跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宜鴻
研究生(外文):Lin, Yi-Hung
論文名稱:覆蓋具有集流空穴多孔層之凹面 的衝擊熱傳探討
論文名稱(外文):Investigation of Jet Impingement onto a Concave Surface Covered by Porous Material with a Trapping Cavity
指導教授:吳佩學
指導教授(外文):Pey-Shey Wu
口試委員:黃仁智鄭錕燦吳佩學
口試委員(外文):Jen-Jyh HwangKun-Tsan JengPey-Shey Wu
口試日期:2014-07-31
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:58
中文關鍵詞:衝擊熱傳熱偶量測暫態液晶實驗半圓球凹面集流孔多孔材
外文關鍵詞:jet impingement heat transferthermocouple measurementtransient liquid crystal techniquesemi-spherical concave surfacetrapping holeporous material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
衝擊冷卻有局部高熱傳的優點,已被廣泛用於工業界,如工業乾燥、金屬與玻璃退火、氣渦輪葉片冷卻、電子散熱等。多孔材在熱流的應用也日益受到重視。衝擊冷卻與多孔材的結合是值得探討的問題。
本研究利用加熱片配合熱偶量測方法以及暫態液晶實驗方法探討半圓球凹面有、無貼附具中心集孔多孔材的衝擊熱傳,也以MatLab語言成功的改善了液晶技術影像處理與數據化約程式。本實驗探討的參數包含雷諾數、噴嘴到目標板距離、相對曲率以及凹面是否有貼附具中心集流孔之多孔材等。
實驗結果顯示,加熱片與熱偶的量測方法雖然數據不多,但是可以延伸到整個半球範圍;無論有無貼附多孔材,雷諾數的增加一般可以提升紐賽數,但是太高的雷諾數會使得停滯區的紐賽數下降;當凹面有覆蓋多孔材時,停滯區的紐賽數分佈值隨著噴嘴到目標板的距離的增加而降低,但是遠處的紐賽數卻有不同的變化趨勢;液晶實驗方法雖然可以得到詳細紐賽數分佈數據,但是此方法會受到觀察角度的影響。

Jet impingement cooling has the advantage of localized high heat transfer rate. It has been widely applied to industries such as industrial drying, metal and glass annealing, gas turbine blade cooling, and electronics cooling. Porous material in thermal/fluid applications is also attracting people's attention. The combination of impingement heat transfer and porous material is worthy of investigation.
This thesis applies two experimental methods, heating foil with thermocouple measurement and transient liquid crystal technique, to the investigation of jet impingement heat transfer onto a semi-spherical concave surface covered with or without porous material with a center trapping hole. A new image processing and data acquisition program has also been successfully developed in this research for the improvement of liquid crystal technique. The investigated parameters of the research include Reynolds number, nozzle-to-plate distance, relative curvature, and the concave surface with or without porous material.
Experimental results show the following. Although the measuring method with heating foil and thermocouples does not give many data points, the measurement can be extended to the whole semi-sphere. No matter the concave surface is covered by the porous material or not, an increase of Reynolds number (Re) usually increases Nusselt number (Nu). However, too high Reynolds number may cause the stagnation Nusselt number to decrease. With the coverage of porous material, stagnation Nusselt number decreases with an increase of the nozzle-to-plate distance, but the Nu in the far field may vary in different trends. Although liquid crystal technique may provide detailed Nu distribution, this method may subject to influence of viewing angles.

簽名頁---------------------------------------------------ii
中文摘要---------------------------------------------------iii
ABSTRACT---------------------------------------------------iv
誌謝---------------------------------------------------vi
目錄---------------------------------------------------vii
圖目錄---------------------------------------------------x
表目錄---------------------------------------------------xvi
符號說明---------------------------------------------------xvii

第一章 緒論---------------------------------------------------1
1.1 研究背景---------------------------------------------------1
1.2 研究目的---------------------------------------------------2
1.3 文獻回顧---------------------------------------------------3
第二章 實驗系統與研究方法---------------------------------------------------7
2.1實驗系統概述與設計---------------------------------------------------7
2.1.1實驗載台---------------------------------------------------7
2.1.2光源模組---------------------------------------------------8
2.1.3熱風產生系統 ---------------------------------------------------9
2.1.4氣體冷卻裝置 ---------------------------------------------------9
2.1.5氣體快速切換模組---------------------------------------------------10
2.1.6實驗模型---------------------------------------------------10
2.2 DAQ組件---------------------------------------------------11
2.2.1影像擷取系統--------------------------------------------------- 12
2.2.2溫度資料擷取系統---------------------------------------------------12
2.2.3壓力量測系統--------------------------------------------------- 13
2.2.4流量量測系統--------------------------------------------------- 13
2.3實驗案例與實驗程序---------------------------------------------------14
2.3.1系統檢查調整階段---------------------------------------------------14
2.3.2實驗測試階段--------------------------------------------------- 15
2.3.3數據化約階段 ---------------------------------------------------16
第三章 結果與討論--------------------------------------------------- 18
3.1熱偶量測實驗結果---------------------------------------------------18
3.2液晶技術與熱偶量測之比較---------------------------------------------------19
3.3凹面無覆蓋多孔材的液晶實驗結果---------------------------------------------------20
3.4凹面有覆蓋多孔材的液晶實驗結果---------------------------------------------------21
3.5凹面貼附多孔材的影響---------------------------------------------------22
第四章 結論---------------------------------------------------23
參考文獻---------------------------------------------------25
附錄 1 多孔材半圓&半球加工程序---------------------------------------------------61
附錄 2 流量計校正計算---------------------------------------------------64
附錄 3 使用攝影機擷取顯色狀況之Matlab程式---------------------------------------------------65
附錄 4 局部紐賽數數據化約原始程式碼---------------------------------------------------66


圖目錄

圖 2.1:實驗系統示意圖---------------------------------------------------31
圖 2.2:初期實驗載台---------------------------------------------------32
圖 2.3:調整光原後的實驗載台---------------------------------------------------33
圖 2.4:熱風產生系統&氣體冷卻裝置---------------------------------------------------34
圖 2.5:氣體快速切換模組設計圖---------------------------------------------------34
圖 2.6:氣體快速切換模組實體圖---------------------------------------------------35
圖 2.7:熱偶實驗用模型示意圖[26]---------------------------------------------------35
圖 2.8:熱偶實驗用模型---------------------------------------------------36
圖 2.9:液晶實驗用半圓測試塊設計圖與照片---------------------------------------------------36
圖 2.10:實驗用有中心集流孔多孔鋁---------------------------------------------------37
圖 2.11:100-HC數據收集盒 ---------------------------------------------------37
圖 2.12:差壓傳送器---------------------------------------------------38
圖 2.13:浮子流量計---------------------------------------------------39
圖 2.14:R28C1W熱像液晶校正之顯色狀況。---------------------------------------------------39
圖 2.15:偶溫度分布曲線---------------------------------------------------40
圖 2.16:R28C1W熱像液晶校正線---------------------------------------------------41
圖 2.17:暫態實驗影片的張數時間與當時音效檔案之操作介面---------------------------------------------------42
圖 2.18:暫態實驗之音頻訊號---------------------------------------------------42
圖 3.1:半圓球凹面有、無覆蓋具中心集流孔多孔材的熱偶量測實驗結果(H/DJ = 6) [26]---------------------------------43
圖 3.2:半圓球凹面有、無覆蓋具中心集流孔多孔材噴嘴至目標板距離之影響的熱偶量測實驗結果(RE=12400) [26]-------------44
圖 3.3:熱偶與液晶實驗比較 (RE = 12400,H/DJ = 6,無多孔材)---------------------------------------------------45
圖 3.4:熱偶與液晶實驗比較 (RE = 17900,H/DJ = 6,無多孔材)---------------------------------------------------46
圖 3.5:熱偶與液晶實驗比較 (RE = 23000,H/DJ = 6,無多孔材)---------------------------------------------------47
圖 3.6:液晶暫態實驗過程在時間(A) 3秒與(B) 15秒的顯色情形(RE = 12400,H/DJ = 6,無多孔材)-----------------------48
圖 3.7:熱偶與液晶實驗比較 (RE = 12400,H/DJ = 6,有多孔材) 49
圖 3.8:液晶暫態實驗過程在時間(A) 3秒與(B) 15秒的顯色情形(RE = 12400,H/DJ = 6,有多孔材)-----------------------50
圖 3.9:典型的原始數據與曲線適配結果(RE = 23000,H/DJ = 6,無多孔材)----------------------------------51
圖 3.10:雷諾數對紐賽數的影響(DJ=10MM,H/DJ = 6,無多孔材)-------------------------------------------52
圖 3.11:噴嘴到目標板的距離(H/DJ)對紐賽數的影響(RE = 12400,無多孔材)---------------------------------53
圖 3.12:噴嘴到目標板的距離(H/DJ)對紐賽數的影響(RE = 23000,無多孔材)---------------------------------54
圖 3.13:相對曲率對紐賽數的影響(RE = 23000,無多孔材)------------------------------------------------55
圖 3.14:雷諾數對紐賽數的影響(DJ=10MM,H/DJ = 6,有多孔材)-------------------------------------------56
圖 3.15:噴嘴到目標板的距離(H/DJ)對紐賽數的影響(RE = 23000,有多孔材)---------------------------------57
圖 3.16:相對曲率對紐賽數的影響(RE = 23000,有多孔材)-------------------------------------------58
圖 3.17:凹面有無多孔材貼附的影響(RE = 12400)---------------------------------------------------59
圖 3.18:凹面有無多孔材貼附的影響(RE = 23000)---------------------------------------------------60


表目錄

表 2.1:實驗案例總表---------------------------------------------------30



[1]Sultan, K., DeGroot, C.T., Straatman, A.G., Gallego, N.C., and Hangan, H., 2009, “Thermal Characterization of Porous Graphitic Foam – Convection in Impinging Flow,” Int. J. Heat and Mass Transfer, Vol. 52, pp. 4296-4301.
[2]Jeng, T.M., Tzeng, S.C., and Liu, T.C., 2008, “Heat Transfer Behavior in a Rotating Aluminum Foam Heat Sink with a Circular Impinging Jet,” Int. J. Heat and Mass Transfer, Vol. 51, pp. 1205-1215.
[3]Bunker, R.S. and Metzger, D.E., 1990, “Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I – Impingement Cooling Without Film Coolant Extraction,” ASME, Journal of Heat Transfer, Vol. 112, pp. 451-458.
[4]Metzger, D.E., and Bunker, R.S., 1990, “Local Heat Transfer in Internally Cooled Airfoil Leading Edge Regions: Part II – Impingement Cooling With Film Coolant Extraction,” ASME, Journal of Heat Transfer, Vol. 112, pp. 459-466.
[5]van Treuren, K.W., Wang, Z., Ireland, T., and Jones, T.V., 1994, “Local Heat Transfer Coefficient and Adiabatic Wall Temperature Measurement Beneath Arrays of Staggered and Inline Impinging Jets,” ASME 94-GT-181, pp. 1-10.
[6]Nashar, 1992, “Impingement Heat Transfer and Flow Characteristic in Gas Turbine Blade Cooling,” Report No. KWRB10 TN 92/265.
[7]Kanokjaruvijit, K. and Martinez-botas, R.F., 2005, “Jet Impingement on a Dimpled Surface with Different Crossflow Schemes,” Int. Journal of Heat and Mass Transfer, Vol. 48, pp.161-170.
[8]Xing, Y. and Weigand, B., 2010, “Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate with Different Crossflow Schemes,” Int. Journal of Heat and Mass Transfer, Vol. 53, pp.3874-3866.
[9]Terekhov, V.I., Kalinina, S.V., Mshvidobadze, Yu.M., and Sharov, K.A., 2009, “Impingement of an Impact Jet onto a Spherical Cavity. Flow Structure and Heat Transer,” Int. Journal of Heat and Mass Transfer, Vol. 52, pp.2498-2506.
[10]Thomann, H., 1968, “Effect of Streamwise Wall Curvature on Heat Transfer in a Turbulent Boundary Layer,” J. Fluid Mechanics, Vol. 33, pp. 283-292.
[11]Gau, C. and Chung, C.M., 1991, “Surface Curvature Effect on Slot-air Jet Impingement Cooling Flow and Heat Transfer Process,” ASME J. Heat Transfer, Vol. 113, pp. 858-864.
[12]Yang, G., Choi, M., and Lee, J.S., 1999, “An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effect of Nozzle Configuration and Curvature,” Int. Journal of Heat and Mass Transfer, Vol. 42, pp.2199-2209.
[13]Fenot, M., Dorignac, E., and Vullierme, J.-J., 2008, “An Experimental Study on Hot Round Jets Impinging a Concave Surface,” Int. Journal of Heat and Mass Transfer, Vol. 29, pp.945-956.
[14]Craft, T.J., Iacovides, H., and Mostafa, N.A., 2008, “Modeling of Three-dimensional Jet Array Impingement and Heat Transfer on a Concave Surface,” Int. Journal of Heat and Fluid Flow, Vol. 29, pp. 687-702.
[15]Eren, H., Celik, N., and Yesilata, B., 2006, “Nonlinear Flow and Heat Transfer Dynamics of a Slot Jet Impinging on a Slightly Curved Concave Surface,” Int. Communication in Heat and Mass Transfer, Vol. 33, pp. 364-371.
[16]Yang, Y.T., Wei, T.C., and Wang, Y.H., 2011, “Numerical Study of Turbulent Slot Jet Impingement Cooling on a Semi-circular Concave Surface,” Int. Journal of Heat and Mass Transfer, Vol. 54, pp.482-489.
[17]Sharif, M.A.R. and Mothe, K.K., 2010, “Parametric Study of Turbulent Slot-jet Impingement Heat Transfer from Concave Cylindrical Surfaces,” Int. Journal of Thermal Sciences, Vol. 49, pp. 428-442.
[18]Sivasamy, A., Selladurai, V., and Rajesh Kanna, P., 2010, “Jet Impingement Cooling of a Constant Heat Flux Horizontal Surface in a Confined Porous Medium: Mixed Convection Regime,” Int. Journal of Heat and Mass Transfer, Vol. 53, pp.5847-5855.
[19]Saeid, N.H., 2007, “Jet Impingement Interaction with Cross Flow in Horizontal Porous Layer Under Thermal Non-equilibrium Conditions,” Int. Journal of Heat and Mass Transfer, Vol. 50, pp.4265-4274.
[20]Sivasamy, A., Selladurai, V., and Rajesh Kanna, P., 2010, “Mixed Convection on Jet Impingement Cooling of a Constant Heat Flux Horizontal Porous Layer,” Int. Journal of Thermal Sciences, Vol. 49, pp. 1238-1246.
[21]黃新鉗,1997,”加裝多孔凸塊以增強熱傳效率之研究(A Study of Thermal Enhancement by Adding Porous Block Under Impinging Jet)”,交通大學機械工程研究所博士論文。
[22]吳俊源,2001,“多孔性電子散熱器應用於微處理器之散熱特性研究(Heat Transfer Characteristics of Porous Heat Sinks Used for CPU Cooling)”,中正大學機械工程研究所碩士論文。
[23]邱偉誠,2002,“電子多孔性散熱器熱傳特性之研究(Study of Heat Transfer Characteristics of Electronic Porous Heat Sinks)”,中正大學機械工程研究所碩士論文。
[24]Wu, P.S., Hsieh, C.Y., and Tsai, S.T., 2010, “Heat Transfer Enhancement of Jet Impingement on a Flat Plate Attached by a Porous Medium with a Center Cavity,” Defect and Diffusion Forum (DDF), Vols. 297-301—Diffusion in Solids and Liquids V, pp. 427-432.
[25]Wu, P.S., Lo, Y.W., and Cheng, F.C., 2010, “Numerical Investigation of Impingement Heat Transfer Enhancement on a Flat Plate with an Attached Porous Medium,” Defect and Diffusion Forum, Vols. 312-315, pp. 477-482.
[26]Wu, P.S., Lin, Y.H., Jhuo, Y.H., and Chan, H.Y., 2014, “Impingement Cooling of a Semi-Spherical Concave Surface Covered by Porous Medium with a Jet Trapping Hole,” Defect and Diffusion Forum (DDF), Vol. 348, pp. 162-170.
[27]吳佩學、劉家榮、賴祐民,2007, ”對固體表面加熱之液晶熱像熱傳實驗方法”,科學與工程技術期刊(Journal of Science and Engineering Technology),第三卷第二期。Vol. 3, No. 2, June 2007, pp. 37-46.
[28]Vedula, R.J. and Metzger, D.E, 1991, “A Method for The Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations,” ASME 91-GT-345, pp.1-9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top