(18.206.177.17) 您好!臺灣時間:2021/04/11 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姜呈鴻
研究生(外文):Chiang,Cheng-Hung
論文名稱:棕櫚籽熱裂解之研究
論文名稱(外文):Study on the Pyrolysis of Palm Seeds
指導教授:吳照雄
指導教授(外文):Wu,Chao-Hsiung
口試委員:吳照雄余世宗林啟文
口試委員(外文):Wu,Chao-HsiungYu,Shih-TsungLin,Chi-Wen
口試日期:2014-07-24
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:100
中文關鍵詞:生質物棕櫚籽熱裂解
外文關鍵詞:BiomassPalm seedsPyrolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以棕櫚籽破碎後分類成棕櫚殼及棕櫚仁,再將其磨碎烘乾後進行三成分(含固定碳)、元素及熱值分析。並以熱重量分析儀(TGA)在2、5與10 K/min升溫速率下高溫裂解,探討在不同條件下熱裂解之動力學、裂解後固體、液體及氣體比例及產物成分分析,並評估作為生質燃油之可行性。
藉由重量消失曲線計算求得不同反應條件下的活化能E、反應速率及建立反應動力方程式,另以比例加總方式模擬比較實驗値與計算值之決斷係數。研究結果顯示,棕櫚殼二階段反應速率為:
第一階段:dX1/dt=6.6×106exp(-38.67/1.987×10-3T)(1-X)5.23
第二階段:dX2/dt=8.9×105exp(-26.72/1.987×10-3T)(1-X)3.19
總反應速率:dX/dt=0.46dX1/dt+0.54dX2/dt
棕櫚仁二階段反應速率為:
第一階段:dX1/dt=5.36×1015exp(-44.59/1.987×10-3T)(1-X)6.08
第二階段:dX2/dt=1.68×103exp(-15.14/1.987×10-3T)(1-X)1.49
總反應速率:dX/dt=0.88dX1/dt+0.12dX2/dt
棕櫚殼及棕櫚仁的實驗値與計算值比較之決斷係數,都皆為0.99,說明二階段反應模式皆適用於棕櫚殼及棕櫚仁。 
樣品分析方面,棕櫚殼灰分含量較棕櫚仁高,其裂解所得之液體產量(27.06及26.65wt.%)較棕櫚仁(56.2wt.%)低,固體產量則較高,棕櫚仁的可燃分較高,故熱值也比棕櫚殼高。產物分析方面,棕櫚殼隨著溫度增加,其固體產量減少,但氣體產量隨之增加,而棕櫚仁是因可燃分最高(92.9wt.%),故液體產量最高,氣體則為次之。液體成分分析方面,棕櫚殼在360及700℃裂解主要成分為乙酸(22.25及23.24%)、苯酚(12.79及4.34%)及1,2苯二酚(5.71及26.86%)。棕櫚仁在480℃裂解主要成分為乙酸(19.48%)、聯胺(9.87%)及乙醯胺(6.08%)。氣體分析方面,棕櫚殼主要成分為甲苯(8.74及23.29%),棕櫚仁主要成分為1-丁烯(22.37%)、戊烷(19.34%)及庚烷(17.68%)。


In this study, the palm seeds were crushed and classified into kernel and shell, and then dried and grinded into powder samples. The physicochemical properties were determined including proximate analysis, fixed carbon, element, and heating value. Thermal gravimetric analyzer (TGA) was used to determine the pyrolysis kinetics of the samples at 2, 5, and 10 K/min. The yields of pyrolysis residues, liquid, and gaseous products and their components were also determined to evaluate the feasibility of the biomass as a fuel.
The activation energy, reaction order, and frequency factor were obtained by the TGA curves that were subjected to different pyrolysis conditions. Thus the reaction rate and kinetics equation were established. In addition, the reaction model was conducted examining the distribution of activation energies and the TGA curves. The simulated data, calculated by the weighting sum of the different reaction stages, was compared with experimental data. The results indicated that the pyrolysis of palm kernel can be expressed with a two-stage reaction model.
Palm shell two-stage reaction rate:
The first stage: dX1/dt=6.6×106exp(-38.67/1.987×10-3T)(1-X)5.23
The second stage: dX2/dt=1.68×103exp(-15.14/1.987×10-3T)(1-X)1.49
The overall reaction rate: dX/dt=0.46dX1/dt+0.54dX2/dt
Palm kernel two-stage reaction rate:
The first stage: dX1/dt=5.36×1015exp(-44.59/1.987×10-3T)(1-X)6.08
The second stage: dX2/dt=1.68×103exp(-15.14/1.987×10-3T)(1-X)1.49
The overall reaction rate: dX/dt=0.88dX1/dt+0.12dX2/dt
Comparing the experimental data with that of calculated according to the reaction model, the determination coefficients were all 0.99 for different heating rates. It indicated that the two-reaction model can be used to describe the pyrolysis behavior of palm kernel and shell. 
Sample analysis showed that the ground palm shell dad a higher ash content than that of the palm kernel. It resulted to a lower pyrolysis liquid yields (27.06 and 26.65 %) of shell than that (56.2 %) of palm kernel. The higher combustible of kernel than that of shell, it resulted to a higher heating value. For the product analysis, the solid production decreased and gas production increased as reaction temperature increased generally. The palm kernel dad a higher combustibles accounting for 92.9 %, thus gave a higher liquid and gas fraction after pyrolysis. Liquid products were analyzed for shell pyrolysis at 360 and 700 ℃. The results showed that the main species were acetic acid (22.25 and 23.24 %), phenol (12.79 and 4.34 %), and 1, 2-hydroquinone (5.71 and 26.86 %). Main liquid products of kernel pyrolysis at 480 ℃ were acetic acid (19.48 %), hydrazine (9.87 %), and acetyl amine (6.08 %). For the gas product analysis, the main species for pyrolysis were toluene (8.74 and 23.29 %) of shell and 1-butene (22.3 %), pentane (19.34 %), and heptane (17.68 %) of kernel.


封面內頁 頁次
簽名頁
中文摘要 iii
ABSTRACT v
誌謝 vii
目錄 viii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容與流程 3
第二章 文獻回顧與基本理論 6
2.1 棕櫚業概況 6
2.2 熱裂解相關研究 9
2.3 棕櫚熱裂解相關文獻 12
2.4 生質廢棄物熱裂解相關文獻 15
2.5 動力學基本理論分析 18
第三章 實驗設備與分析方法 24
3.1 三成分分析 24
3.2 固定碳分析 26
3.3 熱值分析 28
3.4 元素分析 31
3.5 熱重量分析 32
3.6 熱裂解實驗 37
3.7 產物分析 42
第四章 結果與討論 49
4.1 樣品成分分析 49
4.2 棕櫚殼及棕櫚仁之熱裂解動力學 52
4.3 棕櫚殼與棕櫚仁熱裂解後之固液氣體產物百分比組成 71
4.4 產物分析 71
4.4.1 固體產物分析 72
4.4.2 液體產物分析 73
4.4.3 氣體產物成分分析 79
第五章 結論與建議 83
5.1 結論 83
5.2 建議 85
參考文獻 86

1.Global Renewable Fuels Alliance
(http://globalrfa.org/)
2.天津糧油商品交易所
(http://www.tgoce.com/)
3.行政院農業委員會,美國與主要國家生質燃油發展現況與政策
(http://www.coa.gov.tw/view.php?catid=13955)
4.工業技術研究院
(https://www.itri.org.tw/chi/)
5.行政院環境保護署環境檢驗所
(www.niea.gov.tw)。
6.馬來西亞棕櫚油總署(MPOB)
(http://www.mpob.com.cn/)
7.胡文星,馬來西亞棕油業情況介紹,中華人民共和國駐馬來西亞大使館 (2005)。
8.陳思潔,溫度、壓力對農業廢棄物熱裂解的影響,大葉大學環境工程學系碩士班論文 (2010)。
9.黃昶潤,稻草熱裂解技術之探討,大葉大學環境工程學系碩士班碩士論文 (2005)。
10.楊義榮,廢棄物加熱分解法,工業污染防治,第四卷,第三期,109-135 (1985)。
11.陳褘、羅永浩、陸方、段佳,生物質廢棄物的熱解研究,燃料化學學報第35卷第3期,(2007)。
12.蔡博文,造紙廠廢棄物熱裂解之研究,大葉大學,專題研究報告,(2007)。
13.Agrawal, R. K., “Kinetics of reactions involved in pyrolysis of cellulose. II. The modified kilzer-broido model,” Canadian Journal of Chemical Engineering, 66, 413-418 (1988).
14.Abnisa, F., Wan Daud, W. M. A., Husin, W. N. W. and Sahu, J. N., “Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process,” biomass and bioenergy, 35, 1863-1872 (2011).
15.Abdullah, N. and Gerhauser, H., “Bio-oil derived from empty fruit bunches,” Fuel, 87, 2606-2613 (2008).
16.Kim, S. J., Jung, S. H. and Kim, J. S., “ Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds,” Bioresource Technology, 101, 9294–9300 (2010).
17.Kim, S. W., Koo, B. S., Ryu, J. W., Lee, J. S., Kim, C. J., Lee, D. H., Kim, G. R. and Choi, S., “Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed,” Fuel Processing Technology, 108, 118-124 (2013).
18.Luo, Z., Wang, S., Liao, Y., Zhou, J., Gu, Y. and Cen, K., “Research on biomass fast pyrolysis for liquid fuel,” Biomass and Bioenergy, 26, 455~462 (2004).
19.Razuan, R. “Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors,” Bioresource Technology, 101, 4622-4629 (2010).
20.Worasuwannarak, N., Sonobe, T. and Tanthapanichakoon, W., “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS Technique,” Journal of Analytical and Applied Pyrolysis, 78, 265~271 (2007).

21.Wang, C., Du, Z., Pan, J., Li, J. and Yang, Z. “Direct conversion of biomass to bio-petroleum at low temperature,” Journal of Analytical and Applied Pyrolysis, 78, 438~444 (2007).
22.Williams, P. T. and Besler, S., “The influence of temperature and heating rate on the slow pyrolysis of biomass,” Renewable Energy, 7, 233~250 (1996).
23.Yang, H., “Influence of mineral matter on pyrolysis of palm oil wastes”, Combustion and Flame, 146, 605-611 (2006).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔