1.林國興, 中孔洞鎳鈰觸媒之製備與特性分析及其應用於甲烷重組反應, 2013, 博士論文, 逢甲大學
2.wikipedia. 蜂巢. 2014; Available from: http://zh.wikipedia.org/wiki/%E8%9C%82%E5%B7%A2.
3.albert. 準建築人手札網站. 2006; Available from: http://www.forgemind.net/phpbb/viewtopic.php?f=24&;t=6965.
4.阿波羅新聞網. 十大昆蟲仿生設計;仿蜂巢輪胎不需充氧. 2011; Available from: http://tw.aboluowang.com/2011/0107/191510.html.
5.norman百葉窗簾. 蜂巢簾. 2014; Available from: https://www.facebook.com/pages/Norman%E7%99%BE%E8%91%89%E7%AA%97%E7%B0%BE/178725885540998.
6.Nikkei Microdevices Motonobu Kawai. Mitsubishi Develops World&;#39;s Most Efficient Multicrystalline Si Solar Cell. 2008; Available from: http://techon.nikkeibp.co.jp/english/NEWS_EN/20080321/149296/.
7.Kun. 認識汽車的環保功臣 觸媒轉化器. 2009; Available from: http://cool3c.incar.tw/article/15214.
8.Zhenping Qu, Zhong Wang, Xie Quan, Hui Wang, and Yun Shu, Selective catalytic oxidation of ammonia to N2 over wire–mesh honeycomb catalyst in simulated synthetic ammonia stream. Chemical Engineering Journal, 2013. 233(0): p. 233-241.
9.Albert Casanovas, Maria Roig, Carla de Leitenburg, Alessandro Trovarelli, and Jordi Llorca, Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. International Journal of Hydrogen Energy, 2010. 35(15): p. 7690-7698.
10.Verónica Rico-Pérez, Sonia Parres-Esclapez, María José Illán-Gómez, Concepción Salinas-Martínez de Lecea, and Agustín Bueno-López, Preparation, characterisation and N2O decomposition activity of honeycomb monolith-supported Rh/Ce0.9Pr0.1O2 catalysts. Applied Catalysis B: Environmental, 2011. 107(1–2): p. 18-25.
11.Ryuji Kikuchi, Shingo Maeda, Kazunari Sasaki, Stefan Wennerström, Yasushi Ozawa, and Koichi Eguchi, Catalytic activity of oxide-supported Pd catalysts on a honeycomb for low-temperature methane oxidation. Applied Catalysis A: General, 2003. 239(1–2): p. 169-179.
12.中國氫能網. 各種製氫方式. 2011; Available from: http://www.hydrogenchina.org/wangjian/377.html.
13.Zhang Haipeng, Chen Weijun, Xu Junming, Lin Mi, Yang Liu, and Li Wenjun, Research and Development on the Hydrogen Generation by Solar Energy Water Electrolysis and Semiconductor Photo-catalysis. 2007.
14.經濟部能源局, 能源科技研究發展白皮書 2007: 中華民國政府出版. p.204-220
15.經濟部能源局, 能源科技研究發展白皮書 2007: 中華民國政府出版. p.116-134
16.經濟部能源局, 能源科技研究發展白皮書 2007: 中華民國政府出版. p.342-358
17.吳明修, 鈷/鎳摻雜二氧化鈰觸媒對甲醇/甘油/粗甘油水蒸氣重組產氫反應之研究, 2013, 碩士論文, 逢甲大學18.S Damyanova, B Pawelec, K Arishtirova, and JLG Fierro, Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 2012. 37(21): p. 15966-15975.
19.In Hyuk Son, Seung Jae Lee, and Hyun-Seog Roh, Hydrogen production from carbon dioxide reforming of methane over highly active and stable MgO promoted Co–Ni/γ-Al2O3 catalyst. International Journal of Hydrogen Energy, 2014. 39(8): p. 3762-3770.
20.A. Kambolis, H. Matralis, A. Trovarelli, and Ch Papadopoulou, Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Applied Catalysis A: General, 2010. 377(1–2): p. 16-26.
21.Doris Homsi, Samer Aouad, Cédric Gennequin, Antoine Aboukaïs, and Edmond Abi-Aad, A highly reactive and stable Ru/Co6−xMgxAl2 catalyst for hydrogen production via methane steam reforming. International Journal of Hydrogen Energy, 2014. 39(19): p. 10101-10107.
22.Hyun-Seog Roh, Ic-Hwan Eum, and Dae-Woon Jeong, Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions. Renewable Energy, 2012. 42(0): p. 212-216.
23.Barnali Bej, Narayan C. Pradhan, and Swati Neogi, Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst. Catalysis Today, 2013. 207(0): p. 28-35.
24.Yuya Mukainakano, Kaori Yoshida, Shigeru Kado, Kazu Okumura, Kimio Kunimori, and Keiichi Tomishige, Catalytic performance and characterization of Pt–Ni bimetallic catalysts for oxidative steam reforming of methane. Chemical Engineering Science, 2008. 63(20): p. 4891-4901.
25.Kaori Yoshida, Kazu Okumura, Toshihiro Miyao, Shuichi Naito, Shin-ichi Ito, Kimio Kunimori, and Keiichi Tomishige, Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace Pd. Applied Catalysis A: General, 2008. 351(2): p. 217-225.
26.Mohammad Nurunnabi, Shigeru Kado, Kimihito Suzuki, Ken-ichiro Fujimoto, Kimio Kunimori, and Keiichi Tomishige, Synergistic effect of Pd and Ni on resistance to carbon deposition over NiO–MgO solid solution supported Pd catalysts in oxidative steam reforming of methane under pressurized conditions. Catalysis Communications, 2006. 7(7): p. 488-493.
27.wikipedia. 催化劑. 2014; Available from: http://zh.wikipedia.org/wiki/%E5%82%AC%E5%8C%96%E5%8A%91.
28.科技部. 反應中的紅娘. 2003; Available from: http://www.most.gov.tw/ctpda.aspx?xItem=7958&;ctNode=76&;mp=8.
29.Sushil Adhikari, Sandun Fernando, and Agus Haryanto, Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catalysis Today, 2007. 129(3): p. 355-364.
30.André O Menezes, Michelly T Rodrigues, Adriana Zimmaro, Luiz EP Borges, and Marco A Fraga, Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides. Renewable Energy, 2011. 36(2): p. 595-599.
31.Sania M de Lima, Adriana M da Silva, Gary Jacobs, Burtron H Davis, Lisiane V Mattos, and Fábio B Noronha, New approaches to improving catalyst stability over Pt/ceria during ethanol steam reforming: Sn addition and CO2 co-feeding. Applied Catalysis B: Environmental, 2010. 96(3): p. 387-398.
32.Nianjun Luo, Xianwen Fu, Fahai Cao, Tiancun Xiao, and Peter P Edwards, Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst–effect of catalyst composition and reaction conditions. Fuel, 2008. 87(17): p. 3483-3489.
33.Tomoaki Namioka, Atsushi Saito, Yukiharu Inoue, Yeongsu Park, Tai-jin Min, Seon-ah Roh, and Kunio Yoshikawa, Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst. Applied Energy, 2011. 88(6): p. 2019-2026.
34.Alessandro Gallo, Claudio Pirovano, Paola Ferrini, Marcello Marelli, Rinaldo Psaro, Saveria Santangelo, Giuliana Faggio, and Vladimiro Dal Santo, Influence of reaction parameters on the activity of ruthenium based catalysts for glycerol steam reforming. Applied Catalysis B: Environmental, 2012. 121: p. 40-49.
35.Atsushi Ishihara, Eika Weihua Qian, Ida Nuryatin Finahari, I Putu Sutrisna, and Toshiaki Kabe, Addition effect of ruthenium on nickel steam reforming catalysts. Fuel, 2005. 84(12): p. 1462-1468.
36.Sushil Adhikari, Sandun D. Fernando, and Agus Haryanto, Hydrogen production from glycerin by steam reforming over nickel catalysts. Renewable Energy, 2008. 33(5): p. 1097-1100.
37.Baocai Zhang, Xiaolan Tang, Yong Li, Yide Xu, and Wenjie Shen, Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. International Journal of Hydrogen Energy, 2007. 32(13): p. 2367-2373.
38.陳長仁, 含鎳觸媒用於催化二氧化碳甲烷重組反應之比較研究, 2007, 碩士論文, 成功大學39.陳永昇, 氧化鋅與二氧化鈰奈米結構製備及特性研究, 2007, 碩士論文, 台北科技大學40.J-G Li, T Ikegami, J-H Lee, and T Mori, Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta materialia, 2001. 49(3): p. 419-426.
41.林國興, 中孔洞二氧化铈搭載奈米碳管以及奈米金之製備與分析, 2010, 碩士論文, 逢甲大學42.王嘉河, 銅鈰觸媒在過量氫氣中CO的選擇性氧化研究, 2005, 碩士論文, 逢甲大學43.謝宜潔, 中孔洞CeO2製備及分析, 2007, 碩士論文, 逢甲大學44.Alessandro Trovarelli and Paolo Fornasiero, Catalysis by ceria and related materials. 2013: World Scientific
45.詹望成, 郭耘, 龚学庆, 郭杨龙, 王艳芹, and 卢冠忠, 二氧化铈表面氧的活化及对氧化反应的催化作用. 中国科学: 化学, 2012. 42(4): p. 433-445.
46.Fagen Wang, Weijie Cai, Hélène Provendier, Yves Schuurman, Claude Descorme, Claude Mirodatos, and Wenjie Shen, Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. International Journal of Hydrogen Energy, 2011. 36(21): p. 13566-13574.
47.M El Doukkali, A Iriondo, PL Arias, JF Cambra, I Gandarias, and VL Barrio, Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts. International Journal of Hydrogen Energy, 2012. 37(10): p. 8298-8309.
48.Francisco Pompeo, Gerardo Santori, and Nora N Nichio, Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. International Journal of Hydrogen Energy, 2010. 35(17): p. 8912-8920.
49.A Iriondo, VL Barrio, JF Cambra, PL Arias, MB Guemez, MC Sanchez-Sanchez, RM Navarro, and JLG Fierro, Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. International Journal of Hydrogen Energy, 2010. 35(20): p. 11622-11633.
50.James F Brazdil and Robert K Grasselli, Relationship between solid state structure and catalytic activity of rare earth and bismuth-containing molybdate ammoxidation catalysts. Journal of Catalysis, 1983. 79(1): p. 104-117.
51.M Funabiki, T Yamada, and K Kayano, Auto exhaust catalysts. Catalysis Today, 1991. 10(1): p. 33-43.
52.杨春生 and 陈建华, 氧化铈和氧化镧在汽车尾气净化催化剂中的应用. 中国稀土学报, 2003. 21(2): p. 129-132.
53.Gwan Kim, Sox control compositions. 1997, Google Patents.
54.Gwan Kim and Michael V Juskelis, Catalytic reduction of SO3 Stored in SOX transfer catalysts—A temperature-programmed reaction study. Studies in Surface Science and Catalysis, 1996. 101: p. 137-142.
55.M Fernández-Garcıa, A Martınez-Arias, LN Salamanca, JM Coronado, JA Anderson, JC Conesa, and J Soria, Influence of Ceria on Pd Activity for the CO+O2 Reaction. Journal of Catalysis, 1999. 187(2): p. 474-485.
56.D Teschner, A Wootsch, O Pozdnyakova-Tellinger, J Kröhnert, EM Vass, M Hävecker, S Zafeiratos, P Schnörch, PC Jentoft, and A Knop-Gericke, Partial pressure dependent in situ spectroscopic study on the preferential CO oxidation in hydrogen (PROX) over Pt/ceria catalysts. Journal of Catalysis, 2007. 249(2): p. 318-327.
57.陳慧英, 黃定加, and 朱秦億, 溶膠凝膠法在薄膜製備上之應用. 化工技術, 無機薄膜之應用專輯, 1999. 11(7).58.曾榆均, 以矽化物為基材無電鍍鈷之動力學及析鍍行為, 1999, 碩士論文, 逢甲大學
59.崔智涵, 鎳/顏料複合無電鍍共析之研究, 2001, 碩士論文, 逢甲大學60.Glenn O Mallory and Juan B Hajdu, Electroless plating: fundamentals and applications. 1990: William Andrew
61.Vijaya Kumar Bulasara, Madiraju Srinivasa Abhimanyu, Thoutam Pranav, Ramgopal Uppaluri, and Mihir Kumar Purkait, Performance characteristics of hydrothermal and sonication assisted electroless plating baths for nickel–ceramic composite membrane fabrication. Desalination, 2012. 284: p. 77-85.
62.In Kwon Hong, Hyungjin Kim, and Seung Bum Lee, Optimization of Barrel Plating Process for Electroless Ni-P Plating. Journal of Industrial and Engineering Chemistry, 2014.
63.H Liu, RX Guo, and Z Liu, Effects of laser nanocrystallisation on the wear behaviour of electroless Ni–W–P coatings. Surface and Coatings Technology, 2013. 219: p. 31-41.
64.Ke Wang, Liang Hong, and Zhao-Lin Liu, Exploring the water-soluble phosphine ligand as the environmentally friendly stabilizer for electroless nickel plating. Industrial &; Engineering Chemistry Research, 2009. 48(4): p. 1727-1734.
65.Shengchun Wang, Yoichi Takeda, Tetsuo Shoji, and Nobuaki Kawaguchi, Observation of the oxide film formed in high temperature water by applying electroless Ni-P coating. Journal of Nuclear Science and Technology, 2004. 41(7): p. 777-779.
66.RC Agarwala and Vijaya Agarwala, Electroless alloy/composite coatings: A review. Sadhana, 2003. 28(3-4): p. 475-493.
67.and T.L. Arney R.N. Duncan, Plating and Surface Finishing, 1984. 71(12): p. 49-54.
68.D.Kunces, Products Finishing 1987. p. 85.
69.D.Kunces, Hope for the Best But be Prepared for the Worst Waterbury, 1986.
70.R.S.Capaccio and R.J.Sarnelli, Plating and Surface Finishing, 1986. 73(18).