跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/02/25 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李梓禎
研究生(外文):Lee Zijing
論文名稱:可用於光觸媒產氫之核/殼及磁分離型硫化鋅奈米材料
論文名稱(外文):ZnS-based Core Shell and Magnetic Separable Nanomaterials for Photocatalytic Hydrogen Production
指導教授:張棋榕
指導教授(外文):Chang Chi-Jung
口試委員:陳建光王志逢郭紹偉
口試日期:2014-07-10
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:100
中文關鍵詞:光觸媒產氫硫化鋅核/殼不鏽鋼網鎳摻雜
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用水熱法將 ZnS 與 Fe3O4, NiCo2O4 和 CoFe2O4 製備成俱有 磁性之核殼材料, 應用於光觸媒產氫,並使得光觸媒俱有良好的回收率。 我們再利用儀器探討不同光觸媒製作條件對於產氫效率之影響。其中, Fe3O4@ZnS 光觸媒最佳產氫效率為 3900 μmol h-1 g-1。NiCo2O4@ZnS 光觸 媒最佳產氫效率為 880 μmol h-1 g-1。CoFe2O4@ZnS 光觸媒最佳產氫效率為 900 μmol h-1 g-1。除此之外,因光觸媒俱有磁性之特性,使其俱有良好的 回收再使用性。
本實驗第二部分我們利用水熱法將摻雜 Ni 之 ZnS 成長至不鏽鋼網表 面,並應用於光觸媒產氫。再利用儀器探討不同摻雜濃度以及不同不鏽鋼 網結構對產氫效率之影響。由結果可知,摻雜 Ni 可增加電子電洞對分離 率,不鏽鋼網結構則可增加光觸媒之比表面積,兩者皆可增加光觸媒之產 氫效率。而不鏽鋼網之結構使觸媒俱有良好的回收再使用性。
Magnetic Fe3O4, NiCo2O4 and CoFe2O4 nanoparticles were used as core materials. A ZnS shell layer is synthesized with zinc acetate and thiourea as precursors by a solvothermal process. Fe3O4@ZnS, NiCo2O4@ZnS and CoFe2O4@ZnS core-shell nanoparticles were used as hydrogen production photocatalysts, which can be recycled by magnetic force for repeated hydrogen generation. The morphology, crystalline property, magnetic property, photocatalytic activity, and magnetic separation capability of the core-shell photocatalysts were studied. The photocatalytic activity of the catalysts was evaluated by splitting Na2S/Na2SO3 solution into H2. Fe3O4@ZnS core-shell nanoparticles exhibit better magnetic separation capability than NiCo2O4@ZnS and CoFe2O4@ZnS analog. The optimized photocatalytic hydrogen production rates of Fe3O4@ZnS, NiCo2O4@ZnS and CoFe2O4@ZnS core-shell nanoparticles reach 3900 μmol h-1 g-1, 880 μmol h-1 g-1 and 900 μmol h-1 g-1, respectively. All the photocatalysts can be recycled by magnetic force. Recycled photocatalysts exhibit good hydrogen generation performance after being recycled for three times.
Besides that, Ni-doped stainless steel@ZnS wire mesh photocatalysts for photocatalytic hydrogen production was also prepared by a solvothermal method. The effects of wire mesh density, doping, and surface texture on the photocatalytic activity were studied. The effects of surface texture and doping
on the surface wettability and photocatalytic activity were investigated. Energy-
III
FCU e-Theses &; Dissertations (2014)
dispersive X-ray spectroscopy (EDX) analysis and Ni mapping images indicated that a small amount of Ni is loaded on the ZnS. Because of increased surface area of ZnS layer, enhanced separation of the photoinduced carriers by Ni-doping, and effective contact among sacrificial aqueous solution and the ZnS shell, the highest hydrogen evolution is obtained for the Ni-doped SS60@ZnS- Ni1 photocatalyst. Photocatalytic activity and photocurrent of three repeated tests of recycled photocatalysts were also investigated.
Acknowledgement ............................................................................................... I Abstract ............................................................................................................. III Table Content ..................................................................................................VII Figure Content.................................................................................................VII
Part I General Introduction...............................................................................1 Chapter 1 Background and Motivation............................................................1
1.1 Energy Shortage and Related Environment Concern.......................1
1.2 Solar Energy – an Abundant Source...................................................5
1.3 Fuel Cell, H2 Production .......................................................................7
1.3.1 Honda-Fujishima Effect ...............................................................7 1.4 Water Splitting.....................................................................................10
Chapter 2 Introduction of Photocatalysis.......................................................13
2.1. Application of Photocatalysts.............................................................13
2.2. Semiconductor Photocatalysis............................................................15
2.3. Fabrication of Photocatalysts.............................................................20
2.3.1. Materials ......................................................................................20 2.3.1.1. Basic Characteristic of Zinc Sulfide.......................................25 2.3.1.2. Doping of ZnS ..........................................................................26
2.3.2. Structures.....................................................................................27
2.3.2.1. 2.3.2.2. 2.3.2.3.
0D Nanostructures ...................................................................27 1D Nanowires, Nanorods, and Nanotubes.............................29 Core-shell Nanoparticles .........................................................31
2.3.2.3.1. Magnetic Core .....................................................................31 2.3.2.4. Wire mesh-based Nanostructures ..........................................33 Recycling of Photocatalysts ................................................................35
2.4.
Motivations ........................................................................................................36
V
FCU e-Theses &; Dissertations (2014)
Part II Methods .................................................................................................37 Chapter 3 Experimental Methods and Procedures .......................................37
3.1 Materials ..............................................................................................37
3.2 Instrument............................................................................................38
3.3 Nomenclature.......................................................................................40
3.4 Preparation of core materials ............................................................41
3.4.1 Preparation of Fe3O4...................................................................41
3.4.2 Preparation of NiCo2O4 and CoFe2O4.......................................42
3.4.3 Cleaning Procedures of Stainless Steel Wire Mesh .................42
3.5 Preparation of Core-shell Photocatalysts .........................................42
3.6 Photocatalytic H2 Production.............................................................43
Part III Results and Discussion .......................................................................46 Chapter 4 Growth of ZnS Shell on Magnetic Cores......................................46
4.1 Fe3O4@ZnS Core-shell Photocatalyst................................................46
4.2 NiCo2O4@ZnS &; CoFe2O4@ZnS Core-shell Photocatalyst............57
Chapter 5 ZnS Immobilized on Stainless Steel Wire Mesh..........................66 5.1. SS@ZnS Core-Shell Photocatalyst ....................................................66
Part IV Future Prospects Summary and Conclusion....................................88 Chapter 6 Summary and Conclusions ............................................................88 6.1 Conclusions ..........................................................................................88
References ..........................................................................................................90
1 Jain, I. P. Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy 34, 7368-7378, (2009).
2 International Energy Outlook 2013. (2013).
3 Metiu, H. Physical chemistry: Quantum mechanics. (Taylor &; Francis, 2006).
4 Serpone, N. &; Pelizzetti, E. Photocatalysis: fundamentals and applications. (Wiley
New York, 1989).
5 Kudo, A. &; Miseki, Y. Heterogeneous photocatalyst materials for water splitting.
Chemical Society Reviews 38, 253-278 (2009).
6 張振昌. 太陽能電解水製氫技術. (2007).
7 Domen, K., Kudo, A. &; Onishi, T. Mechanism of photocatalytic decomposition of
water into H2and O2 over NiO/SrTiO3. Journal of Catalysis 102, 92-98 (1986).
8 Liu, S., Kokot, S. &; Will, G. Photochemistry and chemometrics—An overview.
Journal of Photochemistry and Photobiology C: Photochemistry Reviews 10, 159-
172 (2009).
9 Glasscock, J. A. Nanostructured materials for photoelectrochemical hydrogen
production using sunlight, University of New South Wales, (2008).
10 Kawai, T. &; Sakata, T. Conversion of carbohydrate into hydrogen fuel by a
photocatalytic process. (1980).
11 Kawai, T. &; Sakata, T. Hydrogen evolution from water using solid carbon and
light energy. (1979).
12 Fujishima, A., Rao, T. N. &; Tryk, D. A. Titanium dioxide photocatalysis. Journal of
Photochemistry and Photobiology C: Photochemistry Reviews 1, 1-21 (2000).
13 Chong, M. N., Jin, B., Chow, C. W. K. &; Saint, C. Recent developments in
photocatalytic water treatment technology: a review. Water research 44, 2997-
3027 (2010).
14 Bekbölet, M., Boyacioglu, Z. &; Ö zkaraova, B. The influence of solution matrix on
the photocatalytic removal of color from natural waters. Water science and
technology 38, 155-162 (1998).
15 Yamashita, H. et al. Photocatalytic degradation of organic compounds diluted in
water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-
implanted TiO2. Catalysis Today 84, 191-196 (2003).
16 Mu, R. et al. On the photocatalytic properties of elongated TiO2 nanoparticles for
phenol degradation and Cr (VI) reduction. Journal of hazardous materials 176,
495-502 (2010).
17 Horiuchi, Y., Toyao, T., Takeuchi, M., Matsuoka, M. &; Anpo, M. Recent advances in
visible-light-responsive photocatalysts for hydrogen production and solar energy conversion–from semiconducting TiO 2 to MOF/PCP photocatalysts. Physical Chemistry Chemical Physics 15, 13243-13253 (2013).
18 Matsuoka, M. et al. Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catalysis Today 122, 51-61 (2007).
19 Kittel, C. &; McEuen, P. Introduction to solid state physics. Vol. 8 (Wiley New York, 1986).
20 Douma, M., curator. Causes of Color, <http://www.webexhibits.org/causesofcolor/10.html> (2008).
90
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
21 SERVAGENT, N. Fundamentals of Semiconductor physics, <http://www.optique- ingenieur.org/en/courses/OPI_ang_M05_C02/co/Contenu_03.html> (2007).
22 Yamamoto, T., Kishimoto, S. &; Iida, S. Control of valence states for ZnS by triple- codoping method. Physica B: Condensed Matter 308, 916-919 (2001).
23 Calandra, P., Goffredi, M. &; Liveri, V. T. Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 160, 9-13 (1999).
24 Bredol, M. &; Merikhi, J. ZnS precipitation: morphology control. Journal of materials science 33, 471-476 (1998).
25 Zhang, J., Xu, Q., Feng, Z., Li, M. &; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie International Edition 47, 1766-1769 (2008).
26 Liu, H., Yang, J., Liang, J., Huang, Y. &; Tang, C. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society 91, 1287-1291 (2008).
27 Chuangchote, S., Jitputti, J., Sagawa, T. &; Yoshikawa, S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS applied materials &; interfaces 1, 1140-1143 (2009).
28 Jitputti, J., Pavasupree, S., Suzuki, Y. &; Yoshikawa, S. Synthesis of TiO2 nanotubes and its photocatalytic activity for H2 evolution. Japanese Journal of Applied Physics 47, 751 (2008).
29 Jitputti, J. et al. Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catalysis Communications 10, 378-382 (2009).
30 Murdoch, M. et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature chemistry 3, 489-492 (2011).
31 Chae, J., Lee, J., Jeong, J. H. &; Kang, M. Hydrogen production from photo splitting of water using the Ga-incorporated TiO 2 s prepared by a solvothermal method and their characteristics. Bulletin of Korean Chemical Society 30, 302-308 (2009).
32 Jing, D., Zhang, Y. &; Guo, L. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chemical Physics Letters 415, 74-78 (2005).
33 Zalas, M. &; Laniecki, M. Photocatalytic hydrogen generation over lanthanides- doped titania. Solar energy materials and solar cells 89, 287-296 (2005).
34 Sasikala, R. et al. Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. International Journal of Hydrogen Energy 33, 4966-4973 (2008).
35 Xu, S. &; Sun, D. D. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. International Journal of Hydrogen Energy 34, 6096-6104 (2009).
36 Xu, S., Ng, J., Zhang, X., Bai, H. &; Sun, D. D. Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water. International journal of hydrogen energy 35, 5254-5261 (2010).
37 Choi, H.-J. &; Kang, M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy 32, 3841-3848 (2007).
38 Yu, J., Hai, Y. &; Jaroniec, M. Photocatalytic hydrogen production over CuO- modified titania. Journal of colloid and interface science 357, 223-228 (2011).
91
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
39 Sasikala, R. et al. Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: Photocatalytic activity for hydrogen generation. International Journal of Hydrogen Energy 34, 3621-3630 (2009).
40 Borgarello, E., Kiwi, J., Graetzel, M., Pelizzetti, E. &; Visca, M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. Journal of the American chemical society 104, 2996-3002 (1982).
41 Khan, M. A., Woo, S. I. &; Yang, O. B. Hydrothermally stabilized Fe (III) doped titania active under visible light for water splitting reaction. international journal of hydrogen energy 33, 5345-5351 (2008).
42 Kato, H. &; Kudo, A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. The Journal of Physical Chemistry B 106, 5029-5034 (2002).
43 Niishiro, R. et al. Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation. The Journal of Physical Chemistry C 111, 17420-17426 (2007).
44 Ohno, T., Tanigawa, F., Fujihara, K., Izumi, S. &; Matsumura, M. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Journal of Photochemistry and Photobiology A: Chemistry 127, 107-110 (1999).
45 Domen, K., Naito, S., Soma, M., Onishi, T. &; Tamaru, K. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. Journal of the Chemical Society, Chemical Communications, 543-544 (1980).
46 Domen, K., Naito, S., Onishi, T., Tamaru, K. &; Soma, M. Study of the photocatalytic decomposition of water vapor over a nickel (II) oxide-strontium titanate (SrTiO3) catalyst. The Journal of Physical Chemistry 86, 3657-3661 (1982).
47 Domen, K., Naito, S., Onishi, T. &; Tamaru, K. Photocatalytic decomposition of liquid water on a NiO/SrTiO3 catalyst. Chemical Physics Letters 92, 433-434 (1982).
48 Kudo, A., Tanaka, A., Domen, K. &; Onishi, T. The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities. Journal of Catalysis 111, 296-301 (1988).
49 Domen, K., Kudo, A., Onishi, T., Kosugi, N. &; Kuroda, H. Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide- strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. The Journal of Physical Chemistry 90, 292-295 (1986).
50 Qin, Y., Wang, G. &; Wang, Y. Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen. Catalysis Communications 8, 926-930 (2007).
51 Takata, T. &; Domen, K. Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. The Journal of Physical Chemistry C 113, 19386-19388 (2009).
52 Konta, R., Ishii, T., Kato, H. &; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. The Journal of Physical Chemistry B 108, 8992-8995 (2004).
53 Ikeda, S. et al. Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water. Chemistry of materials 10, 72-77 (1998).
54 Takata, T. et al. Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. Chemistry of materials 9, 1063-1064 (1997).
92
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
55 Meng, F. et al. Photocatalytic generation of hydrogen with visible-light nitrogen- doped lanthanum titanium oxides. Catalysis Today 199, 48-52, doi:http://dx.doi.org/10.1016/j.cattod.2012.05.038 (2013).
56 Sayama, K. &; Arakawa, H. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis. Journal of Photochemistry and Photobiology A: Chemistry 77, 243-247 (1994).
57 Sayama, K. &; Arakawa, H. Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst. The Journal of Physical Chemistry 97, 531-533 (1993).
58 Sayama, K. &; Arakawa, H. Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO< sub> 2 catalyst. Journal of Photochemistry and Photobiology A: Chemistry 94, 67-76 (1996).
59 Reddy, V. R., Hwang, D. W. &; Lee, J. S. Photocatalytic water splitting over ZrO2 prepared by precipitation method. Korean Journal of Chemical Engineering 20, 1026-1029 (2003).
60 Zou, J.-J., Liu, C.-J. &; Zhang, Y.-P. Control of the metal-support interface of NiO- loaded photocatalysts via cold plasma treatment. Langmuir 22, 2334-2339 (2006).
61 Yuan, Y. et al. Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. International Journal of Hydrogen Energy 33, 5941-5946 (2008).
62 Uno, M. et al. Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln= La, Ce, Nd and Sm). Journal of alloys and compounds 420, 291- 297 (2006).
63 Kapoor, M. P., Inagaki, S. &; Yoshida, H. Novel zirconium-titanium phosphates mesoporous materials for hydrogen production by photoinduced water splitting. The Journal of Physical Chemistry B 109, 9231-9238 (2005).
64 Chen, X. et al. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Applied surface science 253, 8500-8506 (2007).
65 Sayama, K., Arakawa, H. &; Domen, K. Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A= K, Rb). Catalysis today 28, 175-182 (1996).
66 Domen, K. et al. Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer
structure. Journal of the Chemical Society, Chemical Communications, 1706-1707
(1986).
67 Ding, Q.-P. et al. Enhanced photocatalytic water splitting properties of KNbO3
nanowires synthesized through hydrothermal method. The Journal of Physical
Chemistry C 112, 18846-18848 (2008).
68 Kudo, A., Kato, H. &; Nakagawa, S. Water splitting into H2 and O2 on new
Sr2M2O7 (M= Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. The Journal of Physical Chemistry B 104, 571-575 (2000).
69 Chen, D. &; Ye, J. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chemistry of Materials 21, 2327-2333 (2009).
70 Yoshino, M., Kakihana, M., Cho, W. S., Kato, H. &; Kudo, A. Polymerizable Complex Synthesis of Pure Sr2Nb x Ta2-x O7 Solid Solutions with High Photocatalytic Activities for Water Decomposition into H2 and O2. Chemistry of materials 14, 3369-3376 (2002).
93
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
71 Kato, H. &; Kudo, A. Energy structure and photocatalytic activity for water splitting of Sr2(Ta1−XNbX)2O7 solid solution. Journal of Photochemistry and Photobiology A: Chemistry 145, 129-133 (2001).
72 Ye, J., Zou, Z. &; Matsushita, A. A novel series of water splitting photocatalysts NiM2O6 (M= Nb, Ta) active under visible light. International Journal of Hydrogen Energy 28, 651-655 (2003).
73 Ye, J. et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chemical Physics Letters 356, 221-226 (2002).
74 Zou, Z., Ye, J. &; Arakawa, H. Photophysical and photocatalytic properties of InMO4(M= Nb5+, Ta5+) under visible light irradiation. Materials Research Bulletin 36, 1185-1193 (2001).
75 Iwase, A., Saito, K. &; Kudo, A. Sensitization of NaMO3 (M: Nb and Ta) photocatalysts with wide band gaps to visible light by Ir doping. Bulletin of the Chemical Society of Japan 82, 514-518 (2009).
76 Kato, H. &; Kudo, A. New tantalate photocatalysts for water decomposition into H2 and O2. Chemical Physics Letters 295, 487-492 (1998).
77 Takahara, Y., Kondo, J. N., Takata, T., Lu, D. &; Domen, K. Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition. chemistry of materials 13, 1194-1199 (2001).
78 Kondo, J. N. et al. Synthesis, mesostructure, and photocatalysis of a highly ordered and thermally stable mesoporous Mg and Ta mixed oxide. Chemistry of materials 16, 4304-4310 (2004).
79 Kato, H. &; Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K). The Journal of Physical Chemistry B 105, 4285-4292 (2001).
80 Kato, H. &; Kudo, A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catalysis letters 58, 153-155 (1999).
81 Kato, H. &; Kudo, A. Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catalysis Today 78, 561-569 (2003).
82 Lee, Y. et al. Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting. Bulletin of the Chemical Society of Japan 80, 423-428 (2007).
83 Mukherji, A., Seger, B., Lu, G. Q. &; Wang, L. Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS nano 5, 3483-3492 (2011).
84 Stodolny, M. &; Laniecki, M. Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting. Catalysis Today 142, 314-319 (2009).
85 Takahara, Y., Kondo, J. N., Lu, D. &; Domen, K. Synthesis and application for overall water splitting of transition metal-mixed mesoporous Ta oxide. Solid State Ionics 151, 305-311 (2002).
86 Iwase, A., Kato, H. &; Kudo, A. Nanosized Au particles as an efficient cocatalyst for photocatalytic overall water splitting. Catalysis letters 108, 7-10 (2006).
87 Kato, H., Asakura, K. &; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society 125, 3082-3089 (2003).
88 Kudo, A. &; Kato, H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chemical Physics Letters 331, 373-377 (2000).
94
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
89 Iwase, A., Kato, H., Okutomi, H. &; Kudo, A. Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chemistry Letters 33, 1260-1261 (2004).
90 Yang, M. et al. Improved hydrogen evolution activities under visible light irradiation over NaTaO3 codoped with lanthanum and chromium. Materials Chemistry and Physics 121, 506-510 (2010).
91 Bamwenda, G. R., Uesigi, T., Abe, Y., Sayama, K. &; Arakawa, H. The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors. Applied catalysis. A, General 205, 117-128 (2001).
92 Kadowaki, H., Saito, N., Nishiyama, H. &; Inoue, Y. RuO2-loaded Sr2+-doped CeO2 with d° electronic configuration as a new photocatalyst for overall water splitting. Chemistry Letters 36, 440-441 (2007).
93 Krishna Reddy, J., Suresh, G., Hymavathi, C. H., Durga Kumari, V. &; Subrahmanyam, M. Ce (III) species supported zeolites as novel photocatalysts for hydrogen production from water. Catalysis Today 141, 89-93 (2009).
94 Matsumura, M., Saho, Y. &; Tsubomura, H. Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. The Journal of Physical Chemistry 87, 3807-3808 (1983).
95 Jang, J. S., Joshi, U. A. &; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. The Journal of Physical Chemistry C 111, 13280-13287 (2007).
96 Bao, N., Shen, L., Takata, T., Lu, D. &; Domen, K. Highly ordered Pt-loaded CdS nanowire arrays for photocatalytic hydrogen production under visible light. Chem Lett 35 (2006).
97 Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society 130, 7176-7177 (2008).
98 Yan, H. et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis 266, 165- 168 (2009).
99 Jang, J. S., Ham, D. J., Lakshminarasimhan, N. &; Lee, J. S. Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Applied Catalysis A: General 346, 149-154 (2008).
100 Reber, J. F. &; Rusek, M. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. The Journal of Physical Chemistry 90, 824-834 (1986).
101 Ren, L. et al. Synthesis of (CuIn) xCd2 (1-x) S2 photocatalysts for H2 evolution under visible light by using a low-temperature hydrothermal method. International journal of hydrogen energy 35, 3297-3305 (2010).
102 Ikcue, K., Shiiba, S. &; Machida, M. Novel visible-light-driven photocatalyst Based on Mn-Cd-S for efficient H 2 evlution. Chemistry of Materials 22, 743-745 (2010).
103 Li, Q. et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society 133, 10878-10884 (2011).
104 Reber, J. F. &; Meier, K. Photochemical production of hydrogen with zinc sulfide suspensions. The Journal of Physical Chemistry 88, 5903-5913 (1984).
105 Zeug, N., Bücheler, J. &; Kisch, H. Catalytic formation of hydrogen and carbon- carbon bonds on illuminated zinc sulfide generated from zinc dithiolenes. Journal of the American Chemical Society 107, 1459-1465 (1985).
95
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
106 Zhang, J. et al. Enhanced photocatalytic hydrogen production activities of Au- loaded ZnS flowers. ACS applied materials &; interfaces 5, 1031-1037 (2013).
107 Kudo, A. &; Sekizawa, M. Photocatalytic H2 evolution under visible light irradiation on Zn1-x Cu x S solid solution. Catalysis letters 58, 241-243 (1999).
108 Kudo, A. &; Sekizawa, M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chemical Communications, 1371- 1372 (2000).
109 Bang, J. H., Helmich, R. J. &; Suslick, K. S. Nanostructured ZnS: Ni2+ photocatalysts prepared by ultrasonic spray pyrolysis. Advanced Materials 20, 2599-2603 (2008).
110 Tsuji, I. &; Kudo, A. H2 evolution from aqueous sulfite solutions under visible- light irradiation over Pb and halogen-codoped ZnS photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 156, 249-252 (2003).
111 Jang, J. S. et al. Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity. Journal of Catalysis 254, 144-155 (2008).
112 Roy, A. M. &; De, G. C. Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper: Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. Journal of Photochemistry and Photobiology A: Chemistry 157, 87-92 (2003).
113 Youn, H. C., Baral, S. &; Fendler, J. H. Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation. The Journal of Physical Chemistry 92, 6320-6327 (1988).
114 Kakuta, N. et al. Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide. cntdot. cadmium sulfide without a noble metal. The Journal of Physical Chemistry 89, 732-734 (1985).
115 Zhang, K., Jing, D., Xing, C. &; Guo, L. Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method. International Journal of Hydrogen Energy 32, 4685- 4691 (2007).
116 Zhang, X., Jing, D., Liu, M. &; Guo, L. Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1-x Zn x S microsphere photocatalysts. Catalysis Communications 9, 1720-1724 (2008).
117 Liu, G., Zhao, L., Ma, L. &; Guo, L. Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1−x−yS catalyst. Catalysis Communications 9, 126-130 (2008).
118 Fu, X. et al. Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Applied Catalysis B: Environmental 95, 393-399 (2010).
119 Tsuji, I., Kato, H., Kobayashi, H. &; Kudo, A. Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn) x Zn2 (1-x) S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society 126, 13406-13413 (2004).
120 Tang, X. et al. CuInZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production. Journal of Materials Chemistry A 1, 6359-6365 (2013).
121 Tsuji, I., Kato, H., Kobayashi, H. &; Kudo, A. Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn) x Zn2 (1-x) S2 Solid Solutions. The Journal of Physical Chemistry B 109, 7323-7329 (2005).
96
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
122 Lei, Z. et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chemical Communications, 2142- 2143 (2003).
123 Shen, S., Zhao, L. &; Guo, L. Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. international journal of hydrogen energy 33, 4501-4510 (2008).
124 Li, Y., Chen, G., Zhou, C. &; Sun, J. A simple template-free synthesis of nanoporous ZnS–In2S3–Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light. Chemical Communications, 2020-2022 (2009).
125 Li, Y. et al. Hierarchical ZnS‐In2S3‐CuS Nanospheres with Nanoporous Structure: Facile Synthesis, Growth Mechanism, and Excellent Photocatalytic Activity. Advanced Functional Materials 20, 3390-3398 (2010).
126 Zhou, J. et al. In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chemical Communications 49, 2237-2239, doi:10.1039/C3CC38999E (2013).
127 Li, Y., Ma, G., Peng, S., Lu, G. &; Li, S. Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1−x−0.5yOx(OH)y) under visible light irradiation. Applied Catalysis A: General 363, 180-187, doi:http://dx.doi.org/10.1016/j.apcata.2009.05.013 (2009).
128 Yeh, T. F., Syu, J. M., Cheng, C., Chang, T. H. &; Teng, H. Graphite oxide as a photocatalyst for hydrogen production from water. Advanced Functional Materials 20, 2255-2262 (2010).
129 Jang, J. S., Ji, S. M., Bae, S. W., Son, H. C. &; Lee, J. S. Optimization of CdS/TiO2 nano- bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥ 420 nm). Journal of photochemistry and photobiology. A, Chemistry 188, 112-119 (2007).
130 Fujii, H., Ohtaki, M., Eguchi, K. &; Arai, H. Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix. Journal of Molecular Catalysis A: Chemical 129, 61-68 (1998).
131 Jang, J. S., Kim, H. G., Joshi, U. A., Jang, J. W. &; Lee, J. S. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. International Journal of Hydrogen Energy 33, 5975-5980 (2008).
132 Park, H., Choi, W. &; Hoffmann, M. R. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. Journal of Materials Chemistry 18, 2379-2385 (2008).
133 Wang, X. et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 3452-3454, doi:10.1039/B904668B (2009).
134 Wang, X., Liu, G., Lu, G. Q. &; Cheng, H.-M. Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods. international journal of hydrogen energy 35, 8199-8205 (2010).
135 Amirav, L. &; Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. The Journal of Physical Chemistry Letters 1, 1051-1054 (2010).
97
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
136 Shimidzu, T., Iyoda, T. &; Koide, Y. An advanced visible-light-induced water reduction with dye-sensitized semiconductor powder catalyst. Journal of the American Chemical Society 107, 35-41, doi:10.1021/ja00287a007 (1985).
137 contributors, W. Zinc Sulfide. (29 April 2014, 13:46 UTC).
138 Palmer, D. W. The Semiconductor-Information Website,
<http://www.semiconductors.co.uk> (2008).
139 Cui, Y., Duan, X., Hu, J. &; Lieber, C. M. Doping and electrical transport in silicon
nanowires. The Journal of Physical Chemistry B 104, 5213-5216 (2000).
140 Pan, A. et al. Color-Tunable Photoluminescence of Alloyed CdS x Se1-x Nanobelts.
Journal of the American Chemical Society 127, 15692-15693 (2005).
141 Choi, H. J. et al. Single‐Crystalline Diluted Magnetic Semiconductor GaN: Mn
Nanowires. Advanced Materials 17, 1351-1356 (2005).
142 Rossetti, R., Hull, R., Gibson, J. M. &; Brus, L. E. Excited electronic states and optical
spectra of ZnS and CdS crystallites in the≊ 15 to 50 Å size range: Evolution from molecular to bulk semiconducting properties. The Journal of chemical physics 82, 552-559 (1985).
143 Joo, J. et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. Journal of the American Chemical Society 125, 11100-11105 (2003).
144 Li, Y., Li, X., Yang, C. &; Li, Y. Ligand-controlling synthesis and ordered assembly of ZnS nanorods and nanodots. The Journal of Physical Chemistry B 108, 16002- 16011 (2004).
145 Lieber, C. M. &; Wang, Z. L. Functional nanowires. Mrs Bulletin 32, 99-108 (2007).
146 Xia, Y. et al. One‐dimensional nanostructures: synthesis, characterization, and
applications. Advanced materials 15, 353-389 (2003).
147 Comini, E. et al. Quasi-one dimensional metal oxide semiconductors: preparation,
characterization and application as chemical sensors. Progress in Materials
Science 54, 1-67 (2009).
148 Zhai, T. et al. A comprehensive review of one-dimensional metal-oxide
nanostructure photodetectors. Sensors 9, 6504-6529 (2009).
149 Wang, X. et al. ZnS Nanostructures: Synthesis, Properties, and Applications.
Critical Reviews in Solid State and Materials Sciences 38, 57-90 (2013).
150 Shen, G., Chen, P.-C., Bando, Y., Golberg, D. &; Zhou, C. Pearl-like ZnS-decorated
InP nanowire heterostructures and their electric behaviors. Chemistry of
Materials 20, 6779-6783 (2008).
151 Shen, G., Bando, Y., Golberg, D. &; Zhou, C. Heteroepitaxial growth of orientation-
ordered ZnS nanowire arrays. The Journal of Physical Chemistry C 112, 12299-
12303 (2008).
152 Shen, G., Bando, Y., Tang, C. &; Golberg, D. Self-organized hierarchical ZnS/SiO2
nanowire heterostructures. The Journal of Physical Chemistry B 110, 7199-7202
(2006).
153 Shen, G., Bando, Y. &; Golberg, D. Self-assembled three-dimensional structures of
single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires.
Applied physics letters 88, 123107-123107-123103 (2006).
154 Shen, G. Z., Bando, Y., Hu, J. Q. &; Golberg, D. High-symmetry ZnS hepta-and
tetrapods composed of assembled ZnS nanowire arrays. Applied physics letters
90, 123101-123101-123103 (2007).
155 Huang, J., Mulfort, K. L., Du, P. &; Chen, L. X. Photodriven charge separation
dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient
98
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
hydrogen production. Journal of the American Chemical Society 134, 16472-
16475 (2012).
156 Sang, H. X., Wang, X. T., Fan, C. C. &; Wang, F. Enhanced photocatalytic H< sub>
2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route. International Journal of Hydrogen Energy 37, 1348-1355 (2012).
157 Wang, Y. et al. Self‐Assembled 3D Flowerlike Hierarchical Fe3O4@ Bi2O3 Core– Shell Architectures and Their Enhanced Photocatalytic Activity under Visible Light. Chemistry-A European Journal 17, 4802-4808 (2011).
158 Li, H., Zhang, Y., Wu, Q., Wang, X. &; Liu, C. Preparation and Photocatalytic Properties of Nanometer-Sized Magnetic TiO 2/SiO 2/CoFe 2 O 4 Composites. Journal of nanoscience and nanotechnology 11, 10173-10181 (2011).
159 Nethravathi, C., Nisha, T., Ravishankar, N., Shivakumara, C. &; Rajamathi, M. Graphene–nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 47, 2054-2059 (2009).
160 Lee, J., Isobe, T. &; Senna, M. Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 109, 121-127 (1996).
161 Cornell, R. M. &; Schwertmann, U. The iron oxides: structure, properties, reactions, occurrences and uses. (John Wiley &; Sons, 2003).
162 Gupta, A. K. &; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995-4021 (2005).
163 Zheng, Y.-h., Cheng, Y., Bao, F. &; Wang, Y.-s. Synthesis and magnetic properties of Fe3O4 nanoparticles. Materials research bulletin 41, 525-529 (2006).
164 Preethi, V. &; Kanmani, S. Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. International Journal of Hydrogen Energy 39, 1613-1622 (2014).
165 Li, Q. et al. Magnetic Mesoporous Organic− Inorganic NiCo2O4 Hybrid Nanomaterials for Electrochemical Immunosensors. ACS applied materials &; interfaces 3, 1366-1373 (2011).
166 Scott, K., Argyropoulos, P., Yiannopoulos, P. &; Taama, W. M. Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds. Journal of Applied Electrochemistry 31, 823-832 (2001).
167 Jung, S. &; Yong, K. Fabrication of CuO–ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications. Chemical Communications 47, 2643-2645 (2011).
168 Chen, S. et al. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosensors and Bioelectronics 34, 282-285 (2012).
169 Xue, Z. et al. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel‐Coated Mesh for Oil/Water Separation. Advanced Materials 23, 4270- 4273 (2011).
170 Vu, T. T., del Río, L., Valdés-Solís, T. &; Marbán, G. Tailoring the synthesis of stainless steel wire mesh-supported ZnO. Materials Research Bulletin 47, 1577- 1586 (2012).
171 Zhang, Y., Liang, X. &; Li, L. Synthesis and photoluminescence properties of hydrophilic ZnS nanoparticles. Materials Letters 64, 1521-1523 (2010).
172 Liu, M.-C. Synthesis and Characterization of Magnetite/Poly(N- Isopropylacrylamide) Core-Shell Nanocomposites. (2008).
99
FCU e-Theses &; Dissertations (2014)
可用於光觸媒產氫之核/殼型硫化鋅奈米材料
173 Covaliu, C. I., Matei, C., Ianculescu, A., Jitaru, I. &; Berger, D. Fe3O4 and CoFe2O4 nanoparticles stabilized in sodium alginate polymer. UPB Sci. Bull. B 71, 53-60 (2009).
174 Biswas, S. &; Kar, S. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008).
175 Kaneva, N. V., Dimitrov, D. T. &; Dushkin, C. D. Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light. Applied Surface Science 257, 8113-8120 (2011).
176 Tong, L. et al. Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy &; Environmental Science 5, 9472-9475 (2012).
177 Li, L. &; Yan, B. BiVO< sub> 4/Bi< sub> 2 O< sub> 3 submicrometer sphere composite: microstructure and photocatalytic activity under visible-light irradiation. Journal of Alloys and Compounds 476, 624-628 (2009).
178 Chen, J., Xin, F., Qin, S. &; Yin, X. Photocatalytically reducing CO< sub> 2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chemical Engineering Journal 230, 506-512 (2013).
179 Mu-Hsiang Hsu, C.-J. C. Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability J Hazard Mater, doi:10.1016/j.jhazmat.2014.06.038 (2014).
180 Huang, C.-M. et al. Effect of Ni on the growth and photoelectrochemical properties of ZnS thin films. Materials Chemistry and Physics 117, 156-162 (2009).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top