(3.236.6.6) 您好!臺灣時間:2021/04/23 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃琮閔
研究生(外文):Tsung-Min,Huang
論文名稱:粗甘油連續丁醇醱酵之研究
論文名稱(外文):A study on continuous butanol fermentation from crude glycerol
指導教授:林屏杰
指導教授(外文):Ping-Jei Lin
口試委員:李國興張嘉修
口試委員(外文):Kuo-Shing LeeJo-Shu Chang
口試日期:2014-06-30
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:114
中文關鍵詞:Clostridium pasteurianum粗甘油丁醇氫氣真空醱酵
外文關鍵詞:Clostridium pasteurianumCrude glycerolButanolhydrogenvacuum fermentation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
全球生質柴油產量逐年攀升,因此其副產物甘油也隨之大量增產而逐漸累積。鑑此,開發甘油的新用途不但能解決甘油過剩之問題,亦可降低生質柴油的整體成本。本研究分別以純菌培養(Clostridium pasteurianum)及混菌培養來進行甘油連續醱酵產丁醇之研究。在純菌培養方面,首先以AnGCB (anaerobic granulated cell bioreactor)反應器進行水力滯留時間(Hydraulic retention time, HRT) (24、12及8 h)及攪拌速率(45及75 rpm)之探討,結果顯示,C. pasteurianum會受到丁醇抑制(約10 g/L)而造成不穩態操作,而較高的攪拌速率(75 rpm)及較低的HRT (12及8 h)操作有助於系統操作之穩定性,於甘油濃度60 g/L、攪拌速率75 rpm及HRT 8 h之條件,獲致丁醇濃度、丁醇產率(butanol yield, BY)、產氫速率(hydrogen production rate, HPR)分別為7.5 g/L、0.15 g BuOH/g glycerol consumed及0.485 mol/L/d。本研究另以CSTR (continuous flow stirred tank reactor)反應器進行HRT (24、12及8 h)及甘油濃度(60及40 g/L)之效應探討,結果顯示丁醇抑制造成系統不穩態操作的現象仍然存在,而較低的HRT及甘油濃度對丁醇抑制似乎略有和緩作用,於甘油濃度60 g/L及HRT 8 h之條件,獲致丁醇濃度、BY、 HPR分別為6.5 g/L、0.12 g BuOH/g glycerol consumed及0.838 mol/L/d,相對於AnGCB系統,雖然CSTR系統獲致較佳的HPR,但其丁醇產量較低。為改善丁醇抑制的影響,本研究進一步以CSTR系統進行真空醱酵之效應探討,結果顯示於真空度700 mmHg (表壓-700 mmHg)時丁醇可有效從醱酵槽內移除而避免丁醇抑制,其冷凝液之丁醇濃度高達52.9g/L,而HPR則提高至1.597 mol/L/d,顯示利用連續真空醱酵具有多重效益。
本研究以CSTR系統進行混菌培養,首先以精甘油分別進行pH、基質濃度、HRT之效應探討。在pH試驗結果顯示pH 5.5時可獲致最佳丁醇濃度、BY分別為6.4 g/L、0.21 g BuOH/g glycerol consumed (於甘油濃度100 g/L及HRT 12 h),而於高pH 7.0條件下有利於1,3-丙二醇生成。基質濃度(100、60、40及25 g/L)之效應探討顯示於各試程其BY介在0.20-0.23 g BuOH/g glycerol consumed (於pH 5.5及HRT 12 h),而基質濃度以40 g/L時有最佳利用率85%且丁醇濃度高達7.1 g/L。而HRT效應探討發現HRT由12 h降至4 h時,其主產物由丁醇轉為1,3-丙二醇(於pH 5.5及甘油濃度40 g/L),顯示低HRT時不利於丁醇生成。進一步以粗甘油濃度25 g/L於pH 5.5及HRT 12 h進行進行連續試驗,結果獲致丁醇濃度、BY、HPR分別為4.9 g/L、0.21 g BuOH/g glycerol consumed、0.404 mol/L/d,其丁醇濃度與精甘油醱酵相近,而其產氫表現略高於精甘油。
The global production of biodiesel has increased year by year; therefore a substantial byproduct glycerol increased and accumulated gradually. In the view of this, the development of new application of glycerol can not only solve the problem of excess of glycerol but also can reduce the overall cost of biodiesel. This study explored the continuous butanol fermentation from glycerol with pure culture (Clostridium pasteurianum) and mixed culture, respectively. In terms of pure culture, first, an anaerobic granulated cell bioreactor (AnGCB) was used to explore the effects of agitation rate (45 and 75 rpm) and hydraulic retention time (HRT; 24, 12 and 8 h) on butanol production. The results showed that the activity of C. pasteurianum was inhibited when butanol concentration arrived 10 g/L; thus the resctors were not operated at steady state. Both higher agitation rate (75 rpm) and lower HRT (12 and 8 h) favored the operational stability of systems. Thus, when the operational conditions were glycerol concentration 60 g/L, agitation rate 75 rpm and HRT 8 h, the results showed that the butanol concentration, butanol yield (BY), hydrogen production rate (HPR) was 7.5 g/L、0.15 g BuOH/g glycerol consumed and 0.485 mol/L/d, respectively. Furthermore, a continuous flow stirred tank reactor (CSTR) was used to explore the effects of HRT (24, 12 and 8 h) and glycerol concentration (60 and 40 g/L) on butanol production. The results showed that the unstable operation of system resulting from inhibition of butanol still existed, and using lower HRT and glycerol concentration could slightly decrease the inhibition of butanol. The butanol concentration, BY, HPR was 6.5 g/L, 0.12 g BuOH/g glycerol consumed and 0.838 mol/L/d, respectively, at glycerol concentration 60 g/L and HRT 8 h. Comparing with the AnGCB system, CSTR system got a better HPR but the butanol yield was lower than the AnGCB. To improve the inhibition of butanol, the effect of vacuum fermentation using a CSTR reactor was studied. When the degree of vacuum was 700 mmHg (a gauge pressure of -700 mmHg), butanol can be effectively removed from the fermentor and improving the inhibition of butanol. The butanol concentration of the condensate was up to 52.9g/L, and HPR increased to 1.597 mol/L/d. These results showed that the use of continuous vacuum fermentation displayed multiple benefits.
In terms of the mixed culture, a CSTR reactor was used to investigate the effects of pH, glycerol concentration and HRT on butanol production form refined glycerol. The results showed that the optimal butanol concentration and BY was 6.4 g/L and 0.21 g BuOH/g glycerol consumed, respectively, when the CSTR reactor was operated at pH 5.5 (at glycerol concentration 100 g/L and HRT 12 h), and the reactor operated at high pH value was favorable to the generation of 1,3-propanediol. Then, the reactor was operated at various concentration of carbon source (refined glycerol 100, 60 40 and 25 g/L), the results showed that BY was between 0.20 and 0.23 g BuOH/g glycerol consumed at pH 5.5 and HRT 12 h. The optimal substrate utilization and butanol concentration was 85% and 7.1 g/L and occurred at glycerol concentration 40 g/L. The results of HRT effect showed that the main product shifted from butanol to 1,3-propanediol when HRT decreased from 12 to 4 h (at pH 5.5 and glycerol concentration 40 g/L), suggesting low HRT was not favorable to butanol production. Furthermore, the continuous butanol fermentation from crude glycerol was conducted at substrate concentration 25 g/L, pH 5.5 and HRT 12 h. The results showed that butanol concentration, BY and HPR was 4.9 g/L, 0.21 g BuOH/g glycerol consumed and 0.404 mol/L/d, respectively. The butanol concentration from crude glycerol was similar to that from refined glycerol; and the HPR from crude glycerol was higher than that from refined glycerol.
摘要 I
Abstract III
目錄 VI
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究架構 3
第二章 原理及文獻回顧 5
2-1 生質能源 5
2-1-1生質能概述 5
2-1-2 生質柴油 6
2-2甘油 8
2-2-1 甘油之性質 8
2-2-2 甘油之純化 8
2-2-3 粗甘油前處理 9
2-2-4 甘油之應用 10
2-3 丁醇 12
2-3-1 丁醇的基本性質及用途 12
2-3-2 丁醇製備方法 13
2-3-2-1 化學合成法 13
2-3-2-2 生物合成法 14
2-4 丁醇菌種及代謝路徑 16
2-4-1 Clostridium菌屬之特性 16
2-4-2丁醇之代謝路徑 18
2-5氫能 22
2-5-1氫氣製備方法 22
2-5-2甘油暗醱酵產氫 22
2-6 甘油厭氧醱酵之環境因子 25
2-6-1 水力滯留時間 25
2-6-2 pH 25
2-7 甘油醱酵系統 27
2-7-1 CSTR 27
2-7-2 AnGCB 27
2-8 生物丁醇移除技術 29
2-8-1氣體沖提(gas stripping) 29
2-8-2滲透蒸發薄膜(pervaporation) 29
2-8-3真空醱酵(Vacuum fermentation) 30
2-9 分子生物技術於甘油醱酵之應用 31
2-9-1 16S rDNA 及 functional gene 32
2-9-2 聚合酶鏈鎖反應 33
2-9-3 變性梯度明膠電泳 35
2-9-4 菌相分析 37
第三章 材料與方法 38
3-1 甘油醱酵產丁醇&;氫氣 38
3-1-1 菌種來源 38
3-1-1-1 純菌來源 38
3-1-1-2 混菌來源 38
3-1-2 甘油來源 38
3-1-3 粗甘油前處理 39
3-1-4 培養基配方 39
3-1-5 實驗裝置圖 40
3-1-5-1 AnGCB之產丁醇操作 40
3-1-5-2 CSTR之產丁醇操作 41
3-1-5-3 真空醱酵產丁醇之裝置圖 42
3-2 氣體組成分析 44
3-3液體組成分析 46
3-4細胞濃度分析 47
3-5菌相分析 47
3-5-1 DNA萃取 48
3-5-2 聚合酶鏈鎖反應 49
3-5-3 變性梯度明膠電泳 52
3-5-4 Acrylamide/Bis 膠體之DNA純化 53
3-5-5 親緣分析 53
第四章 結果與討論 54
4-1 C. pasteurianum以AnGCB系統於不同攪拌速率及HRT之醱酵產丁醇試驗 54
4-2 C. pasteurianum以CSTR系統產丁醇試驗 61
4-2-1 C.pasteurianum於不同HRT下產丁醇評比 61
4-2-2 AnGCB與CSTR於不同HRT之評比 63
4-2-3 C. pasteurianum於不同基質濃度下產丁醇試驗 67
4-3 C. pasteurianum以CSTR系統於真空醱酵產丁醇試驗 70
4-3-1 C. pasteurianum於不同壓力下之產丁醇評比 70
4-3-2 真空醱酵之優劣 72
4-4 pH值對CSTR系統混菌培養精甘油產丁醇之影響 76
4-5 基質濃度對CSTR系統混菌培養精甘油產製丁醇之影響 83
4-6 不同HRT對CSTR系統混菌培養精甘油產製丁醇之影響 88
4-7 CSTR系統混菌培養粗甘油產製丁醇 93
4-8 C. pasteurianum以AnGCB系統於pH 5.5之醱酵產丁醇試驗 99
第五章 結論與未來展望 101
5-1 結論 101
5-1-1純菌系統 101
5-1-2混菌系統 101
5-2 未來展望 102
參考文獻 104
中文參考文獻 111
致謝 113
參考文獻
Ahn, J.H., Sang, B.I.,Um, Y. (2011). Butanol production from thin stillage using Clostridium pasteurianum. Bioresource technology, 102(7), 4934-4937.
Amann, R.I., Krumholz, L.,Stahl, D. A. (1990). Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of bacteriology, 172(2), 762-770.
Barbirato, F., Chedaille, D.,Bories, A. (1997). Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol, 47(4), 441-446.
Biebl, H. (2001). Fermentation of glycerol by Clostridium pasteurianum—batch and continuous culture studies. Journal of Industrial Microbiology and Biotechnology, 27(1), 18-26.
Brandner, A., Lehnert, K., Bienholz, A., Lucas, M.,Claus, P. (2009). Production of biomass-derived chemicals and energy: Chemocatalytic conversions of glycerol. Topics in Catalysis, 52(3), 278-287.
Chang, J. J., Chen, W. E., Shih, S.Y., Yu, S. J., Lay, J. J., Wen, F. S.,Huang, C. C. (2006). Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl Microbiol Biotechnol, 70(5), 598-604.
Chatzifragkou, A., Papanikolaou, S., Dietz, D., Doulgeraki, A. I., Nychas, G. J. E.,Zeng, A. P. (2011). Production of 1, 3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol, 91(1), 101-112.
Cheng, K. K., Zhang, J. A., Liu, D. H., Sun, Y., Liu, H. J., Yang, M. D.,Xu, J. M. (2007). Pilot-scale production of 1, 3-propanediol using Klebsiella pneumoniae. Process Biochemistry, 42(4), 740-744.
Cintolesi, A., Clomburg, J. M., Rigou, V., Zygourakis, K.,Gonzalez, R. (2012). Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnology and bioengineering, 109(1), 187-198.
Clomburg, J. M.,Gonzalez, R. (2011). Metabolic engineering of Escherichia coli for the production of 1, 2‐propanediol from glycerol. Biotechnology and bioengineering, 108(4), 867-879.
Clomburg, J. M.,Gonzalez, R. (2013). Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends in biotechnology, 31(1), 20-28.
Dürre, P. (2008). Fermentative butanol production. Annals of the New York Academy of Sciences, 1125(1), 353-362.
Dürre, P., Bahl, H.,Gottschalk, G. (1988). Membrane processes and product formation in anaerobes. Handbook of anaerobic fermentation. Marcel Dekker, New York, NY, 187-206.
Da Silva, G. P., Mack, M.,Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology advances, 27(1), 30-39.
Dabrock, B., Bahl, H.,Gottschalk, G. (1992). Parameters affecting solvent production by Clostridium pasteurianum. Applied and environmental microbiology, 58(4), 1233-1239.
Drożdżyńska, A., Leja, K.,Czaczyk, K. (2011). Biotechnological production of 1, 3-propanediol from crude glycerol. Bio-Technologia, 92(1), 92-100.
Endo, G., Noike, T.,Matsumoto, J. (1982). Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Paper presented at the Proc Soc Civ Eng.
Escapa, A., Manuel, M. F., Morán, A., Gómez, X., Guiot, S.,Tartakovsky, B. (2009). Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy &; Fuels, 23(9), 4612-4618.
Ezeji, T.,Blaschek, H. P. (2008). Fermentation of dried distillers grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource technology, 99(12), 5232-5242.
Ezeji, T. C., Qureshi, N.,Blaschek, H. P. (2007). Bioproduction of butanol from biomass: from genes to bioreactors. Current opinion in biotechnology, 18(3), 220-227.
Fond, O., Matta Ammouri, G., Petitdemange, H.,Engasser, J. (1985). The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Appl Microbiol Biotechnol, 22(3), 195-200.
González Pajuelo, M., Meynial Salles, I., Mendes, F., Andrade, J. C., Vasconcelos, I.,Soucaille, P. (2005). Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1, 3-propanediol from glycerol. Metabolic Engineering, 7(5), 329-336.
Gottwald, M.,Gottschalk, G. (1985). The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Archives of microbiology, 143(1), 42-46.
Hüsemann, M. H.,Papoutsakis, E. T. (1988). Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnology and bioengineering, 32(7), 843-852.
Heuer, H., Krsek, M., Baker, P., Smalla, K.,Wellington, E. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and environmental microbiology, 63(8), 3233-3241.
Himmi, E., Bories, A., Boussaid, A.,Hassani, L. (2000). Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Appl Microbiol Biotechnol, 53(4), 435-440.
Huang, L., Gibbins, L.,Forsberg, C. W. (1985). Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions. Applied and environmental microbiology, 50(4), 1043-1047.
Ito, T., Nakashimada, Y., Senba, K., Matsui, T.,Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of bioscience and bioengineering, 100(3), 260-265.
Jensen, T. Ø., Kvist, T., Mikkelsen, M. J., Christensen, P. V.,Westermann, P. (2012). Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. Journal of industrial microbiology &; biotechnology, 39(5), 709-717.
Jeong, H., Yi, H., Sekiguchi, Y., Muramatsu, M., Kamagata, Y.,Chun, J. (2004). Clostridium jejuense sp. nov., isolated from soil. International journal of systematic and evolutionary microbiology, 54(5), 1465-1468.
Kivistö, A., Santala, V.,Karp, M. (2010). Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresource technology, 101(22), 8671-8677.
Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L.,Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences, 82(20), 6955-6959.
Lee, K. S., Lo, Y. S., Lo, Y. C., Lin, P. J.,Chang, J. S. (2004). Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme and Microbial Technology, 35(6), 605-612.
Lee, P. C., Lee, W. G., Lee, S. Y.,Chang, H. N. (2001). Succinic acid production with reduced by‐product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and bioengineering, 72(1), 41-48.
Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J.,Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnology and bioengineering, 101(2), 209-228.
Malaviya, A., Jang, Y. S., Lee, S. Y. (2012). Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol, 93(4), 1485-1494.
Malaviya, A., Jang, Y. S.,Lee, S. Y. (2012). Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. [Research Support, Non-U.S. Gov&;#39;t]. Appl Microbiol Biotechnol, 93(4), 1485-1494. doi: 10.1007/s00253-011-3629-0
Manz, W., Amann, R., Ludwig, W., Wagner, M.,Schleifer, K. H. (1992). Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Systematic and applied microbiology, 15(4), 593-600.
Mariano, A. P., de Angelis, D. d. F., Maugeri Filho, F., Atala, D. I. P., Wolf Maciel, M. R.,Maciel Filho, R. (2008). An alternative process for butanol production: continuous flash fermentation. Chemical Product and Process Modeling, 3(1).
Mariano, A. P., Qureshi, N., Maciel Filho, R.,Ezeji, T. C. (2012). Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. Journal of Chemical Technology and Biotechnology, 87(3), 334-340.
Metsoviti, M., Paramithiotis, S., Drosinos, E. H., Galiotou‐Panayotou, M., Nychas, G. J. E., Zeng, A. P.,Papanikolaou, S. (2012). Screening of bacterial strains capable of converting biodiesel‐derived raw glycerol into 1, 3‐propanediol, 2, 3‐butanediol and ethanol. Engineering in Life Sciences, 12(1), 57-68.
Metsoviti, M., Paraskevaidi, K., Koutinas, A., Zeng, A. P.,Papanikolaou, S. (2012). Production of 1, 3-propanediol, 2, 3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Process Biochemistry, 47(12), 1872-1882.
Muyzer, G., De Waal, E. C.,Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700.
Ngo, T. A., Kim, M.-S.,Sim, S. J. (2011). High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. International journal of hydrogen energy, 36(10), 5836-5842.
Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R.,Stahl, D. A. (1986). Microbial ecology and evolution: a ribosomal RNA approach. Annual reviews in microbiology, 40(1), 337-365.
Pachauri, N.,He, B. (2006). Value-added utilization of crude glycerol from biodiesel production: a survey of current research activities. Paper presented at the Proceedings of the ASABE Annual International Meeting.
Papanikolaou, S., Ruiz-Sanchez, P., Pariset, B., Blanchard, F.,Fick, M. (2000). High production of 1, 3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology, 77(2), 191-208.
Roffler, S., Blanch, H.,Wilke, C. (1984). In situ recovery of fermentation products. Trends in biotechnology, 2(5), 129-136.
Saint Amans, S., Perlot, P., Goma, G.,Soucaille, P. (1994). High production of 1, 3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system. Biotechnology letters, 16(8), 831-836.
Sakai, S.,Yagishita, T. (2007). Microbial production of hydrogen and ethanol from glycerol‐containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnology and bioengineering, 98(2), 340-348.
Sarma, S. J., Brar, S. K., Sydney, E. B., Le Bihan, Y., Buelna, G.,Soccol, C. R. (2012). Microbial hydrogen production by bioconversion of crude glycerol: A review. International journal of hydrogen energy, 37(8), 6473-6490.
Seifert, K., Waligorska, M., Wojtowski, M.,Laniecki, M. (2009). Hydrogen generation from glycerol in batch fermentation process. International journal of hydrogen energy, 34(9), 3671-3678.
Selembo, P. A., Perez, J. M., Lloyd, W. A.,Logan, B. E. (2009). High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. International journal of hydrogen energy, 34(13), 5373-5381.
Stahl, D. A., Lane, D. J., Olsen, G. J.,Pace, N. R. (1984). Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science, 224(4647), 409-411.
Tan, H. W., Abdul Aziz, A. R.,Aroua, M. K. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127. doi: 10.1016/j.rser.2013.06.035
Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A.,Yoshino, S. (2004). High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of bioscience and bioengineering, 98(4), 263-268.
Venkataramanan, K. P., Boatman, J. J., Kurniawan, Y., Taconi, K. A., Bothun, G. D.,Scholz, C. (2012). Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol, 93(3), 1325-1335.
Venkataramanan, K. P., Kurniawan, Y., Boatman, J. J., Haynes, C. H., Taconi, K. A., Martin, L., Scholz, C. (2014). Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation. Journal of Biotechnology, 179, 8-14.
Vlysidis, A., Binns, M., Webb, C.,Theodoropoulos, C. (2011). Glycerol utilisation for the production of chemicals: conversion to succinic acid, a combined experimental and computational study. Biochemical Engineering Journal, 58, 1-11.
Wilkens, E., Ringel, A. K., Hortig, D., Willke, T.,Vorlop, K. D. (2012). High-level production of 1, 3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol, 93(3), 1057-1063.
Woese, C. R. (1987). Bacterial evolution. Microbiological reviews, 51(2), 221.
Wu, K. J., Lin, Y. H., Lo, Y. C., Chen, C. Y., Chen, W. M.,Chang, J. S. (2011). Converting glycerol into hydrogen, ethanol, and diols with a Klebsiella sp. HE1 strain via anaerobic fermentation. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 20-25.
Yen, H. W., Lin, S. F.,Yang, I. K. (2012). Use of poly(ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of Clostridium acetobutylicum. [Research Support, Non-U.S. Gov&;#39;t]. J Biosci Bioeng, 113(3), 372-377. doi: 10.1016/j.jbiosc.2011.10.025
Zhang, X., Shanmugam, K.,Ingram, L. O. (2010). Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Applied and environmental microbiology, 76(8), 2397-2401.

中文參考文獻
黃俊霖,2001,以分子生物技術探討厭氧生物產氫程序之菌群結構,國立中央大學環境工程研究所碩士論文。
張仕旻,2001,利用薄膜反應器於高溫厭氧產氫生物程序之研究,國立成功大學環境工程學系研究所碩士論文。
林祺能,2006,矽膠固定化細胞暗醱酵產氫技術,博士論文,逢甲大學化學工程學系。
李國興、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄,2007,厭氧生物產氫的研究發展,化工,第54卷第1期,第69-109頁。
吳耿東、李宏台,2007,全球生質能源應用與未來展望,林業研究專訊,第5-9頁。
王淑亭,2008,厭氧產氫顆粒汙泥形成過程中微生物結構變化,國立中興大學環境工程學系碩士論文。
古森本,2008,生質能源作物之開發與潛力,農業生技產業季刊,第46-53頁。
柯政志,2009,負壓程序醱酵產氫與菌群結構分析,逢甲大學化學工程學系碩士論文。
周士凱、許梅娟,2009,新能源¬生物產丁醇,科學發展,第433期。
張嘉修,2009,生物氫能,科學發展,第433期。
楊立豪,2010,以海濱汙泥進行醣類連續醱酵產氫,逢甲大學化學工程學系博士論文。
廖品蓁,2012,以Clostridium pasteurianum進行蔗糖醱酵產氫及甘油醱酵產丁醇之研究,逢甲大學化學工程學系碩士論文。
劉彥妏,2012,糖蜜廢液暗醱酵產氫之研究,逢甲大學綠色能源科技碩士學位學程碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔