|
References:
1.Schubert C: Can biofuels finally take center stage? Nat Biotechnol 2006, 24:19 777-784 2.Demirbas A. political economic and environmental impact of biofuels: a review. Appl energy 2009; 86:S108-17 3.Liu HF, Huang JC, Jin C. The development of the bio-diesel and DME on the diesel engine. Guang Xi Energy Convers 2006;1:28–31. 4.Murugesan A, Umarani C, Subramanian R, Nedunchezhian N. Bio-diesel as an alternative fuel for diesel engines – a review. Renew Sust Energy Rev 2009;13:653–662. 5.Qin J, Liu HF, Yao MF, Chen H. Experiment study on diesel engine fueled with biodiesel and diesel fuel. J Combust Sci Technol 2007;13:335–340. 6.Murugesan A, Umarani C, Chinnusamy TR, Krishnan M, Subramanian R, Neduzchezhain N. Production and analysis of bio-diesel from non-edible oils – a review. Renew Sust Energy Rev 2009;13:825–834. 7.Huang JC, Liu HF, Zhang QC, Zhang FG, Feng GD. The experiment research of the admixture fuel of bio-diesel with diesel on diesel engine. J Guangxi Univ (Nat Sci Ed) 2006;31:185–189. 8.Fang TG, Lee CF. Bio-diesel effects on combustion processes in an HSDI diesel engine using advanced injection strategies. Proc Combust Inst 2009;32:2785–2792. 9.Fang T, Lin YC, Foong TM, Lee CF. Biodiesel combustion in an optical HSDI diesel engine under low load premixed combustion conditions. Fuel 2009;88:2154–2162. 10.Qi DH, Geng LM, Chen H, Bian YZ, Liu J, Ren XC. Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renew Energy 2009;34:2706–2713. 11.Bhale PV, Deshpande NV, Thombre SB. Improving the low temperature properties of biodiesel fuel. Renew Energy 2009;34:794–800. 12.Liu HF, Jin C. The development of ethanol fuels. Guang Xi Energy Conserev 2005;3:31–43. 13.Liu HF, Zhang QC, Huang H, Huang JC. The application of fuels methanol and dimethyl ether (DME) on engines. Energy Conserv 2006;25:13–26. 14.Mussatto S, Dragone G, Guimarães PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010;28:817-830. 15.Hansen AC, Zhang Q, Lyne PWL. Ethanol–diesel fuel blends – a review. Bioresour Technol 2005;96:277–285. 16.Ezeji T, Qureshi N, Blaschek HP. Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijernickii. Process Biochem 2007;42:34–39. 17.Dürre P: Biobutanol: an attractive biofuel. Biotechnol J 2007;2:1525-1534. 18.Jin C, Yao M, Liu H, Lee CF, Ji J. Progress in production and application of n-butanol as a biofuel. Renew Sust Energy Rev 2011;15:4080-4106. 19.Cascone, R., Biobutanol-a replacement for bioethanol. Chem Eng Prog 2008, 104, S4-S9. 20.Armstrong DW and Yamazaki H. “Natural flavours production: a biotechnological approach,” Trends in Biotechnology 1986;4:264–267. 21.Dwidar, M.; Park, J. Y.; Mitchell, R. J.; Sang, B. I., The future of butyric acid in industry. ScientificWorldJournal 2012;471417, 9p. 22.Rephaeli, A.; Zhuk, R.; Nudelman, A., Prodrugs of butyric acid from bench to bedside: Synthetic design, mechanisms of action, and clinical applications. Drug Develop Res 2000;50:379-391. 23.Cao, Y.; Li, H.; Zhang, J., Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind. Eng. Chem. Res. 2011;50:7808-7814. 24.El-Shafee, E.; Saad, G. R.; Fahmy, S. M., Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/cellulose acetate butyrate blends. Eur Polym J 2001;37: 2091-2104. 25.Zhang, C.; Yang, H.; Yang, F.; Ma, Y., Current progress on butyric acid production by fermentation. Curr Microbiol 2009;59:656-663. 26.Seregina, T. A.; Shakulov, R. S.; Debabov, V. G.; Mironov, A. S., Construction of a butyrate-producing E. coli strain without the use of heterologous genes. Appl Biochem Biotechnol 2010;46:745-754. 27.Lim, J. H.; Seo, S. W.; Kim, S. Y.; Jung, G. Y., Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli. Bioresour Technol 2013;135:568-573. 28.Back, J. M.; Mazumdar, S.; Lee, S. W.; Jung, M. Y.; Lim, J. H.; Seo, S. W.; Jung, G. Y.; Oh, M. K., Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng 2013;110:2790-2794. 29.Saini M, Wang ZW, Chiang CJ, Chao YP. Metabolic Engineering of Escherichia coli for Production of Butyric Acid. J Agric Food Chem 2014;62:4342-4348 30.Jones, D.T., Woods, D.R. Acetone–butanol fermentation revisited. Microbiol 1986; 50:484–524. 31.Kim, H. S.; Lee, S. H.; Yoon, Y. S.; Oh, S. H.; Chung, Y. M.; Kim, O. Y.; Jeon, H. J. Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid. WO 11/132957, 2011. 32.Lee, S. Y.; Park, J. H.; Jang, S. H.; Nielsen, L. K.; Kim, J.; Jung, K. S., Fermentative butanol production by Clostridia. Biotechnol Bioeng 2008;101:209-228. 33.Matta-el-Ammouri G, Janati-Idrissi R, Junelles AM, Petitdemange H, Gay R: Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum. Biochimie 1987;69:109-115. 34. Richter H, Qureshi N, Heger S, Dien B, Cotta MA, Angenent LT: Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Biotechnol Bioeng 2012;109:913-921. 35. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S: High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 2004; 98:263-268. 36.Noronha SB, Yeh HJC, Spande TF and Shiloach J. Investigation of TCA cycle and glyoxylate shunt in Escherichia coli BL21 and JM109 using 13C-NMR/MS. Biotecnol Bioeng 2000;68:316-327. 37.Phue JS, Noronha SB, Hattacharyya R, Wolfe AJ and Shiloach J. Glucose metabolism at high cell density growth of Escherichia coli B and Escherichia coli K. Biotechnol Bioeng 2005;90:805-820 38.Clomburg JM, Gonzalez R: Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Biochem Biotechnol 2010;86:419-434. 39.Yu C, Cao Y, Zou H, Xian M: Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Biochem Biotechnol 2011;89:573-583. 40.Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, and Ingram LO. Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 2007;108:237-261. 41.York SW and Ingram LO. Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement. Biotechnol Lett 1996;18:683-688. 42.Chiang CJ, Lee HM, Guo HJ, Wang ZW, Lin LJ, Chao YP: Systematic approach to engineer Escherichia coli pathways for co-utilization of the glucose-xylose mixture. J Agri Food Chem 2013;61:7583-7590. 43.Inokuma K, Liao JC, Okamoto M, and Hanai T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 2010;110:696-701. 44.Atsumi, S., T. Hanai, and J. C. Liao. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008;451:86-89. 45.Baez, A., K. M. Cho, and J. C. Liao. High-titer isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol.In print. 2014. 46.Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2008;10:305-311. 47.Inui, M., M. Suda, S. Kimura, K. Yasuda, H. Suzuki, H. Toda, S. Yamamoto, S. Okino, N.Suzuki, and H. Yukawa. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 2008;77:1305-1316. 48. Bond-Watts BB, Bellerose RJ, Chang MCY: Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011;7:222-227. 49.Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC: Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbial 2011; 77:2905-2915. 50.Lim JH, Seo SW, Kim SY, Jung GY: Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng 2013;20:56-62. 51.Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359. 52.Kok J. Lactococci: molecular biology and biotechnology. In: Dunny GM, Cleary PP, McKay LL (eds). Genetics and molecular biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, DC. 1991:97-102 53.Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 2002;148:1003-1013 54.Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol 1999;10:492-497 55.Chassy BM, Murphy CM. Lactococcus And Lactobacillus In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis And other Gram-positive bacteria. American Society for Microbiology, Washington. 1993;65-82 56.Lokman BC, van Santen P, Verdoes JC, Kruse J, Leer RJ, Posno M, Pouwels PH. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 1991;230:161-169 57.DeMoss RD, Bard RC, Gunsalus IC. The mechanism of the heterolactic fermentation; a new route of ethanol formation. J Bacteriol 1951;62:499-511 58.Knoshaug EP, Zhang M. Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 2009;153:13-20 59.Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV. Reconstruction the clostridium n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 2010;87:635-646. 60.Fischer CR, Klein-Marcusch amer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008;10:295-304 61.Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012;69,2671-2690 62.Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD. Metabolic engineering of Saccharomyces Cerevisiae for the production of n-butanol. Microb Cell Factor 2008;7:36 63.Si T, Luo Y, Xiao H and Zhao H. Utilizing an endogenous pathway for 1-butanol production in Sacchromyces cerevisiae. Metab Eng 2014;22:60-68. 64.De Bont JAM. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 1998;16:493-499. 65.Verhoof S, Ruijssenaars HJ, De Bont JAM and Wery J. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. Journal of Biotechnolog 2007;132:49-52. 66.Heipieper HJ, Debont JAM. Adaptation of Pseudomonas-Putida S12 to Ethanol and Toluene at the Level of Fatty-Acid Composition of Membranes. Appl Environ Microbiol 1994;60:4440-4444. 67.De Carvalho CC, Da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, Da Fonseca MMR, Ferreira BS and Fernandes P. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 2004;64:215-222. 68.Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2011; 11:262-273. 69.Sardessai, Y and Bhosle, S. Organic solvent-tolerant bacteria in mangrove ecosystem. Curr Sci 2002;82:622–623. 70.Harwood CR. Bacillus subtilis and its relatives: molecular biological and industerial workhorses. Trends Biotechnol 1992;10:247-256. 71.Wong SL. Advance in the use of Bacillus subtilis for expression and secretion of heterologous proteins. Current Opinion in Biotech 1995;6(5):517-522. 72.Bailey J. Towards a science of metabolic engineering. Science 1991;252:1668-1675. 73.Cameron DC, Tong IT. Cellular and metabolic engineering. Appl Biochem Biotechnol 1993;38:105-140. 74.Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction. Science 1991;252 1675-1681. 75.Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000;97:6640-6645. 76.Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006;2:2006.0008. 77.Meynial-Salles I, Cervin MA, Soucaille P. New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes. Appl Environ Microbiol 2005;71:2140-2144. 78.Yuan LZ, Rouviere PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 2006;8:79-90. 79.Peredelchuk MY, Bennett GN. A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene 1997;187:231-238. 80.Diaz Ricci JC, Hernández ME. Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 2000;20:79-108. 81.Wang Z, Xiang L, Shao J, Wegrzyn A, Wegrzyn G. Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 2006;5:34. 82.Ow DSW, Nissom PM, Philp R, Oh SKW, Yap MGS. Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5a during batch fermentation. Enzyme Microb Technol 2006;39:391-398. 83.Jones KL, Kim SW, Keasling JD. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2000;2:328-338. 84.Julian A, Hanak J, Cranenburgh RM. Antibiotic-free plasmid selection and maintenance in bacteria. In: O.-W. Merten, D. Mattanovich, C. Lang, G. Larsson, P. Neubauer, D. Porro, P. Postma, J. Teixeira de Mattos ,J. A. Cole editors. Recombinant protein production with prokaryotic and eukaryotic cells: A comparative view on host physiology. Dordrecht, Netherlands.: Kluwer Academic; 2001:111-124. 85.Chiang CJ, Chen PT, Chao YP. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnol Bioeng 2008;101:985-995. 86.Chiang CJ, Chen PT, Chen SY, Chao YP. Marker-free chromosomal expression of foreign and native genes in Escherichia coli. In: J. A. Williams editor. Methods in Molecular Biology. New York: Humana Press; 2011:113-124. 87.Kato JI, Hashimoto M. Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol 2007;3:132. 88.Delneria D, Tomlina GC, Wixona JL, Hutter A, Sefton M, Louis EJ, Oliver SG. Exploring redundancy in the yeast genome: an improved strategy for use of the cre–loxP system. Gene 2000;252:127-135. 89.Arakawa H, Lodygin D, Buerstedde JM. Mutant loxP vectors for selectable marker recycle and conditional knock-outs. BMC Biotechnol 2001;1:7. 90.Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucl Acids Res 2005;33-36. 91.Hashimoto-Gotoh T, Yamaguchi M, Yasojima K, Tsujimura A, Wakabayashi Y, Watanabe Y. A set of temperature sensitive-replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene 2000;241:185-191. 92.Love CA, Lilley PE, Dixon NE. Stable high-copy-number bacteriophage λ promoter vectors for overproduction of proteins in Escherichia coli. Gene 1996;176:49-53. 93.Wang ZW, Lai CB, Chang CH, Chiang CJ, Chao YP. A glucose-insensitive T7 expression system for fully-induced expression of proteins at a subsaturating level of L-arabinose. J Agri Food Chem 2011;59:6534-6542. 94.Haldimann A, Wanner BL. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 2001;183:6384-6393. 95.Chiang CJ, Chern JT, Wang JY, Chao YP. Facile immobilization of evolved Agrobacterium radiobacter carbamoylase with high thermal and oxidative stability. J Agri Food Chem 2008;56:6348-6354. 96.Albermann C, Trachtmann N, Sprenger GA. A simple and reliable method to conduct and monitor expression cassette integration into the Escherichia coli chromosome. Biotechnol J 2010;5:32-38. 97.Albert H, Dale EC, Lee E, Ow DW. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. PLant J 1995;7:649-659. 98.Araki K, Araki M, Yamamura K. Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucl Acids Res 1997;25:868-872. 99.Suzuki N, Inui M, Yukawa H. Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007;77:871-878. 100.Carter Z, Delneri D. New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 2010;27:765-775. 101.Sousa C, de Lorenzo V, Cebolla A. Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology 1997;143:2071-2078. 102.Wang ZW, Law WS, Chao YP. Improvement of the thermoregulated T7 expression system by using the heat-sensitive lacI. Biotechnol Prog 2004;20:1352-1358. 103.Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 2005;102:12678-12683. 104.Bailey J. Towards a science of metabolic engineering. Science 1991;252:1668-1675. 105.Chiang CJ, Saini M, Lee HM, Wang ZW, Chen PT, Chao YP. Genomic engineering of Escherichia coli by the phage attachment site-based integration system with mutant loxP sites. Proc Biochem 2012;47:2246-2254. 106.Sramek SJ, Frerman FE. Purification and properties of Escherichia coli coenzyme A-transferase. Arch Biochem Biophys 1975;171:14-26. 107.Clark DP, Cronan JR JE. Two-carbon compounds and fatty acids as carbon sources. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt FC, Curtiss III, R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Eds. ASM Press: Washington, DC, 1996;1:343-357. 108.Berríos-Rivera SJ, Bennett GN, San KY. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 2002;4:230-237. 109.Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 2008;101:881-893. 110.Phue JN, Lee SJ, Kaufman JB, Negrete A, Shiloach J. Acetate accumulation through alternative metabolic pathways in ackA (-) pta (-) poxB (-) triple mutant in E. coli B (BL21). Biotechnol Lett 2010;32:1897-1903. 111.Fischer CR, Tseng HC, Tai M, Prather KL. Stephanopoulos, G., Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Appl Microbiol Biotechnol 2010; 88:265-275. 112.Liu X, Zhu Y, Yang ST. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 2006;22:1265-1275. 113.Aboulnaga EH, Pinkenburg O, Schiffels J, El-Refai A, Buckel W, Selmer T. Butyrate production in Escherichia coli: Exploitation of an oxygen tolerant bifurcating butyryl-CoA dehydrogenase/electron transferring flavoprotein complex from Clostridium difficile. J Bacteriol 2013. 114.Henderson PJ. Ion transport by energy-conserving biological membranes. Annu Rev Microbio 1971;25:393-428. 115.Mattam AJ, Yazdani SS: Engineering E. coli strain for conversion of short chain fatty acids to bioalcohols. Biotechnol Biofuels 2013;6:128. 116.Miller JH: Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1972. 117.Qureshi N, Saha BC, Cotta MA. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 2007;30:419-427. 118.Ezeji T, Qureshi CN, Blaschek HP. Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004;4:305-314. 119.Canonaco F, Hess AT, Heri S, Wang T, Szyperski T, Sauer U. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Micro let 2001;204:247-252. 120.Wilkinson K.D., Williams JR. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction. J Biol Chem 1981;256: 2307-2314. 121.Kim Y, Ingram LO, Shanmugam KT. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 2008;190:3851-3858. 122.Snoep JL, Arfman N, Yomano LP, Westerhoff HV, Conway T, Ingram LO. Control of glycolytic flux in Zymomonas mobilis by glucose-6-phosphate dehydrogenase activity. Biotechnol Bioeng 1996;15:191-197. 123.Sinha A, Maitra PK. Induction of specific enzymes of the oxidative pentose pathway by glucono-delta-lactone in saccharomyces cerevisiae. J Gen Mcrobio 1992;138:1865-1873. 124.Saini M, Chen MH, Chiang CJ, and Chao YP. Potential production platform of n-butanol in Escherichia coli. Submitted.
|