跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 17:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昆穎
論文名稱:鎳鈰觸媒披覆於蜂巢結構反應器進行甲烷重組之研究
論文名稱(外文):Preparation of Ni/CeO2 Catalyst Coating on Honeycomb Reactor for Methane Reforming
指導教授:張振昌
口試委員:林國興林文雄
口試日期:2014-07-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:122
中文關鍵詞:蜂巢結構Ni/CeO2甲烷水蒸氣重組甲烷乾重組
外文關鍵詞:honeycombNi/CeO2methane steam reformingmethane dry reforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
現今工業革命造成生活便利及發達後,卻也發生許多令人隱憂的問題產生,燃燒石化原料產生的氣體日益影響著全世界的氣候,例如:甲烷及二氧化碳。本研究即是將甲烷溫室氣體利用高溫的反應將其轉換為氫氣。
觸媒則以逆滴定沉澱法製備鎳鈰中孔洞觸媒,在利用含浸法將觸媒披覆於蜂巢擔體。並使用感應耦合電漿光譜儀(ICP)、掃描式電子顯微鏡(VVSEM)、多功能薄膜X光繞射儀(XRD),示差掃描熱量-熱重分析聯用儀(SDT)、程溫還原分析(TPR)分別進行觸媒特性分析。甲烷水蒸氣重組實驗則以溫度、WHSV、進料的水碳莫耳比,甲烷乾重組實驗則以溫度、WHSV不同的實驗參數設定藉以尋找甲烷重組最佳反應條件及結果。
實驗結果顯示,自製的觸媒披覆於蜂巢結構,對於甲烷重組有良好的活性,蜂巢反應器應用於甲烷重組的效果也優於傳統的填充床反應器。在於兩種重組法反應,反應溫度為高溫的情況下,甲烷轉化率都可到達85%以上、二氧化碳轉化率都可達到75%。氫氣為主要產氣,產率及選擇率都高於80%以上。
In these days revolution makes life convenient and well-developed, but it cause lots of worries problems, burning fossil fuel produce greenhouse gases polluted the environment of the whole world, such as methane and carbon dioxide. In this study using methane greenhouse gases with high temperature reforming convert into hydrogen.
Catalyst prepared by using reverse precipitation method, than use impregnation method to coat catalyst on honeycomb. Catalyst characterization with ICP,VVSEM,XRD,SDT,TPR. Methane steam reforming by changing reaction temperature, WHSV, water carbon ratio, Methane dry reforming by changing reaction temperature, WHSV to find the best reaction factor and result.
Experimental results show that catalyst coating on honeycomb has a good activity in methane reforming better than traditional packed bed reactor. In two kinds of reforming reaction temperature at high level methane conversion is higher than 85%, carbon dioxide is about 78%, Hydrogen is the main syngas the yield and s selectivity are higher than 80%.
keyword:honeycomb、Ni/CeO2、methane steam reforming、methane dry reforming
誌 謝 I
摘 要 II
ABSTRACT III
目 錄 IV
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 蜂巢結構 4
2-1-1 蜂巢結構介紹 4
2-1-2 蜂巢結構應用 5
2-1-2-1 機械性應用 6
2-1-2-2 化學性應用 8
2-2 氫能介紹 12
2-2-1 產氫方式 13
2-2-1-1 水電解法 13
2-2-1-2 光電解法 13
2-2-1-3 電漿重組法 14
2-2-1-4 生物法 14
2-2-1-5 熱化學法 15
2-2-1-6 蒸氣重組法 16
2-3 甲烷重組 17
2-3-1 甲烷二氧化碳重組 17
2-3-2 甲烷水蒸氣重組 18
2-3-3 部分氧化重組反應 19
2-3-4 自熱化重組反應 20
2-4 觸媒 21
2-4-1 觸媒介紹 21
2-4-1-1 擔體 22
2-4-1-2 活性載體 22
2-4-1-3 改質劑 24
2-4-2觸媒製備 26
2-4-2-1 共沉澱法(Co-precipitation) 26
2-4-2-2 含浸法(Impregnation) 27
2-4-2-3 溶膠凝膠法(Sol-gel method) 28
2-4-2-4 無電鍍法(Electroless plating) 28
第三章 實驗方法與實驗流程 36
3-1 實驗目的及方法 36
3-1-1 實驗目的 36
3-1-2 實驗方法 36
3-2 實驗規劃 37
3-3 共沉澱法製備觸媒 38
3-4 基材前處理 41
3-5 含浸法製備蜂巢結構觸媒 43
3-6 重組反應 45
第四章 結果討論 49
4-1 觸媒特性分析 49
4-1-1 示差掃描量熱-熱重分析 49
4-1-2 觸媒表面形態分析 51
4-1-3 成分分析 53
4-1-4 觸媒微結構分析 54
4-1-5 還原溫度檢測 55
4-2 甲烷重組 58
4-2-1 實驗參數討論 58
4-2-2 空白實驗 60
4-2-3 蜂巢與填充床反應器實驗比較 61
4-2-4 甲烷水蒸氣重組 63
4-2-4-1 不同溫度下甲烷水蒸氣重組之結果 63
4-2-4-2 不同水碳比下甲烷水蒸氣重組之結果 64
4-2-4-3 不同WHSV下甲烷水蒸氣重組之結果 65
4-2-5 甲烷二氧化碳重組 72
4-2-5-1 不同溫度下甲烷乾重組之結果 72
4-2-5-2 不同WHSV下甲烷乾重組之結果 73
4-2-5-3 合成氣之討論 74
4-2-6 反應曲面分析法 79
4-2-6-1 甲烷水蒸氣重組之反應曲面分析結果 79
4-2-6-2 甲烷二氧化碳重組之反應曲面分析結果 80
第五章 結論與展望 85
5-1 結論 85
5-2 展望 86
附錄 87
附錄A: 實驗化學藥品與儀器 87
附錄A-1: 實驗化學藥品 87
附錄A-2: 實驗儀器 89
附錄A-3: 實驗所使用的氣體 90
附錄A-4: 藥品供應商資料 91
附錄B: 分析設備及方法 92
附錄B-1: 示差掃描熱量-熱重分析聯用儀 92
附錄B-2: 感應耦合電漿光譜儀 94
附錄B-3: 可變真空掃描式電子顯微鏡及能量散佈儀 96
附錄B-4: 多功能薄膜X光繞射儀 98
附錄B-5: 程溫還原分析 100
附錄B-6: 氣相色層分析儀 102
參考文獻 103
1.林國興, 中孔洞鎳鈰觸媒之製備與特性分析及其應用於甲烷重組反應, 2013, 博士論文, 逢甲大學
2.wikipedia. 蜂巢. 2014; Available from: http://zh.wikipedia.org/wiki/%E8%9C%82%E5%B7%A2.
3.albert. 準建築人手札網站. 2006; Available from: http://www.forgemind.net/phpbb/viewtopic.php?f=24&;t=6965.
4.阿波羅新聞網. 十大昆蟲仿生設計;仿蜂巢輪胎不需充氧. 2011; Available from: http://tw.aboluowang.com/2011/0107/191510.html.
5.norman百葉窗簾. 蜂巢簾. 2014; Available from: https://www.facebook.com/pages/Norman%E7%99%BE%E8%91%89%E7%AA%97%E7%B0%BE/178725885540998.
6.Nikkei Microdevices Motonobu Kawai. Mitsubishi Develops World&;#39;s Most Efficient Multicrystalline Si Solar Cell. 2008; Available from: http://techon.nikkeibp.co.jp/english/NEWS_EN/20080321/149296/.
7.Kun. 認識汽車的環保功臣 觸媒轉化器. 2009; Available from: http://cool3c.incar.tw/article/15214.
8.Zhenping Qu, Zhong Wang, Xie Quan, Hui Wang, and Yun Shu, Selective catalytic oxidation of ammonia to N2 over wire–mesh honeycomb catalyst in simulated synthetic ammonia stream. Chemical Engineering Journal, 2013. 233(0): p. 233-241.
9.Albert Casanovas, Maria Roig, Carla de Leitenburg, Alessandro Trovarelli, and Jordi Llorca, Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. International Journal of Hydrogen Energy, 2010. 35(15): p. 7690-7698.
10.Verónica Rico-Pérez, Sonia Parres-Esclapez, María José Illán-Gómez, Concepción Salinas-Martínez de Lecea, and Agustín Bueno-López, Preparation, characterisation and N2O decomposition activity of honeycomb monolith-supported Rh/Ce0.9Pr0.1O2 catalysts. Applied Catalysis B: Environmental, 2011. 107(1–2): p. 18-25.
11.Ryuji Kikuchi, Shingo Maeda, Kazunari Sasaki, Stefan Wennerström, Yasushi Ozawa, and Koichi Eguchi, Catalytic activity of oxide-supported Pd catalysts on a honeycomb for low-temperature methane oxidation. Applied Catalysis A: General, 2003. 239(1–2): p. 169-179.
12.中國氫能網. 各種製氫方式. 2011; Available from: http://www.hydrogenchina.org/wangjian/377.html.
13.Zhang Haipeng, Chen Weijun, Xu Junming, Lin Mi, Yang Liu, and Li Wenjun, Research and Development on the Hydrogen Generation by Solar Energy Water Electrolysis and Semiconductor Photo-catalysis. 2007.
14.經濟部能源局, 能源科技研究發展白皮書 2007: 中華民國政府出版. p.204-220
15.經濟部能源局, 能源科技研究發展白皮書 2007: 中華民國政府出版. p.116-134
16.經濟部能源局, 能源科技研究發展白皮書 2007: 中華民國政府出版. p.342-358
17.吳明修, 鈷/鎳摻雜二氧化鈰觸媒對甲醇/甘油/粗甘油水蒸氣重組產氫反應之研究, 2013, 碩士論文, 逢甲大學
18.S Damyanova, B Pawelec, K Arishtirova, and JLG Fierro, Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 2012. 37(21): p. 15966-15975.
19.In Hyuk Son, Seung Jae Lee, and Hyun-Seog Roh, Hydrogen production from carbon dioxide reforming of methane over highly active and stable MgO promoted Co–Ni/γ-Al2O3 catalyst. International Journal of Hydrogen Energy, 2014. 39(8): p. 3762-3770.
20.A. Kambolis, H. Matralis, A. Trovarelli, and Ch Papadopoulou, Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Applied Catalysis A: General, 2010. 377(1–2): p. 16-26.
21.Doris Homsi, Samer Aouad, Cédric Gennequin, Antoine Aboukaïs, and Edmond Abi-Aad, A highly reactive and stable Ru/Co6−xMgxAl2 catalyst for hydrogen production via methane steam reforming. International Journal of Hydrogen Energy, 2014. 39(19): p. 10101-10107.
22.Hyun-Seog Roh, Ic-Hwan Eum, and Dae-Woon Jeong, Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions. Renewable Energy, 2012. 42(0): p. 212-216.
23.Barnali Bej, Narayan C. Pradhan, and Swati Neogi, Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst. Catalysis Today, 2013. 207(0): p. 28-35.
24.Yuya Mukainakano, Kaori Yoshida, Shigeru Kado, Kazu Okumura, Kimio Kunimori, and Keiichi Tomishige, Catalytic performance and characterization of Pt–Ni bimetallic catalysts for oxidative steam reforming of methane. Chemical Engineering Science, 2008. 63(20): p. 4891-4901.
25.Kaori Yoshida, Kazu Okumura, Toshihiro Miyao, Shuichi Naito, Shin-ichi Ito, Kimio Kunimori, and Keiichi Tomishige, Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace Pd. Applied Catalysis A: General, 2008. 351(2): p. 217-225.
26.Mohammad Nurunnabi, Shigeru Kado, Kimihito Suzuki, Ken-ichiro Fujimoto, Kimio Kunimori, and Keiichi Tomishige, Synergistic effect of Pd and Ni on resistance to carbon deposition over NiO–MgO solid solution supported Pd catalysts in oxidative steam reforming of methane under pressurized conditions. Catalysis Communications, 2006. 7(7): p. 488-493.
27.wikipedia. 催化劑. 2014; Available from: http://zh.wikipedia.org/wiki/%E5%82%AC%E5%8C%96%E5%8A%91.
28.科技部. 反應中的紅娘. 2003; Available from: http://www.most.gov.tw/ctpda.aspx?xItem=7958&;ctNode=76&;mp=8.
29.Sushil Adhikari, Sandun Fernando, and Agus Haryanto, Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catalysis Today, 2007. 129(3): p. 355-364.
30.André O Menezes, Michelly T Rodrigues, Adriana Zimmaro, Luiz EP Borges, and Marco A Fraga, Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides. Renewable Energy, 2011. 36(2): p. 595-599.
31.Sania M de Lima, Adriana M da Silva, Gary Jacobs, Burtron H Davis, Lisiane V Mattos, and Fábio B Noronha, New approaches to improving catalyst stability over Pt/ceria during ethanol steam reforming: Sn addition and CO2 co-feeding. Applied Catalysis B: Environmental, 2010. 96(3): p. 387-398.
32.Nianjun Luo, Xianwen Fu, Fahai Cao, Tiancun Xiao, and Peter P Edwards, Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst–effect of catalyst composition and reaction conditions. Fuel, 2008. 87(17): p. 3483-3489.
33.Tomoaki Namioka, Atsushi Saito, Yukiharu Inoue, Yeongsu Park, Tai-jin Min, Seon-ah Roh, and Kunio Yoshikawa, Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst. Applied Energy, 2011. 88(6): p. 2019-2026.
34.Alessandro Gallo, Claudio Pirovano, Paola Ferrini, Marcello Marelli, Rinaldo Psaro, Saveria Santangelo, Giuliana Faggio, and Vladimiro Dal Santo, Influence of reaction parameters on the activity of ruthenium based catalysts for glycerol steam reforming. Applied Catalysis B: Environmental, 2012. 121: p. 40-49.
35.Atsushi Ishihara, Eika Weihua Qian, Ida Nuryatin Finahari, I Putu Sutrisna, and Toshiaki Kabe, Addition effect of ruthenium on nickel steam reforming catalysts. Fuel, 2005. 84(12): p. 1462-1468.
36.Sushil Adhikari, Sandun D. Fernando, and Agus Haryanto, Hydrogen production from glycerin by steam reforming over nickel catalysts. Renewable Energy, 2008. 33(5): p. 1097-1100.
37.Baocai Zhang, Xiaolan Tang, Yong Li, Yide Xu, and Wenjie Shen, Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. International Journal of Hydrogen Energy, 2007. 32(13): p. 2367-2373.
38.陳長仁, 含鎳觸媒用於催化二氧化碳甲烷重組反應之比較研究, 2007, 碩士論文, 成功大學
39.陳永昇, 氧化鋅與二氧化鈰奈米結構製備及特性研究, 2007, 碩士論文, 台北科技大學
40.J-G Li, T Ikegami, J-H Lee, and T Mori, Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta materialia, 2001. 49(3): p. 419-426.
41.林國興, 中孔洞二氧化铈搭載奈米碳管以及奈米金之製備與分析, 2010, 碩士論文, 逢甲大學
42.王嘉河, 銅鈰觸媒在過量氫氣中CO的選擇性氧化研究, 2005, 碩士論文, 逢甲大學
43.謝宜潔, 中孔洞CeO2製備及分析, 2007, 碩士論文, 逢甲大學
44.Alessandro Trovarelli and Paolo Fornasiero, Catalysis by ceria and related materials. 2013: World Scientific
45.詹望成, 郭耘, 龚学庆, 郭杨龙, 王艳芹, and 卢冠忠, 二氧化铈表面氧的活化及对氧化反应的催化作用. 中国科学: 化学, 2012. 42(4): p. 433-445.
46.Fagen Wang, Weijie Cai, Hélène Provendier, Yves Schuurman, Claude Descorme, Claude Mirodatos, and Wenjie Shen, Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. International Journal of Hydrogen Energy, 2011. 36(21): p. 13566-13574.
47.M El Doukkali, A Iriondo, PL Arias, JF Cambra, I Gandarias, and VL Barrio, Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts. International Journal of Hydrogen Energy, 2012. 37(10): p. 8298-8309.
48.Francisco Pompeo, Gerardo Santori, and Nora N Nichio, Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. International Journal of Hydrogen Energy, 2010. 35(17): p. 8912-8920.
49.A Iriondo, VL Barrio, JF Cambra, PL Arias, MB Guemez, MC Sanchez-Sanchez, RM Navarro, and JLG Fierro, Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. International Journal of Hydrogen Energy, 2010. 35(20): p. 11622-11633.
50.James F Brazdil and Robert K Grasselli, Relationship between solid state structure and catalytic activity of rare earth and bismuth-containing molybdate ammoxidation catalysts. Journal of Catalysis, 1983. 79(1): p. 104-117.
51.M Funabiki, T Yamada, and K Kayano, Auto exhaust catalysts. Catalysis Today, 1991. 10(1): p. 33-43.
52.杨春生 and 陈建华, 氧化铈和氧化镧在汽车尾气净化催化剂中的应用. 中国稀土学报, 2003. 21(2): p. 129-132.
53.Gwan Kim, Sox control compositions. 1997, Google Patents.
54.Gwan Kim and Michael V Juskelis, Catalytic reduction of SO3 Stored in SOX transfer catalysts—A temperature-programmed reaction study. Studies in Surface Science and Catalysis, 1996. 101: p. 137-142.
55.M Fernández-Garcıa, A Martınez-Arias, LN Salamanca, JM Coronado, JA Anderson, JC Conesa, and J Soria, Influence of Ceria on Pd Activity for the CO+O2 Reaction. Journal of Catalysis, 1999. 187(2): p. 474-485.
56.D Teschner, A Wootsch, O Pozdnyakova-Tellinger, J Kröhnert, EM Vass, M Hävecker, S Zafeiratos, P Schnörch, PC Jentoft, and A Knop-Gericke, Partial pressure dependent in situ spectroscopic study on the preferential CO oxidation in hydrogen (PROX) over Pt/ceria catalysts. Journal of Catalysis, 2007. 249(2): p. 318-327.
57.陳慧英, 黃定加, and 朱秦億, 溶膠凝膠法在薄膜製備上之應用. 化工技術, 無機薄膜之應用專輯, 1999. 11(7).
58.曾榆均, 以矽化物為基材無電鍍鈷之動力學及析鍍行為, 1999, 碩士論文, 逢甲大學
59.崔智涵, 鎳/顏料複合無電鍍共析之研究, 2001, 碩士論文, 逢甲大學
60.Glenn O Mallory and Juan B Hajdu, Electroless plating: fundamentals and applications. 1990: William Andrew
61.Vijaya Kumar Bulasara, Madiraju Srinivasa Abhimanyu, Thoutam Pranav, Ramgopal Uppaluri, and Mihir Kumar Purkait, Performance characteristics of hydrothermal and sonication assisted electroless plating baths for nickel–ceramic composite membrane fabrication. Desalination, 2012. 284: p. 77-85.
62.In Kwon Hong, Hyungjin Kim, and Seung Bum Lee, Optimization of Barrel Plating Process for Electroless Ni-P Plating. Journal of Industrial and Engineering Chemistry, 2014.
63.H Liu, RX Guo, and Z Liu, Effects of laser nanocrystallisation on the wear behaviour of electroless Ni–W–P coatings. Surface and Coatings Technology, 2013. 219: p. 31-41.
64.Ke Wang, Liang Hong, and Zhao-Lin Liu, Exploring the water-soluble phosphine ligand as the environmentally friendly stabilizer for electroless nickel plating. Industrial &; Engineering Chemistry Research, 2009. 48(4): p. 1727-1734.
65.Shengchun Wang, Yoichi Takeda, Tetsuo Shoji, and Nobuaki Kawaguchi, Observation of the oxide film formed in high temperature water by applying electroless Ni-P coating. Journal of Nuclear Science and Technology, 2004. 41(7): p. 777-779.
66.RC Agarwala and Vijaya Agarwala, Electroless alloy/composite coatings: A review. Sadhana, 2003. 28(3-4): p. 475-493.
67.and T.L. Arney R.N. Duncan, Plating and Surface Finishing, 1984. 71(12): p. 49-54.
68.D.Kunces, Products Finishing 1987. p. 85.
69.D.Kunces, Hope for the Best But be Prepared for the Worst Waterbury, 1986.
70.R.S.Capaccio and R.J.Sarnelli, Plating and Surface Finishing, 1986. 73(18).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top