之剛性為1.368MPa,且添加6wt%氧化鋁粉末之溶解重量高達0.17g/(min•cm3)。
As the developments of materials, aluminum alloy and composite are being gradually utilized in components and products due to the direction of high stiffness and lightweight. The study is to develop cavity a composite structure with the foamable water-soluble core that can provide the pressure. The prepared core material composed of polyvinyl alcohol, alumina powder and chemical foaming agent that can be dissolved by the hot water.
The processes can provide a lightweight, complicated cavity composite structure with smooth inner walls and also overcome the disadvantages of traditional manufacturing processes, such as pressure bag molding causing the uneven thickness with internal wrinkles and foam press molding also causing un-removable stuff for cavity parts.
In the study, the manufacturing processes were discussed in three aspects. The one, the foaming pressure was going to discuss the relationship between different dosage of CFA, curing time, pressure and temperature. The second one, stiffness of foamable water-soluble core structures were measured. And the other one, solubility of foamable water-soluble cores were going to discuss the relationship between different dosage of alumina powder and temperature.
The result shows that interior pressure can reach 26.16 bars by foamable water-soluble-cores containing 4wt% chemical foaming agent. Also, the compressive stiffness of cores with 23wt% alumina powder is up to 1.368 MPa. The solubility of suitable core material can be up to 0.17 g/(min•cm3) for 6wt% alumina powder of the foamable water-soluble core.
封面內頁
簽名頁
中文摘要 iii
ABSTRACT iv
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 5
1.3 研究方法 5
第二章 文獻回顧 8
2.1 消失模製造技術 8
2.2 發泡內充壓製程 14
2.3 聚乙烯醇 18
2.4 發泡塑膠(plastic foam) 20
2.4.1 發泡基材 21
2.4.2 發泡劑 23
2.5 發泡材料與複合材料之配合條件 29
2.6 中空複合材料結構件 30
第三章 研究方法 32
3.1 PVA消失模之製程 32
3.2 碳纖維複合材料之製程溫度 40
3.3 發泡水溶芯材料之選用 41
3.4 水溶芯膨脹壓力測試與推算 44
3.5 微發泡水溶芯剛性測試 51
3.6 核仁水溶解速度與溫度 56
3.7 微發泡水溶芯與複材間介面關係 58
第四章 結果與討論 61
4.1 發泡水溶芯膨脹壓力實驗 61
4.2 剛性測試 66
4.3 核仁水溶解速度與溫度 68
4.4 中空複合材料歧管實品 72
第五章 結論與未來發展方向 76
5.1 結論 76
5.2 未來發展方向 78
參考文獻 79
[1]蘇俊誠,”複合材料三明治結構之二次發泡填充充壓製程開發與應用”,碩士論文,大葉大學,彰化,台灣,2007。
[2]鄭世傑,”多孔材料之製造技術開發與性質探”,碩士論文,大葉大學,彰化,台灣,2011。
[3]http://www.ytxinhaizj.com/support_14_1.html
[4]P. Jarvela, J.S. Alli and H. Jylha,” Greencast-process, a new ceramic technology for plastics processing”, Advanced Performance Materials, Vol. 3, Number 2,1999.
[5]杜志龍,邱桂斌,閔小峻,"新型水溶芯的研製”,塑膠工業,2004,32(11),pp.55-56。
[6]S.Y. Yang, C.Y. Huang,” Plasma Treatment for Enhancing Mechanical and Thermal Properties of Biodegradable PVA/Starch Blends,” Wiley InterScience, 2008.
[7]吳炅,王樹倫,呂召勝,王夕聚,楊春兵,何傑,”新型水溶性失芯材料的研製及應用”,工程塑膠應用,2009,37(7),pp.46-49。
[8]張龍,李遠才,祝輝,”熱搗鼓法至被水溶芯工藝及配方的研究”,鑄造技術,2009,30(12),pp.1497-1500。
[9]W. Jiangy, J. Dong, L. Lou, M. Liu and Z. Hu,” Preparation and Properties of a Novel Water Soluble Core Material,” Institute of Metal Research, 2012, 26(3), pp.270-275.
[10]Aero Consultants AG,http://www.aero-consultants.ch/home.php.
[11]王正賢,沈婉琳,林予農,鄭世傑,”複材厚層板之成化行為預測與製程條件最佳化”,中華民國力學學會第三十屆全國力學會議論文集,A304,嘉義,台灣,2008。
[12]王正賢,”應用二次發泡技術於不規則結構件之製程開發-以自行車把手為例”,中國機械工程學會第二十七屆全國學術研討會論文集,DD04,台北市,2010。
[13]C. A. Finch, Polyvinyl Alcohol:Properties and Applications, New York,1973.
[14]Y. L. Meltzer, Water-Soluble Polymers:Recent development, Park Ridge, 1979.
[15]R. Tamaki and Y. Chujo, ”Synthesis of Poly(vinyl alcohol)/Silica Gel Polymer Hybrids by In-Situ Hydrolysis Method,” Appl. Organometal. Chem., 1998, Vol.12, pp.755-762.
[16]M. Booma, S.E. Selke, and J.R. Giacin, J. Elastomers Plastics26, pp.104-142, 1994.
[17]新昌複合材料股份有限公司,http://www.pce.tw/ser_in5.html
[18]啟盟工業股份有限公司,http://www.chimeng.com.tw/big5/about_5.php
[19]吳舜英、徐敬一合編,“塑膠發泡成型技術”,高分子工業雜誌社。
[20]Stephen Quinn., “Chemical blowing agents: providing production, economic and physical improvements to a wide range of polymers,” Plastics Additives and Compounding, Vol. 3(5), May 2001, pp. 16-21.
[21]G.L.A. Sims., and H.A.S. Jaafar, “A chemical blowing agent system (CBAS) based on azodicarbonamide,” Journal of cellular plastics, Vol. 30(2), October 2007, pp. 175-188.
[22]Q. Zhou., H. Zheng., T. Yu and Q. Wu., “Thermo-decomposition behavior of typical blowing agents of endothermic exothermic and endo-exothermic,” Polymeric Materials Science and Engineering, Vol. 16(5), Sep 2000, pp. 137-139.
[23]陳立軍、陳煥欽,“活性物質對AC發泡劑性能的影響研究及其活化機理”,絕緣材料,38,1,30-32,2005
[24]Dave, R., Kardos, J. L., and Dudukovic, M. P., “A Model for Resin Flow During Composite Processing Part 2: Numerical Analysis for Unidirectional Graphite/Epoxy Laminates,” Polymer Composites, Vol. 8(2), April 1987, pp. 123-132.
[25]Z. Zhang., Y. Li., J. Xiao and H. Wang., “Processing of Foam Core Sandwich Structures by Thermal Expansion Molding,” Journal of Nanjing University of Aeronautics and Astronautics, Vol. 39(5), October 2007, pp. 670-675.
[26]Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Body, Mir, Moscow, 1981.
[27]Ren J.G.,”Exact Solution for Laminated Cylindrical Shells in Cylindrical Bending,”Composites Science and Technology, Vol.29, pp.169-187, 1987.
[28]Jolicoeur C. and Cardou A.,”Analytical Solution for Bending of Coaxial Orthotropic Cylinders,” Journal of Engineering Mechanics, Vol.120(12), pp.2556-2574, 1994.
[29]Y. Zhao and S. Pang, S., “Stress-Strain and Failure Analysis of Composite Pipe Under Torsion,” Journal of Pressure Vessel Technology,” Vol.117, pp.273-278, 1995.
[30]王正賢,凌國銓,李永銘,”應用有限元素法於複合材料疊層圓管件之結構分析與等效性質計算”,ANSYS 研討會,2004。
[31]維基百科,http://en.wikipedia.org/wiki/Polyvinyl_acetate
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top