跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭育叡
研究生(外文):Yu-Ruei Jheng
論文名稱:新型混合串並聯式五軸後處理器模型建立與應用
論文名稱(外文):Modeling and Application of Postprocessor System for a Novel Hybrid Parallel-Serial Five-Axis Machine Tool
指導教授:賴元隆紀華偉
指導教授(外文):Yuan-Lung LaiHua-Wei Chi
口試委員:賴元隆紀華偉蔡耀文洪瑞斌
口試委員(外文):Yuan-Lung LaiHua-Wei ChiYao-Wen TsaiJui-Pin Hung
口試日期:2014-07-31
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:105
中文關鍵詞:串並聯五軸工具機D-H修正標記法後處理器螺旋理論
外文關鍵詞:Parallel-serial Five-axis Machine ToolD-H Modified NotationPostprocessorScrew Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
研究的目的是提出一個通用型的後處理器,使用此後處理器將可轉換刀具位置(CL) 路徑為數值刀具移動(NC)路徑,以配合CNC機台控制器運作。精密加工產業朝高精度及複雜的空間幾何形狀的需求已為趨勢,工件要符合最少裝夾即可完成加工程序,使得多軸加工也成為微米級以因應3C產業、電子通訊、光學零件及醫療等新興產業加工設備需求。而常見五軸工具機的旋轉軸大多是由單一馬達帶動夾持檯面使其旋轉,但在不同的工件重量下以及在馬達承載同時,旋轉速度應當與重量成反比,因此軸與軸的同步性會變差,導致加工尺寸精確性也大大的下降。因此本研究針對一款2PRP的平面並聯式平台,由一根圓棒連結兩個PRP接頭與活動檯面,利用馬達驅動滾珠螺桿帶動PRP接頭,兩並聯螺桿藉由產生不同的移動位置差異來達到移動或是旋轉的效果,如此可模擬五軸工具機上旋轉檯面之功能。
銑床有立式與臥式兩類之外,五軸加工機的構性更多元化,正交與非正交的軸向連結也使後處理器撰寫增加複雜程度。就像許多CAM套件一樣,同一個後處理器可以用於多個使用相同類型控制器的加工機,但是不同構型加工機則無法共用;又或同一個後處理器可以用於多個相同構型的加工機;但是不同格式指令的控制器加工機則無法共用。本研究建構新型混合串並聯式五軸後處理器模組,先推演混合串並聯式運動模型,然後利用D-H修正標記法與螺旋理論撰寫座標轉換程式,將CL path轉換產生機台加工NC Code,將NC Code匯入控制器後實際加工並完成對工件成品的精度量測,確認是否符合設計尺寸要求。再利用模組化方法建置後處器使用者介面,可針對機台規格做先期規劃設計,針對加工特性做最佳化計算以提升加工品質的需求。

This research proposes a general postprocessor initially aimed to translate CL (Cutter Location) path for CNC controllers. Recently, precision machining heading to a high quality and complication level has become a trend. The machined pieces must meet the requirement of a machine tool that completes all or part of the work pieces with minimal number of clamping operations. For this, multi-axial structure has become the tendency of precision machining. The rotary axis in a common five-axis machine tool is driven by a single motor that holds the platform for the axial rotation. However, with different weights of work pieces and the motor loaded, the rotating speed should be in negative effect to the weight. As a result, the axis-to-axis synchronization is poor, resulting in dramatic decrease in machining precision. Therefore, a 2PRP planar parallel platform is designed by connecting the two PRP connectors and moving table with a round bar. The motor drives ball screws and propels these PRP connectors. The two parallel ball screws acquire both effects on movement or rotation by generating different displacements of these two connectors. Thus the simulation of the rotating table on a five-axis machine tool is achieved.
Besides vertical and horizontal, five-axis machine tools are not only more diversified structures than three-axis machine tools, orthogonal and non-orthogonal linkage between two axes also increase the degree of complexity for developing the postprocessor. Just like many CAM packages, a postprocessor can be used for the machine tools with similar controllers instead of different configurations of axial definitions. A postprocessor can be used for the machine tools with identical configurations instead of different specifications of controllers. In this research a modular method was introduced to construct the postprocessor system for a novel hybrid parallel-serial five-axis machine tool with NC path optimization. First the hybrid parallel-serial mathematic model was developed to analyze the configuration. The configuration information of machine tools is employed to create the kernel of postprocessor. Finally D-H modified notation and screw theory are used for coordinate conversion program. CL path is converted to produce NC Code. The machining NC Code is imported into the controller for machining and the precision of finished products is measured to make sure that the requirements of dimension in the design are met. The user interface of the system will be implemented and displayed by Visual Studio, according to the preliminary setting of machining conditions; the optimization for the machining characteristics can be enforced to increase the precision of surface finishing.

封面內頁
簽名頁
中文摘要 ............................................................ iii
ABSTRACT ......................................................... v
誌謝 ................................................................. vii
目錄 ................................................................. viii
圖目錄 ............................................................... x
表目錄 ............................................................... xv

第一章 緒論 ........................................................ 1
1.1 前言 ............................................................ 1
1.2 研究目的與動機 ............................................... 2
1.3 文獻回顧 ....................................................... 2
1.4 論文架構 ....................................................... 4
第二章五軸工具機與串並聯式平台比較 ......................... 6
2.1 軸向定義 ....................................................... 6
2.2 五軸工具機介紹 ............................................... 7
2.3 五軸工具機型種類 ............................................ 7
2.4 並聯式機構與串聯式機構比較 .............................. 11
第三章串並聯式五軸工具機後處理器建置 ...................... 14
3.1 後處理器概述 ................................................. 14
3.2 運動模型建立 ................................................. 16
3.3 齊次轉換矩陣 ................................................. 19
3.4 D-H 修正標記法 ............................................. 22
3.5 螺旋理論 ...................................................... 25
3.6 求解工具機運動參數方程組 ................................ 33
3.7 並聯式平台正逆向運動分析 ................................ 35
第四章側銑推導與應用 ............................................ 39
4.1 側銑推導 ...................................................... 39
4.1.1 CAM 之刀具路徑CL data ................................ 40
4.1.2 CL 刀具法線向量判斷式 .................................. 42
4.1.3 刀軸法向量判斷式 ......................................... 45
4.2 側銑加工運動驗證 ............................................ 50
第五章後處理器程式驗證與加工應用 ............................ 57
5.1 後處理器驗證 .................................................. 57
5.2 導角四面錐成品加工與探討 .................................. 61
5.3 五軸同動之曲面加工 .......................................... 84
第六章結論與未來展望 ............................................. 89
6.1 結論 ............................................................ 89
6.2 未來展望 ...................................................... 91
參考文獻 ............................................................ 93
附錄A 導角四面錐加工NC code ................................ 97
附錄B 直線切削測試加工NC code ............................. 100
附錄C 導角四面錐分段加減速NC code ........................ 101
附錄D 曲面加工NC code ....................................... 103

[1] O. Remus, T.F., Feng, H.Y.(2004).Configuration analysis of five-axis machine tools using a generic kinematic model. International Journal of Machine Tools and Manufacture, Vol. 44, 1235-1243.
[2] She, C.H., Chang, C.C.(2007).Design of a generic five-axis postprocessor based on generalized kinematics model of machine tool. International Journal of Machine Tools and Manufacture, Vol. 47, 537-545.
[3] Denavit J., Hartenberg. R.S.(1955). A Kinematic Notation for Low-pair Mechanisms Based on Matrices. ASME Journal of Applied Mechanics, 22, 215-221.
[4] Lin P. D., Chen J. F.(1994). Analysis of Error in Precision for Closed Loop Mechanisms. Journal of Mechanical Design, Vol. 116, 197-203.
[5] Paul, R. P.(1982).Robot Manipulators-Mathematics, Program and Control. MIT press, Cambridge.
[6] 郭武彰(2009)。點與線之有限位移螺旋的線幾何研究。博士論文。國立成功大學。台南。
[7] 吳錫章(2007)。非正交型車銑複合虛擬工具機運動模型系統之發展。碩士論文。國立成功大學。台南。
[8] 郭禮安(2008)。利用D-H修正標記法於非正交多軸工具機自動化泛用型後處理程式之發展。碩士論文。國立成功大學。台南。
[9] 鄒震贏(2006)。應用OpenGL於五軸虛擬工具機系統之發展。碩士論文。國立成功大學。台南。
[10] 吳孟霖(2007)。五軸加工後處理程式建構與應用。碩士論文。國立台北科技大學。台北。
[11] Stute, G. and Damsohn, H.(1973).Special Problems in Postprocessing of Multi-axis Milling Machines. Proceedings of the Second IFIP/IFAC International Conference on Programming Languages for Machine Tools, PROLOMAT, 73, 737-746.
[12] Suh, S.H., Lee, K.S.(1991).A prototype CAM system for four-axis NC machining of rotational-free-surfaces. Journal of Manufacturing Systems, Vol. 10, 322-331.
[13] Takeuchi Y., Watanabe, T. (1992).Generation of 5-axis control collision-free tool path and postprocessing for NC data. Annals of the CIRP, Vol. 41, 539-542.
[14] Lotfi B., Zhong Z.W., Khoo L.P. (2010).A Novel Algorithm to Generate Backlash-free Motion. Mechanism and Machine Theory,45(8),1171-1184.
[15] Joubair A., Slamani M., Bonev I.A. (2012). A Novel XY-Theta Precision Table and a Geometric Procedure for Its Kinematic Calibration. Journal of Robotics and Computer-Integrated Manufacturing , 28, 57-65.
[16] Bricard R.,(1906). Mémoire sur les déplacements à trajectoires sphériques. J. Ecole Polyt, 11(2), 1-96.
[17] Stewart D. (1965). A Platform with Six Degree of Freedom, in Proc. Instn Mech Engrs, Vol. 180,No.15, 371-386.
[18] Merlet, J. P., (1989).Singular Configurations of Parallel Manipulators and Grassmann Geometry,Int. J. of Robotics Research, Vol. 8 ,45-56.
[19] G. Brandt, et al., (1997).A compact robot for image guided orthopedic surgery. 1st Joint Conf. Computer Vision, Virtual Reality and Robotics, Grenoble, 19-22, 365-369.
[20] K. W. Grace, et al., (1993).A six degree of freedom micromanipulator for opthalmic surgery. IEEE Int. Conf. Robotics and Automation, Atlanta, 2-6, 630-635.
[21] Raghavan, M., (1993).Stewart platform of general geometry has 40 configurations. Trans. ASME, J. Mechanical Design, Vol. 115, No. 2, 277-280.
[22] Geng, Z., Haynes, L. S., (1993) .Six-degree-of-freedom active vibration isolation using a Stewart platform mechanism. J. Robotic Systems ,Vol. 10, No. 5, 725-744.
[23] Zhang X., Mills J.K., Cleghorn W.L. (2010). Multi-mode Vibration Control and Position Error Analysis of Parallel Manipulator with Multiple Flexible Links. Transactions of the Canadian Society for Mechanical Engineering, 34, 197-213.
[24] Hesselbach J.,Wrege J., Raatz A., Becker O. (2004). Aspects on Design of High Precision Parallel Robots . Assembly Automation, 24, 49-57.
[25] Bonev I.A., Zlatanov D., Gosselin C.M. (2003). Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory. Journal of Mechanical Design, 125, 81-573.
[26] Briot S., Bonev I.A. (2007). Are Parallel Robots More Accurate than Serial Robots . Transactions of the Canadian Society for Mechanical Engineering , 31, 445-455.
[27] Yu A., Bonev I.A., Zsombor-Murray P. (2008).Geometric approach to the accuracy analysis of a class of 3-DOF plannar parallel robots. Mechanism and Machine Theory, Vol.43 ,364-375.
[28] Joubair A., Slamani M., Bonev I.A. (2012). Kinematic Calibration of a 3-DOF Planar Parallel Robot. Industrial Robot: An International Journal, 39, 392-400.
[29] Yu A., Bonev I.A., Zsombor-Murray P. (2006). New XY-Theta Positioning Table with Partially Decoupled Parallel Kinematics. Paper presented at the Industrial Electronics, IEEE International Symposium on, Vol. 4, 3108-3112.
[30] Ronchi S., Company O., Pierrot F., Fournier A., (2004). PRP Planar Parallel Mechanism in Configurations Improving Displacement Resolution. Proceedings of the 1st International Conference on Positioning Technology, 16 ,279-284.
[31] 林辰育(2013)。並聯式精密定位平台於五軸工具機設計之研究。碩士論文。大葉大學。彰化。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top