(3.236.100.6) 您好!臺灣時間:2021/04/24 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莫卡
研究生(外文):Mukesh Saini
論文名稱:在大腸桿菌中生產丁酸和正丁醇的基因工程策略
論文名稱(外文):The engineering strategy for production of butyrate and n-butanol in Escherichia coli
指導教授:趙雲鵬
口試委員:趙雲鵬劉永銓孟孟孝李文乾王逢盛姜中人
口試日期:2014-06-26
學位類別:博士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:159
中文關鍵詞:大肠埃希氏菌丁酸正丁醇
外文關鍵詞:Escherichia coliButyric acidn-Butanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
“Patent pending, temporarily not
authorized for public access”
摘  要
丁酸和正丁醇具有許多重要的應用。前者用於製藥,化工,食品等行業,而後者則是在油墨,塑料和塗料行業的應用。特別是,丁酸可以作為前體的正丁醇,一個潛在的生物燃料的生產。相比,乙醇,正丁醇具有更高的能量密度,更低的蒸汽壓,和在水中的溶解度較低。可再生的生物燃料來源,最近由於化石燃料價格暴漲吸引了顯著關注人類社會,石油儲量的不斷枯竭,溫室氣體的高排放和石油供應的不穩定性。在生物技術領域,丁酸和正丁醇已被常規地由梭狀芽胞桿菌物種產生。然而,在生產中的丁酸和正丁醇的預先因為有限的遺傳工具,無法提供生理信息,以及複雜的發酵模式受阻梭菌。
大腸桿菌是一個行業友好的細菌,並有許多吸引人的特性,如在一個簡單的培養基中生長速度快,發達的遺傳工具,和已知的生理學。在這項研究中,丁酸和正丁醇生產平台在大腸桿菌中通過代謝工程開發的。它是已知的質粒是有問題的,因為它具有不穩定性,細胞 - 細胞變異和代謝負擔的問題。這個問題是由遺傳工具箱基因組工程的發展解決。該工具箱基本上包括attP位基於站點的整合載體和attB位點為基礎的模板載體,兩者都配有一個選擇標記由兩個突變型loxP(即LE*和RE*)兩側。與此工具箱,它包括正丁醇的合成途徑的異源基因導入大腸桿菌基因組中。因此,正丁醇的生產滴度都達到了3.7 g/L。這表明,我們的基因工程技術是可行和有效的大腸桿菌的代謝工程。
在此研究的第二部分,丁酸的合成途徑由基因工程技術重建於大腸桿菌。此外,除去依賴NADH的代謝途徑,以增加氧化還原當量和導致浪費的副產物不期望的信號通路被消除,以節約碳的可用性。其結果是,該重組大腸桿菌能產生丁酸鹽具有高滴度,生產率和選擇性。丁酸的生產滴度為10 g/L的同一個轉化率達到理論產率的85.5%。丁酸的選擇性,其定義為丁酸酯為乙酸鹽的重量比,最後達到143。
在這項研究中的第三部分,我們提出正丁醇的新的生產平台。此工作由丁酸的生物轉化,以正丁醇。內源性atoDA和clotridial adhEII被overexprssed在大腸桿菌。除去不希望的途徑之後,工程化的大腸桿菌菌株(該丁酸轉化菌株)能夠從補充丁酸生產正丁醇。正丁醇的生產滴度為6.9 g/L與理論產率的92%。最後,2大腸桿菌菌株,從第二部分的丁酸產生菌和丁酸轉化菌株,共培養在葡萄糖的存在沒有丁酸補充。這導致生產正丁醇5.5 g/L,佔理論產率的69%。
在這項研究中的最後一部分,提出了從葡萄糖在大腸桿菌中提高正丁醇的新戰略,實現了氧化還原平衡。從本研究的第一部分中的正丁醇生產菌株被用來達到這個目的。其結果是,正丁醇滴度達到6.2 g/L與理論產量為與其中心代謝被操縱的應變為76%。
總之,在本研究中我們提出的策略是有希望的。它可能在生物技術打開了新的途徑進行有效的生產丁酸和正丁醇的大腸桿菌。

键词: 大肠埃希氏菌,丁酸,正丁醇。
“Patent pending, temporarily not
authorized for public access”
Abstract
Butyric acid and n-butanol have many important applications. The former is used in the pharmaceutical, chemical and food industries while the latter is applied in the ink, plastic, and paint industries. In particular, butyric acid can serve as a precursor for the manufacture of n-butanol, a potential biofuel. As compared to ethanol, n-butanol has higher energy density, lower vapor pressure, and lower solubility in water. Renewable biofuel sources have recently attracted significant attention in human society due to the skyrocketing price of fossil fuels, continued depletion of oil reserves, high emission of greenhouse gas, and instability of oil supply. In the biotechnology field, butyric acid and n-butanol have been conventionally produced by Clostridium species. However, the advance in production of butyric acid and n-butanol is hampered in Clostridium because of limited genetic tools, unavailable physiological information, and the complicated fermentation pattern.
Escherichia coli is an industry-friendly bacterium and has many attractive traits such as fast growth in a simple medium, well-developed genetic tools, and known physiology. In this study, a production platform of butyric acid and n-butanol was developed in E. coli by metabolic engineering. It is known that plasmid is problematic because it has a problem of instability, cell-cell variation, and metabolic burden. This issue was addressed by development of a genetic toolbox for genomic engineering. The toolbox essentially includes the attP site-based integration vectors and the attB site-based template vectors, both equipped with a selective marker flanked by two mutant loxP sites (i.e., LE* and RE*). With this toolbox, heterologous genes comprising the synthetic pathway of n-butanol were introduced into E. coli genome. Consequently, the production titer of n-butanol reached 3.7 g/L. This indicates that our genomic engineering technique is feasible and effective for metabolic engineering of E. coli.
In the second part of this study, a synthetic pathway of butyric acid was reconstructed in E. coli by the genomic engineering technique. In addition, the NADH-dependent metabolic pathways were removed to increase availability of the redox equivalent and undesired pathways leading to waste byproducts were eliminated to conserve carbon. As a result, the recombinant E. coli was able to produce butyrate with high titer, productivity, and selectivity. The production titer of butyrate was 10 g/L with a conversion yield attaining 85.5 % of theoretical yield. The butyrate selectivity, defined as the weight ratio of butyrate to acetate, finally reached 143.
In the third part of this study, we proposed a new production platform of n-butanol. This was carried out by bioconversion of butyrate to n-butanol. The endogenous atoDA and clotridial adhEII were overexprssed in E. coli. After removal of undesired pathways, the engineered E. coli strain (the butyrate-conversion strain) was able to produce n-butanol from supplemented butyrate. The production titer of n-butanol was 6.9 g/L with 92 % of the theoretical yield. Finally, two E. coli strains, the butyrate-producing strain from the second part and the butyrate-conversion strain, were co-cultured in the presence of glucose without butyrate supplementation. It led to the production of n-butanol of 5.5 g/L, accounting for 69 % of the theoretical yield.
In the final part of this study, a new strategy to achieve the redox balance was proposed to improve n-butanol from glucose in E. coli. The n-butanol producer strain from the first part of this study was utilized to achieve this goal. As a consequence, the n-butanol titer reached 6.2 g/L with 76 % of the theoretical yield for the strain with its central metabolism being manipulated.
In conclusion, our proposed strategies in this study are promising. It may open a new avenue in biotechnology for effective production of butyrate and n-butanol in E. coli.

Keywords: Escherichia coli, Butyric acid, n-butanol.
Contents
Chapter 1. Introduction……………………………………………………………...1
1.1. A brief account of biofuels…………………………………………1
1.2. Briefly introduction of butyric acid……………………………….2
1.3. History of A.B.E fermentation for n-butanol production………..3
1.4. Production of biobutanol by non-native host……………………..4
1.4.1. Production of n-butanol by E. coli………………………...4
1.4.2. Production of n-butanol by Lactobacillus brevis………….5
1.4.3. Production of n-butanol by Saccharomyces cerevisiae…...5
1.4.4. Production of n-butanol by Pseudomonas putida………...6
1.4.5. Production of n-butanol by Bacillus subtilis……………...7
1.5. References…………………………………………….......................8
Chapter 2. Genomic engineering of Escherichia coli by the phage attachment
site-based integration system with mutant loxP sites………………..22
2.1. Introduction………………………………………………………..23
2.2. Materials and methods……………………………………………25
2.2.1. Strains and culturing condition…………………………...25
2.2.2. Plasmid construction…………………………………….26
2.2.3. Cloning of heterologous genes……………………………26
2.2.4. Creation of the phage attB site……………………………28
2.2.5. Chromosomal integration of heterologous genes………..29
2.2.6. Marker and replicon rescue…….………………………30
2.2.7. Analytical methods………….……………………………..30
2.3. Results and discussion………………………………………….....31
2.3.1. Insertion of genes by integration vectors………………...31
2.3.2. Genomic insertion of multiple genes…………………….32
2.3.3. Creation of additional attB sites for gene insertion……33
2.3.4. n-Butanol production by the engineered strain………….35
2.4. Conclusions………………………………………………………..36
2.5. References…………………………………………………………38
Chapter 3. Metabolic Engineering of Escherichia coli for Production of Butyric
Acid……………………………………………………………………..57
3.1. Introduction……………………………………………………….58
3.2. Materials and methods……………………………………………60
3.2.1 Gene Deletion and Insertion……………………………….60
3.2.2 Enhanced Expression of Endogenous Genes……………..61
3.2.3 Bacterial Culturing………………………………………....62
3.2.4 Analytical Methods…………………………………………62
3.3. Result……………………………………………………………..63
3.3.1 Reconstruction of the Butyrate-Synthesis Pathway……...63
3.3.2 Production of Butyrate in Engineered E. coli…………….64
3.3.3 Effect of Acetate on Butyrate Production………………...64
3.3.4 Butyrate Production by Glucose Feeding………………...65
3.4. Discussion………………………………………………………….66
3.5. References…………………………………………………………70
Chapter 4. Potential production platform of n-butanol in Escherichia
coli……………………………………………………………………84
4.1. Introduction……………………………………………………….85
4.2. Materials and methods……………………………………………86
4.2.1 Bacterial culturing………………………………………….86
4.2.2 Gene manipulation and Strain construction……………...87
4.2.3 Analytical method…………………………………………..88
4.3. Results.……………………………………………………………..88
4.3.1 Production of n-butanol from butyrate…………………...88
4.3.2Effect of butyrate supplementation on n-butanol production
…………...………………………………………………...90
4.3.3 n-Butanol production by glucose and butyrate feeding….90
4.3.4 n-Butanol production by bacterial co-culturing………….91
4.4. Conclusions………………………………………………………..93
4.5. References…………………………………………………………95
Chapter 5. Genomic Engineering of Escherachia coli for production of
n-Butanol.............................................................................................112
5.1. Introduction……………………………………………………..113
5.2. Materials and methods………………………………………….114
5.2.1 Bacterial culturing ……………………………………….114
5.2.2 Plasmid construction …………………………………….114
5.2.3 Genomic insertion and gene deletion……………………117
5.2.4 Analytical method………………………………………...118
5.2.5 Enzyme activity assay……………………………………119
5.3. Results……………………………………………………………120
5.3.1 n-Butanol production in recombinant E.coli………….120
5.3.2 Increase NADH by pyruvate dehydrogenase……..…..121
5.3.3 Increase NADH via pentose phosphate pathway….…..122
5.4. Discussion………………………………………………………..123
5.5. References……………………………………………………….125
Chapter 6. CONCLUDING REMARKS……………………………………...140
6.1. Summary of our study………………………………………...140
6.2. Future perspectives……………………………………………141





LIST OF FIGURES
Figure 1.1: The synthetic pathway of n-butanol in Clostridium………………….17
Figure 1.2: The production of n-butanol via threonine biosynthetic pathway in E.
coli………………………………………………………………………18
Figure 1.3: The biosynthetic pathway of n-butanol in E.coli…………………19 Figure 1.4: Schematic of biosynthesis of n-butanol via β-oxidation cycle in
E.coli…………………………………………………………………..20
Figure 1.5: The biosynthetic pathway of n-butanol in Lactobacillus brevis……..21
Figure 2.1: Schematic illustration of the procedure for genomic integration of
passenger genes and creation of attB sites………………………………
Figure 2.1: (A) Physical maps of integration vectors and attB-template vector...46
Figure 2.1: (B) Genomic insertion of passenger genes using integration vectors.47
Figure 2.1: (C) The general protocol for creation of attB sites…………………...48
Figure 2.1: (D) Genomic insertion of passenger genes using integration vectors at
new created attB site………………………………………………49
Figure 2.2: The biosynthetic pathway of PHB and n-butanol in E. coli…………51
Figure 2.3: Identification of PHB production in strains by Nile red…………….52
Figure 2.4: Analysis of the inserted DNA by agarose gel electrophoresis………….
Figure 2.4: (A) The inserted PλPL–ter gene of integrants was verified………….53
Figure 2.4: (B) The inserted ɸ80attB-LE*-gen-RE* cassette at the adhE gene of
integrants was verified……………………………………………53
Figure 2.5: Fermentation profiles of recombinant E. coli strains…………………..
Figure 2.5: (A) Growth curve. Cell biomass in terms of g DCW per L was
recorded………………………………………………………….55
Figure 2.5: (B) Fermentation profile curve………………………………………..55
Figure 2.5: (C) Production of organic compounds………………………………..56
Figure 3.1: The metabolic pathway leading to butyrate from glucose in E. coli…
Figure 3.1: (A) The intercellular acetate system…………………………………..78
Figure 3.1: (B) The extracellular acetate system………………………………….78
Figure 3.2: Production of butyrate in the engineered E. coli strains…………….80
Figure 3.3: Effect of acetate on the butyrate production in the engineered E. coli
strain……………………………………………………………………81
Figure 3.4: Time course production of butyrate in E. coli by glucose feeding…….
Figure 3.4: (A) Extra feeding of 6 g/L glucose…………………………………….82
Figure 3.4: (B) Extra feeding of 8 g/L glucose…………………………………….82
Figure 3.4: (C) Extra feeding of 10 g/L glucose…………………………………83
Figure 4.1: The synthetic pathway of n-butanol in E. coli………………………102
Figure 4.1: (A) The synthetic pathway of n-butanol in strain BuT-3E………102
Figure 4.1: (B) The synthetic pathway of n-butanol in strain BuT-3EA……102
Figure 4.2: Production of n-butanol in strain BuT-3E………………………….103
Figure 4.3: Effect of supplemented butyrate on the n-butanol production in
engineered E. coli……………………………………………………….
Figure 4.3: (A) The fermentation production for strain BuT-3E………………105
Figure 4.3: (B) Glucose consumption and biomass for strain BuT-3E for strain
BuT-3E ………………………………………………………….105
Figure 4.3: (C) The fermentation profile for strain BuT-3EA………………….106
Figure 4.4: Effect of substrate feeding on the n-butanol production in engineered
E. coli……………………………………………………………………
Figure 4.4: (A) The fermentation production profile……………………………107
Figure 4.4: (B) Glucose and butyrate consumption profile……………………..107
Figure 4.5: The schematic illustration of coupled metabolic pathways for two
engineered E. coli strains…………………………………………109
Figure 4.6: (A) Strains BuT-3E and BuT-8L-ato with various E/L ratios were
grown in shake flasks……………………………………………110
Figure 4.6: (B) Similar experiment was conducted with the E/L ratio at 1:2. After
fermentation for 16 h, strain BuT-3E accounting for OD550 of 2 in
the culture volume was additionally added to the cell
culture……………………………………………………………..110
Figure 5.1: The metabolic pathway leading to n-butanol from glucose in E. coli
………………………………………………………………………134
Figure 5.2: Production of n-butanol in engineered E. coli………………………135
Figure 5.3: The effect of PDH complex on the n-butanol production…………136
Figure 5.4: (A) Production of n-butanol in strain But-10……………………….137
Figure 5.4: (B) Production of n-butanol in strain But-12……………………….137
Figure 5.5: Production of n-butanol in pgi-null strain…………………………..139


LIST OF TABLES
Table 2.1: Strains, plasmids and primers list used………………………………..43
Table 3.1: Strains, plasmids and primers list used………………………………..75
Table 4.1: Strains, plasmids and primers list used………………………………..99
Table 5.1: Strains, plasmids and primers list used………………………………129
Table 5.2: Summarized productivity, theortical yield, intracellular NADH level
and enzyme activity. …………………………………………………..133
Appendix A………………………………………………………………………...142
Appendix B…………………………………………………………………………143
References:

1.Schubert C: Can biofuels finally take center stage? Nat Biotechnol 2006, 24:19 777-784
2.Demirbas A. political economic and environmental impact of biofuels: a review. Appl energy 2009; 86:S108-17
3.Liu HF, Huang JC, Jin C. The development of the bio-diesel and DME on the diesel engine. Guang Xi Energy Convers 2006;1:28–31.
4.Murugesan A, Umarani C, Subramanian R, Nedunchezhian N. Bio-diesel as an alternative fuel for diesel engines – a review. Renew Sust Energy Rev 2009;13:653–662.
5.Qin J, Liu HF, Yao MF, Chen H. Experiment study on diesel engine fueled with biodiesel and diesel fuel. J Combust Sci Technol 2007;13:335–340.
6.Murugesan A, Umarani C, Chinnusamy TR, Krishnan M, Subramanian R, Neduzchezhain N. Production and analysis of bio-diesel from non-edible oils – a review. Renew Sust Energy Rev 2009;13:825–834.
7.Huang JC, Liu HF, Zhang QC, Zhang FG, Feng GD. The experiment research of the admixture fuel of bio-diesel with diesel on diesel engine. J Guangxi Univ (Nat Sci Ed) 2006;31:185–189.
8.Fang TG, Lee CF. Bio-diesel effects on combustion processes in an HSDI diesel engine using advanced injection strategies. Proc Combust Inst 2009;32:2785–2792.
9.Fang T, Lin YC, Foong TM, Lee CF. Biodiesel combustion in an optical HSDI diesel engine under low load premixed combustion conditions. Fuel 2009;88:2154–2162.
10.Qi DH, Geng LM, Chen H, Bian YZ, Liu J, Ren XC. Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renew Energy 2009;34:2706–2713.
11.Bhale PV, Deshpande NV, Thombre SB. Improving the low temperature properties of biodiesel fuel. Renew Energy 2009;34:794–800.
12.Liu HF, Jin C. The development of ethanol fuels. Guang Xi Energy Conserev 2005;3:31–43.
13.Liu HF, Zhang QC, Huang H, Huang JC. The application of fuels methanol and dimethyl ether (DME) on engines. Energy Conserv 2006;25:13–26.
14.Mussatto S, Dragone G, Guimarães PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010;28:817-830.
15.Hansen AC, Zhang Q, Lyne PWL. Ethanol–diesel fuel blends – a review. Bioresour Technol 2005;96:277–285.
16.Ezeji T, Qureshi N, Blaschek HP. Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijernickii. Process Biochem 2007;42:34–39.
17.Dürre P: Biobutanol: an attractive biofuel. Biotechnol J 2007;2:1525-1534.
18.Jin C, Yao M, Liu H, Lee CF, Ji J. Progress in production and application of n-butanol as a biofuel. Renew Sust Energy Rev 2011;15:4080-4106.
19.Cascone, R., Biobutanol-a replacement for bioethanol. Chem Eng Prog 2008, 104, S4-S9.
20.Armstrong DW and Yamazaki H. “Natural flavours production: a biotechnological approach,” Trends in Biotechnology 1986;4:264–267.
21.Dwidar, M.; Park, J. Y.; Mitchell, R. J.; Sang, B. I., The future of butyric acid in industry. ScientificWorldJournal 2012;471417, 9p.
22.Rephaeli, A.; Zhuk, R.; Nudelman, A., Prodrugs of butyric acid from bench to bedside: Synthetic design, mechanisms of action, and clinical applications. Drug Develop Res 2000;50:379-391.
23.Cao, Y.; Li, H.; Zhang, J., Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind. Eng. Chem. Res. 2011;50:7808-7814.
24.El-Shafee, E.; Saad, G. R.; Fahmy, S. M., Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/cellulose acetate butyrate blends. Eur Polym J 2001;37: 2091-2104.
25.Zhang, C.; Yang, H.; Yang, F.; Ma, Y., Current progress on butyric acid production by fermentation. Curr Microbiol 2009;59:656-663.
26.Seregina, T. A.; Shakulov, R. S.; Debabov, V. G.; Mironov, A. S., Construction of a butyrate-producing E. coli strain without the use of heterologous genes. Appl Biochem Biotechnol 2010;46:745-754.
27.Lim, J. H.; Seo, S. W.; Kim, S. Y.; Jung, G. Y., Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli. Bioresour Technol 2013;135:568-573.
28.Back, J. M.; Mazumdar, S.; Lee, S. W.; Jung, M. Y.; Lim, J. H.; Seo, S. W.; Jung, G. Y.; Oh, M. K., Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng 2013;110:2790-2794.
29.Saini M, Wang ZW, Chiang CJ, Chao YP. Metabolic Engineering of Escherichia coli for Production of Butyric Acid. J Agric Food Chem 2014;62:4342-4348
30.Jones, D.T., Woods, D.R. Acetone–butanol fermentation revisited. Microbiol 1986; 50:484–524.
31.Kim, H. S.; Lee, S. H.; Yoon, Y. S.; Oh, S. H.; Chung, Y. M.; Kim, O. Y.; Jeon, H. J. Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid. WO 11/132957, 2011.
32.Lee, S. Y.; Park, J. H.; Jang, S. H.; Nielsen, L. K.; Kim, J.; Jung, K. S., Fermentative butanol production by Clostridia. Biotechnol Bioeng 2008;101:209-228.
33.Matta-el-Ammouri G, Janati-Idrissi R, Junelles AM, Petitdemange H, Gay R: Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum. Biochimie 1987;69:109-115.
34. Richter H, Qureshi N, Heger S, Dien B, Cotta MA, Angenent LT: Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Biotechnol Bioeng 2012;109:913-921.
35. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S: High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 2004; 98:263-268.
36.Noronha SB, Yeh HJC, Spande TF and Shiloach J. Investigation of TCA cycle and glyoxylate shunt in Escherichia coli BL21 and JM109 using 13C-NMR/MS. Biotecnol Bioeng 2000;68:316-327.
37.Phue JS, Noronha SB, Hattacharyya R, Wolfe AJ and Shiloach J. Glucose metabolism at high cell density growth of Escherichia coli B and Escherichia coli K. Biotechnol Bioeng 2005;90:805-820
38.Clomburg JM, Gonzalez R: Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Biochem Biotechnol 2010;86:419-434.
39.Yu C, Cao Y, Zou H, Xian M: Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Biochem Biotechnol 2011;89:573-583.
40.Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, and Ingram LO. Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 2007;108:237-261.
41.York SW and Ingram LO. Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement. Biotechnol Lett 1996;18:683-688.
42.Chiang CJ, Lee HM, Guo HJ, Wang ZW, Lin LJ, Chao YP: Systematic approach to engineer Escherichia coli pathways for co-utilization of the glucose-xylose mixture. J Agri Food Chem 2013;61:7583-7590.
43.Inokuma K, Liao JC, Okamoto M, and Hanai T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 2010;110:696-701.
44.Atsumi, S., T. Hanai, and J. C. Liao. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008;451:86-89.
45.Baez, A., K. M. Cho, and J. C. Liao. High-titer isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol.In print. 2014.
46.Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2008;10:305-311.
47.Inui, M., M. Suda, S. Kimura, K. Yasuda, H. Suzuki, H. Toda, S. Yamamoto, S. Okino, N.Suzuki, and H. Yukawa. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 2008;77:1305-1316.
48. Bond-Watts BB, Bellerose RJ, Chang MCY: Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011;7:222-227.
49.Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC: Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbial 2011; 77:2905-2915.
50.Lim JH, Seo SW, Kim SY, Jung GY: Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng 2013;20:56-62.
51.Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
52.Kok J. Lactococci: molecular biology and biotechnology. In: Dunny GM, Cleary PP, McKay LL (eds). Genetics and molecular biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, DC. 1991:97-102
53.Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 2002;148:1003-1013
54.Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol 1999;10:492-497
55.Chassy BM, Murphy CM. Lactococcus And Lactobacillus In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis And other Gram-positive bacteria. American Society for Microbiology, Washington. 1993;65-82
56.Lokman BC, van Santen P, Verdoes JC, Kruse J, Leer RJ, Posno M, Pouwels PH. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 1991;230:161-169
57.DeMoss RD, Bard RC, Gunsalus IC. The mechanism of the heterolactic fermentation; a new route of ethanol formation. J Bacteriol 1951;62:499-511
58.Knoshaug EP, Zhang M. Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 2009;153:13-20
59.Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV. Reconstruction the clostridium n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 2010;87:635-646.
60.Fischer CR, Klein-Marcusch amer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008;10:295-304
61.Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012;69,2671-2690
62.Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD. Metabolic engineering of Saccharomyces Cerevisiae for the production of n-butanol. Microb Cell Factor 2008;7:36
63.Si T, Luo Y, Xiao H and Zhao H. Utilizing an endogenous pathway for 1-butanol production in Sacchromyces cerevisiae. Metab Eng 2014;22:60-68.
64.De Bont JAM. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 1998;16:493-499.
65.Verhoof S, Ruijssenaars HJ, De Bont JAM and Wery J. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. Journal of Biotechnolog 2007;132:49-52.
66.Heipieper HJ, Debont JAM. Adaptation of Pseudomonas-Putida S12 to Ethanol and Toluene at the Level of Fatty-Acid Composition of Membranes. Appl Environ Microbiol 1994;60:4440-4444.
67.De Carvalho CC, Da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, Da Fonseca MMR, Ferreira BS and Fernandes P. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 2004;64:215-222.
68.Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2011; 11:262-273.
69.Sardessai, Y and Bhosle, S. Organic solvent-tolerant bacteria in mangrove ecosystem. Curr Sci 2002;82:622–623.
70.Harwood CR. Bacillus subtilis and its relatives: molecular biological and industerial workhorses. Trends Biotechnol 1992;10:247-256.
71.Wong SL. Advance in the use of Bacillus subtilis for expression and secretion of heterologous proteins. Current Opinion in Biotech 1995;6(5):517-522.
72.Bailey J. Towards a science of metabolic engineering. Science 1991;252:1668-1675.
73.Cameron DC, Tong IT. Cellular and metabolic engineering. Appl Biochem Biotechnol 1993;38:105-140.
74.Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction. Science 1991;252 1675-1681.
75.Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000;97:6640-6645.
76.Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006;2:2006.0008.
77.Meynial-Salles I, Cervin MA, Soucaille P. New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes. Appl Environ Microbiol 2005;71:2140-2144.
78.Yuan LZ, Rouviere PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 2006;8:79-90.
79.Peredelchuk MY, Bennett GN. A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene 1997;187:231-238.
80.Diaz Ricci JC, Hernández ME. Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 2000;20:79-108.
81.Wang Z, Xiang L, Shao J, Wegrzyn A, Wegrzyn G. Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 2006;5:34.
82.Ow DSW, Nissom PM, Philp R, Oh SKW, Yap MGS. Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5a during batch fermentation. Enzyme Microb Technol 2006;39:391-398.
83.Jones KL, Kim SW, Keasling JD. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2000;2:328-338.
84.Julian A, Hanak J, Cranenburgh RM. Antibiotic-free plasmid selection and maintenance in bacteria. In: O.-W. Merten, D. Mattanovich, C. Lang, G. Larsson, P. Neubauer, D. Porro, P. Postma, J. Teixeira de Mattos ,J. A. Cole editors. Recombinant protein production with prokaryotic and eukaryotic cells: A comparative view on host physiology. Dordrecht, Netherlands.: Kluwer Academic; 2001:111-124.
85.Chiang CJ, Chen PT, Chao YP. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnol Bioeng 2008;101:985-995.
86.Chiang CJ, Chen PT, Chen SY, Chao YP. Marker-free chromosomal expression of foreign and native genes in Escherichia coli. In: J. A. Williams editor. Methods in Molecular Biology. New York: Humana Press; 2011:113-124.
87.Kato JI, Hashimoto M. Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol 2007;3:132.
88.Delneria D, Tomlina GC, Wixona JL, Hutter A, Sefton M, Louis EJ, Oliver SG. Exploring redundancy in the yeast genome: an improved strategy for use of the cre–loxP system. Gene 2000;252:127-135.
89.Arakawa H, Lodygin D, Buerstedde JM. Mutant loxP vectors for selectable marker recycle and conditional knock-outs. BMC Biotechnol 2001;1:7.
90.Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucl Acids Res 2005;33-36.
91.Hashimoto-Gotoh T, Yamaguchi M, Yasojima K, Tsujimura A, Wakabayashi Y, Watanabe Y. A set of temperature sensitive-replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene 2000;241:185-191.
92.Love CA, Lilley PE, Dixon NE. Stable high-copy-number bacteriophage λ promoter vectors for overproduction of proteins in Escherichia coli. Gene 1996;176:49-53.
93.Wang ZW, Lai CB, Chang CH, Chiang CJ, Chao YP. A glucose-insensitive T7 expression system for fully-induced expression of proteins at a subsaturating level of L-arabinose. J Agri Food Chem 2011;59:6534-6542.
94.Haldimann A, Wanner BL. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 2001;183:6384-6393.
95.Chiang CJ, Chern JT, Wang JY, Chao YP. Facile immobilization of evolved Agrobacterium radiobacter carbamoylase with high thermal and oxidative stability. J Agri Food Chem 2008;56:6348-6354.
96.Albermann C, Trachtmann N, Sprenger GA. A simple and reliable method to conduct and monitor expression cassette integration into the Escherichia coli chromosome. Biotechnol J 2010;5:32-38.
97.Albert H, Dale EC, Lee E, Ow DW. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. PLant J 1995;7:649-659.
98.Araki K, Araki M, Yamamura K. Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucl Acids Res 1997;25:868-872.
99.Suzuki N, Inui M, Yukawa H. Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007;77:871-878.
100.Carter Z, Delneri D. New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 2010;27:765-775.
101.Sousa C, de Lorenzo V, Cebolla A. Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology 1997;143:2071-2078.
102.Wang ZW, Law WS, Chao YP. Improvement of the thermoregulated T7 expression system by using the heat-sensitive lacI. Biotechnol Prog 2004;20:1352-1358.
103.Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 2005;102:12678-12683.
104.Bailey J. Towards a science of metabolic engineering. Science 1991;252:1668-1675.
105.Chiang CJ, Saini M, Lee HM, Wang ZW, Chen PT, Chao YP. Genomic engineering of Escherichia coli by the phage attachment site-based integration system with mutant loxP sites. Proc Biochem 2012;47:2246-2254.
106.Sramek SJ, Frerman FE. Purification and properties of Escherichia coli coenzyme A-transferase. Arch Biochem Biophys 1975;171:14-26.
107.Clark DP, Cronan JR JE. Two-carbon compounds and fatty acids as carbon sources. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt FC, Curtiss III, R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Eds. ASM Press: Washington, DC, 1996;1:343-357.
108.Berríos-Rivera SJ, Bennett GN, San KY. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 2002;4:230-237.
109.Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 2008;101:881-893.
110.Phue JN, Lee SJ, Kaufman JB, Negrete A, Shiloach J. Acetate accumulation through alternative metabolic pathways in ackA (-) pta (-) poxB (-) triple mutant in E. coli B (BL21). Biotechnol Lett 2010;32:1897-1903.
111.Fischer CR, Tseng HC, Tai M, Prather KL. Stephanopoulos, G., Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Appl Microbiol Biotechnol 2010; 88:265-275.
112.Liu X, Zhu Y, Yang ST. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 2006;22:1265-1275.
113.Aboulnaga EH, Pinkenburg O, Schiffels J, El-Refai A, Buckel W, Selmer T. Butyrate production in Escherichia coli: Exploitation of an oxygen tolerant bifurcating butyryl-CoA dehydrogenase/electron transferring flavoprotein complex from Clostridium difficile. J Bacteriol 2013.
114.Henderson PJ. Ion transport by energy-conserving biological membranes. Annu Rev Microbio 1971;25:393-428.
115.Mattam AJ, Yazdani SS: Engineering E. coli strain for conversion of short chain fatty acids to bioalcohols. Biotechnol Biofuels 2013;6:128.
116.Miller JH: Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1972.
117.Qureshi N, Saha BC, Cotta MA. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 2007;30:419-427.
118.Ezeji T, Qureshi CN, Blaschek HP. Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004;4:305-314.
119.Canonaco F, Hess AT, Heri S, Wang T, Szyperski T, Sauer U. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Micro let 2001;204:247-252.
120.Wilkinson K.D., Williams JR. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction. J Biol Chem 1981;256: 2307-2314.
121.Kim Y, Ingram LO, Shanmugam KT. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 2008;190:3851-3858.
122.Snoep JL, Arfman N, Yomano LP, Westerhoff HV, Conway T, Ingram LO. Control of glycolytic flux in Zymomonas mobilis by glucose-6-phosphate dehydrogenase activity. Biotechnol Bioeng 1996;15:191-197.
123.Sinha A, Maitra PK. Induction of specific enzymes of the oxidative pentose pathway by glucono-delta-lactone in saccharomyces cerevisiae. J Gen Mcrobio 1992;138:1865-1873.
124.Saini M, Chen MH, Chiang CJ, and Chao YP. Potential production platform of n-butanol in Escherichia coli. Submitted.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔