跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/09 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧仕修
研究生(外文):Lu-shih-hsiu
論文名稱:田口方法對SKD61真空硬銲 最佳化參數之研究
論文名稱(外文):Taguchi Method to Optimize Vacuum Brazing Parameters for SKD61 Steel
指導教授:李義剛李義剛引用關係
指導教授(外文):Lee-yi-kang
口試委員:李義剛李弘彬黃和悅
口試委員(外文):Lee-yi-kang
口試日期:2014-07-21
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:SKD61熱作模具剛田口方法真空硬銲鎳基合金銀基合金最佳化設計
外文關鍵詞:SKD61Hot working steelTaguchi methodVacuum brazingNickel-based alloySilver-based alloyOptimization of design
相關次數:
  • 被引用被引用:6
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
現行模具模穴的冷卻水路製作,經常利用鑽孔加工方式進行。由於,加工技術的無法突破,水路受到諸多限制。當冷卻液體在迴路中流動時,會有許多通道無法回流或離穴位距離太遠,造成污垢不易清理且冷卻效益不佳。因此,若能引入硬銲製程來克服模具冷卻水路的製造技術問題,則可使其在設計上非常有彈性,且讓冷卻液的循環更順暢、均溫控制更容易。
金屬材料之熱處理往往對材料的使用性質和生產成本有很大的影響,故本研究即以熱作模具鋼SKD61之熱處理特性進行真空硬銲製程的相關規劃,並田口品質方法做為真空硬銲製程之最佳化參數設計。同時評估其運用在成形模具之氣密與高溫效果。
高溫製程之銲接填料選擇自行調製為膏狀的鎳基合金(BNi-2),而田口方法的控制因子採以:硬銲溫度、持溫時間、表面粗糙度、夾持力等。經計算和分析可獲得最佳化參數設計:硬銲溫度-「1030℃」、持溫時間-「45分鐘」、表面粗糙度-「0.28µm」、夾持力-「10N.m」。最後,經確認實驗之剪應力為:457MPa,顯示本研究結果為:可信賴。
低溫製程的銲接填料採用兩種片狀的銀基合金:Ag-Cu-Zn-Cd-Ni和Ag-Cu-Sn-Ni。經顯微組織觀察發現,Ag-Cu-Zn-Cd-Ni合金無法順利的接合SKD61,研判係因Zn、Cd合金元素在真空環境會發生蒸發的現象,而使得在銲道內產生孔洞。然而,使用Ag-Cu-Sn-Ni做為填料的銲道可以形成完整的接合效果。後續的田口品質方法將以Ag-Cu-Sn-Ni合金做為接合的填料。經過計算和分析,可獲得最佳化設計參數為:接合溫度-「845℃」、持溫時間-「30分鐘」、表面粗糙度-「0.44µm」、填料厚度(片數)-「3」。最後,經確認實驗之剪應力為:261MPa,顯示本研究結果為:可信賴。
綜合上述結果,SKD61的研究可進一步在模具上進行相關實體設計之分析和驗證。

關鍵字:SKD61、熱作模具鋼、真空硬銲、田口方法、鎳基合金、銀基合金、最佳化設計

The manufacture of water cooling channels in mold cavity nowadays often uses drilling techniques. However, due to the limitation of technology, tooling of channels is under certain restrictions. Negative results can be non-refluxing channels and distant cavities that produce stains which are hardly removable or the inefficiency of cooling. Therefore, if weld process can be applied to overcome the channel tooling problem, the design can be more flexible and simply the circulation of cooling fluid and temperature control.
Hot treatment of metal is usually crucial to the properties of the material as well as the cost, which is why this research focuses on the programming of vacuum brazing the steel SKD61 according to its properties in hot treatment. Moreover, Taguchi method is applied to optimize the parameters of the vacuum brazing process while steel SKD61’s effects under high temperature and airtight situation are also being evaluated.
Self-made Nickel-based alloy (BNi-2) paste is chosen as brazing filler in the hot working process. The control factors in Taguchi method are the temperature of brazing, holding time, roughness and gripping force. Optimized parameters can be acquired through caculation and analysis and the results are: brazing temperature : 1030℃, holding time : 45mins, roughness : 0.28µm and gripping force : 10N.m. Finally, with the outcome of the experiment the shear stress is 457MPa, which shows the result of the research is reliable.
Two types of silver-based alloy (Ag-Cu-Zn-Cd-Ni and Ag-Cu-Sn-Ni) are selected as the brazing filler in low temperature process. Through the inspection of tissue, Ag-Cu-Zn-Cd-Ni does not join SKD61 successfully while Ag-Cu-Sn-Ni coupled perfectly. Possibility is that Zn and Cd alloy vaporise in vacuum and create caves in the braze metal. Therefore, Ag-Cu-Sn-Ni is chosen as the filler in the following Taguchi method. Through calculation and analysis the optimized parameters are ; join temperature : 845℃, holding time : 30mins, roughness : 0.44µm, filler thickness : 3 sheets. According to the outcome of the experiment the shear stress is 261MPa, which shows the result of the research is reliable.
In sum, the study of steel SKD61 is expected to be applied in substance design for further analysis and verification.

Keywords:SKD61、Hot working steel、Vacuum brazing、Taguchi method、Nickel-based alloy、Silver-based alloy、Optimization of design

封面內頁
簽名頁
中文摘要..........iii
Abstract.........v
誌謝..............vii
目錄..............viii
圖 目 錄...........xi
表 目 錄...........xiv

第一章 前言.........1
1.1 研究動機........1
1.2 研究目的........7
第二章 文獻回顧......8
2.1 模具鋼介紹......8
2.2 冷作模具鋼......8
2.3 熱作模具鋼......8
2.4 JIS SKD61熱作模具鋼....11
2.5 材料接合定義....14
2.6 硬銲的定義....16
2.7 真空硬銲介紹....19
2.8 真空硬銲與傳統硬銲之比較....22
2.9 硬銲填料的應用....24
2.10 田口方法....25
2.11直交表的選擇與配置....26
2.12 參數設計程序....27
2.12.1 選擇品質特性....27
2.12.2 確認信號因子和控制因子....28
2.12.3實驗設計....28
2.12.4資料分析....28
第三章 實驗方法....31
3.1 實驗流程....31
3.2 實驗材料....32
3.3 分析方法....33
3.3.1 DTA 熱分析....33
3.3.2 潤濕性....34
3.3.3 真空硬銲參數設定....36
3.3.4 剪力拉伸實驗....39
3.3.5 顯微組織觀察....40
3.3.6 微硬度....41
3.3.7 XRD分析....41
3.3.8 TEM分析....42
第四章 結果與討論....43
4.1 以鎳基合金為填料之SKD61真空硬銲製程開....43
4.1.1 田口方法....43
4.1.2 確認參數....48
4.1.3 鎳基合金DTA分析....49
4.1.4 顯微組織觀察與銲道寬度量測....51
4.1.5 破斷面分析....57
4.1.6 TEM分析....59
4.1.7 硬度值....60
4.1.8 微硬度分佈....61
4.1.9 氣密試驗....62
4.1.10 水密試驗....62
4.2 以銀基合金為填料之SKD61真空硬銲製程開發....65
4.2.1 田口方法....65
4.2.2 確認參數....69
4.2.3 銀基合金DTA分析....71
4.2.4 銲道的巨觀觀察....73
4.2.5 不同接合溫度之顯微組織觀察....74
4.2.6 不同接合溫度之壓剪強度比較....77
4.2.7 微硬度分佈....78
4.2.8 銲道顯微組織觀察....79
第五章 結論....82
5.1 以鎳基合金之SKD61真空硬銲製程開發....82
5.2 以銀基合金之SKD61真空硬銲製程開發....84
參考文獻....86

[1]朱致成,淬火溫度及持溫時間對SKD61及其改良鋼種之機械性質的影響,碩士論文,台灣大學,台北,2011。
[2]張凱嵐,JIS SKD61 熱作模具鋼真空熱處理性能研究,碩士論文,大同大學,台北,2011。
[3]葉書宏,淬冷速率對JIS SKD61 熱作模具鋼碳化物析出及韌性之影響,金屬熱處理,2011,第110期,第45-51頁。
[4]江朝聰,物理蒸鍍和滲氮處理對鋅壓鑄H13 熱作模具鋼之影響,碩士論文,大葉大學,彰化,2007。
[5]潘曉華,朱祖昌,H13 熱作模具鋼的化學成分及其改進和發展的研究,碩士論文,上海工程技術大學,2008 。
[6]賴耿陽,工具的熱處理,複漢出版社,台南,1976,第204-206頁。
[7]張瑞模,合金添加對模具用鑄鋼之影響,鑄造月刊,145期,高雄,1990。
[8]施景祥,周兆民,釩、鉻對鑄造SKD-61 熱作工具鋼特性影響之研究,鑄造工程學刊,127期,高雄,2005。
[9]沈保羅,工程材料,新文京出版社,台北,2002,第248-251頁。
[10]洪榮哲,射出成形模具設計技術,全華科技圖書股份有限公司,2001,第130-135頁。
[11]李長昱,滲碳性氣氛應用於碳化鎢與SKD61鋼材焊接製程之研究,碩士論文,私立大同大學,台北,2012。
[12]林俊舜,A6061之真空硬銲研究,碩士論文,大葉大學,彰化,2013。
[13]蘇朝墩,品質工程,中華民國品質學會,台北,2006,第7-111頁。
[14]李輝煌,田口方法-品質設計的原理與實務(第四版),高立圖書,台北,第19-68頁,第181-217頁,2011,第249-277頁。
[15]馬麗菁,林美珍,統計學,華泰書局,台北,2000,第374頁。
[16D. L. Olson et. al., ASM Handbook, Welding Brazing and Soldering, ASM International, Vol.6, 1993.
[17]W. Jiang, J.M. Gong, S.T. Tu, Effect of holding time on vacuum brazing for a stainless steel plate–fin structure, Materials and Design, Vol.31(4), 2010, pp.2157-2162.
[18]J.M. David, H. Giles, Principles of Brazing, 1th. Ed., USA, ASM International, 2005, pp.1-44.
[19]S. Floreen, Maraging steels, 9th. Ed., USA, AMS Metals Handbook, Vol.1, pp.445-452.
[20]Y.L. Lee, R.K. Shiue, S.K. Wu, The microstructural evolution of infrared brazed Fe3Al by BNi-2 braze alloy, Intermetallics, Vol.11, 2003, pp.187-195.
[21]V. Jalilvand, H. Omidvar, H.R. Shakeri, M.R. Rahimipour, Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy, Materials Characterization, Vol.75, 2013, pp.20-28.
[22]W. Jing, G. Jianfeng, S. Xuexiong, Numerical simulation of high pressure gas quenching of H13 steel, Journal of Materials Processing Technology ,Vol.202, 2008, pp.188-194.
[23]X.Yuan, C. Y. Kang, M. B. Kim ,Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni–Si–B filler metal ,Materials Characterization, 2009, Vol.60, pp.923-931.
[24]S. Kheirandish, A. Noorian, Effect of Niobium on Microstructure of Cast AISI H13 Hot Work Tool Steel, Journal of Iron and Steel Research, International, 2008, Vol.15, pp.61-66.
[25]K.M. McHugh, Y. Lin, Y. Zhou, E.J. Lavernia, Influence of cooling rate on phase formation in spray-formed H13 tool steel, Materials Science and Engineering: A, Vol.477, 2008, pp.50-57.
[26]F.Z. Wang, Q.Z. Wang, B.H. Yu, B.L. Xiao, Z.Y. Ma, Interface structure and mechanical properties of Ti(C,N)-based cermet and 17-4PH stainless steel joint brazed with nickel-base filler metal BNi-2, Journal of Materials Processing Technology, Vol.211, 2011, pp.1804-1809.
[27]M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher, Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations, Materials Science and Engineering: A, Vol.447, 2007, pp.125-133.
[28]X.G. Song, J. Cao, Y.F. Wang, J.C. Feng, Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint, Materials Science and Engineering: A, Vol.528(15) , 2011, pp.5135-5140.
[29]Y. Li, P. He, J. Feng, Interface structure and mechanical properties of the TiAl/42CrMo steel joint vacuum brazed with Ag-Cu/Ti/Ag-Cu filler metal, Scripta Materialia, Vol.55, 2006, pp.171-174.
[30]Y.M. He, J. Zhang, Y. Sun, C.F. Liu, Microstructure and mechanical properties of the Si3N4/42CrMo steel joints brazed with Ag-Cu-Ti + Mo composite filler, Journal of the European Ceramic Society, Vol.30, 2010, pp. 3245-3251.
[31]S. Lee, K.H. Kang, H.S. Hong, Y. YUN, J.H. Ahn, Interfacial morphologies between NiO-YSZ fuel electrode/316 stainless steel as the interconnect material and B-Ni3 brazing alloy in a solid oxide fuel cell system, Journal of Alloys and Compounds, Vol.488, 2009, pp.1-5.
[32]American Welding Society. Committee on Brazing and Soldering, Brazing Manual 3rd ed., American Welding Society, USA, 1984, pp.23-81.
[33]R. Gourley, C. Walker, Proceedings of the Fifth International Brazing and Soldering Conference, ASM International, USA, 2012, pp.236-301.
[34]H. Chen, K. Feng, S. Wei, J. Xiong, Z. Guo, H. Wang, Microstructure and properties of WC-Co/3Cr13 joints brazed using Ni electroplated interlayer, International Journal of Refractory Metals and Hard Materials, Vol.33, 2012, pp.70-74.
[35]J. Zhang, G. C. Wang, Y. M. He, Y. Sun, X.D. He, Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal, Materials Science and Engineering: A, Vol.557, 2013, pp.58-64.
[36]R. M. D. Nascimento, A. E. Martinalli, A. J. D. A. Buschinelli, U. Reisgen, J. Remmel, Microstructure of brazed joints between mechanically metallized Si3N4 and stainless steel, Journal of Materials Science, Vol.40, 2005, pp.4549-4556.
[37]M.M. Schwartz, Brazing: For the Engineering Technologist, 2nd ed., ASM International, USA, 2003, pp.1-159.
[38]J. H. Kim, Y. C. Yoo, Bonding of alumina to metals with Ag-Cu-Zr brazing alloy, Journal of Materials Science Letters, Vol.16, 1997, pp.1212-1215.
[39]W. Jiang, J. Gong, S.T. Tu, A new cooling method for vacuum brazing of a stainless steel plate-fin structure, Materials and Design, Vol.31, 2010, pp.648-653.
[40]X. Yuan, C.Y. Kang, Microstructural characteristics in vacuum TLP (Transient Liquid Phase) bonds using a novel iron-based interlayer based on duplex stainless steel base metal alloyed with a melting-point depressant, Vacuum, Vol.99, 2014, pp.12-16.
[41]S. Kheirandish, A. Noorian, Effect of Niobium on Microstructure of Cast AISI H13 Hot Work Tool Steel, Journal of Iron and Steel Research, International, Vol.15, 200, pp.61-668.
[42]W. Jiang, J.M. Gong, S.T. Tu, Effect of holding time on vacuum brazing for a stainless steel plate-fin structure, Materials and Design, Vol.31(4) , 2010, pp.2157
[43]K.M. McHugh, Y. Lin, Y. Zhou, E.J. Lavernia, Influence of cooling rate on phase formation in spray-formed H13 tool steel, Materials Science and Engineering: A, Vol.477(1-2) , 2008, pp.50-57.
[44]邱垂昌,銀基填料對高熵合金真空硬銲特性之研究,碩士論文,國立交通大學,新竹,2005。
[45]H.S. Lu, Optimal process parameter design of end-mill for high speed cutting SKD61 mold steel, Journal of Technology, Vol.25(2) , 2010, pp.99-106.
[46]S. Lee, K.H. Kang, H.S Hong, Y. Yun, J.H. Ahn, Interfacial morphologies between NIO-YSZ fuel electrode/316 stainless stell as interconnect material and BNi-3 brazing alloy in a solid oxide cell system, Vol.488, 2009, pp.1-5.
[47]M. Pouranvari, A. Ekrami, A.H. Kokabi, Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni-Si-B ternary filler alloy, Journal of Alloys and Compounds, Vol.563, 2013, pp.143-149.
[48]N. Sheng, B. Li, J. Liu, T.Jin, X. Sun, Z, Hu, Influence of the substrate orientation on the isothermal solidification during TLP bonding single crystal superalloys, Journal of Materials Science and Technology, Vol.30, 2014, pp.213-216.
[49]F. Wendl, K.D. Wupper, Wear resistance of different plastic mould steels, Journal of Materials Processing Technology, Vol.24, 1990, pp.355-364.
[50]L. H. Chiu, C. H. Wu, H. Chang, Wear behavior of nitrocarburized JIS SKD61 tool steel, Wear, Vol.253, 2002, pp.778-786.
[51]G. Humpston, D.M. Jacobson, Principles of Soldering and Brazing, ASM International, 1993, pp.3-4.
[52]M.M. Schwartz, Brazing, ASM International, 1987, pp.10-14.
[53]D.L. Olson et. al., ASM Handbook Welding, Brazing, and Soldering, ASM International, Vol.6, 1993, pp.6-9.
[54]A. Persson, J. Bergstrom, C. Burman and S. Hogmark, Influence of deposition temperature and time during PVD coating of CrN on corrosive wear in liquid aluminium, Surface and Coatings Technology, Vol.146-147, 2001, pp. 42-47.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top