跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲寬
研究生(外文):Che-Kuan Lin
論文名稱:新的生物診斷方法:個別細胞檢測
論文名稱(外文):New Biodiagnostics Based on Individual Cell Detection
指導教授:劉益瑞林志郎林志郎引用關係
指導教授(外文):Yi-Jui LiuChih-Lang Lin
口試委員:林志郎鄒慶福
口試委員(外文):Chih-Lang LinC. F. Tsou
口試日期:2014-07-16
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:抗甲氧西林金黃色葡萄球菌抗藥性雷射光鉗雙光子聚合微製造技術革蘭氏陽性菌
外文關鍵詞:Multiple-Resistant Staphylococcus Aureus (MRSA)Optical TweezersTwo-Photon Induced Laser PhotochemistryGram-Positive BacteriaBio-Chip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文從物理與化學兩個方向,針對單獨細胞探討新的生醫診斷方法,希望可以達成快速、高效率和準確地檢測細菌的目標:(1)物理:以光學作用力檢測抗甲氧西林金黃色葡萄球菌(MRSA)之抗藥性,利用雷射光鉗抓取單獨球菌,測量其作用力。實驗結果顯示,光鉗作用力與細胞壁厚成正比,由於細胞壁的厚度越大抗藥性越大,所以可藉由測量光鉗作用力得知抗藥性大小,本研究成功地利用光鉗在4~5小時內判別VRSA、VISAh和VISA 抗藥性大小。(2)化學:以生化結合專一性檢測革蘭氏陽性菌,利用雙光子聚合方法製造GFP-AcmA’感測平板,捕捉革蘭氏陽性菌,可直接利用一般光學顯微鏡觀察捕捉結果,最後探討以微流道晶片捕捉革蘭氏陽性菌的可行性,先模擬細菌在流道內流經三維結構感測器的現象,根據模擬結果設計適當形狀的網格狀結構,以期能獲致高效率捕捉。
In this study, we developed the novel technique with fast and high efficiency detection on single cell using physical and chemical methods. In physical method: measurements of optical tweezers forces on Multiple-Resistant Staphylococcus Aureus (MRSA) can be used to detect the bacteria drug resistance by their wall thickness. Our results found the optical forces were directly proportional to wall thickness of bacteria. Because this resistance is associated with the increased growth and reduced autolysis of bacteria cell wall, our experiment has been successfully applied to classify different groups of MRSA, including VSSA (NCTC 10442), VISA (Mu 50), and heto-VISA (Mu 3). In chemical method: species-specific PCR can directly detect the gram-positive bacteria. A 3D pad of GFP-AcmA’proteins was made by two-photon induced laser photochemistry to bind gram-positive bacteria and directly observation by microscopy. For fast and high efficiency detection, we propose a 3D mesh structure in the microfluidic chip. To verify this idea, the flow and particle passing through 3D mesh in microfluidic channel was simulated using mathematical model with different elevation angle of 3D mesh structure, then a 3D Ormocomp mesh with the optimized design by simulation result was fabricated in the microfluidic chip to explore the flow and particle distribution in reality.
第一章 緒論 1
1.1研究動機及背景 1
1.2 研究目的 1
1.2.1 抗藥性細菌檢測 1
1.2.2蛋白質生醫探頭 1
1.3 論文架構 2
第二章 理論與文獻回顧 3
2.1 抗甲氧西林金黃色葡萄球菌抗藥性檢測 3
2.2雷射光鉗(OPTICAL TWEEZERS)微操控 4
2.2.1 光鉗原理 4
2.2.2 光鉗發展 7
2.3 革蘭氏陰/陽性菌檢測 11
2.4 定點照護檢驗(POINT-OF-CARE, POC) 13
2.5 雙光子聚合微製造技術 16
2.5.1 雙光子光致聚合原理 16
2.5.2 TPP發展 20
第三章 材料與方法 23
3.1以雷射光鉗對生物細胞作用力的測量 23
3.1.1雷射光鉗操控系統 23
3.1.2 樣本備製 24
3.1.3 實驗方法 24
3.2以雙光子聚合(TPP)技術製造蛋白質生醫探頭 28
3.2.1 TPP微製造系統 28
3.2.2 模擬軟體(COMSOL)簡介 30
3.2.3 微流道備製 31
3.2.4 樣本備製 34
3.2.5 實驗方法 35
第四章 結果與討論 39
4.1以雷射光鉗對生物細胞作用力的測量 39
4.2以雙光子聚合(TPP)技術製造蛋白質生醫探頭 43
4.2.1 GFP-AcmA’結構之生醫功能測試 43
4.2.2 3D結構化蛋白質探頭應用於微流道晶片 46
第五章 結論 53
5.1 光鉗測量生物細胞作用力分析金黃葡萄球抗藥性 53
5.2 以雙光子聚合技術製造蛋白質生醫探頭 53
參考文獻 54
[1]http://zh.wikipedia.org/wiki/%E6%8A%97%E8%97%A5%E6%80%A7%E9%87%91%E9%BB%83%E8%89%B2%E8%91%A1%E8%90%84%E7%90%83%E8%8F%8C
[2]何承懋, “對萬古黴素感受性下降之金黃色葡萄球菌,” 感控雜誌, Vol. 22, pp. 227-233, 2012.
[3]Cui L., Murakami H., Kuwahara-Arai K., Hanaki H. and Hiramatsu K., “Contribution of a Thickened Cell Wall and Its Glutamine Nonamidated Component to the Vancomycin Resistance Expressed by Staphylococcus aureus Mu50,” Antimicrob Agents Chemother, Vol. 44,No. 9, pp. 2276-85, 2011.
[4]Cui L., Ma X., Sato K., Okuma K., Tenover F. C., Mamizuka E. M., Gemmell C. G., Kim M.-N., Ploy M.-C., Solh N. E., Ferraz V. and K. Hiramatsu, “Cell Wall Thickening is a common feature of Vancomycin resistance in Staphylococcus aureus,” Journal of Clinical Microbiology, Vol. 41, No. 1, pp. 5-14, 2003.
[5]Kawai M., Yamada S., Ishidoshiro A., Oyamada Y., Ito H. and Yamagishi J.-I., “Cell-wall thickness: possible mechanism of acriflavine resistance in meticillin-resistant Staphylococcus aureus,” Journal of Medical Microbiology Vol. 8, pp. 331-336, 2009.
[6]Santhana R. L., Hing H. L., Baharudin O., Teh H. Z., Aida S. R., Nor A. C.P., Vimala B., Paramsarvaran S., Sumarni G. and K. Hanjeet, “Rapid method for transmission electron microscope study of Staphylococcus aureus ATCC 25923,” Annals of Microscopy Vol. 7, pp. 102-108, 2007.
[7]A. Ashkin, “ Acceleration and trapping of particles by radiation pressure,” Phy Rev Lett, Vol. 24, No. 1, pp. 156-159, 1970.
[8]D. G. Grler, “A revolution in optical manipulation,” Nature, Vol.424, pp. 21-27, 2006.
[9]吳崇安, 黃鈞正, 邱爾德, “光學嵌住之理論探討,” 物理雙月刊, Vol. 20, No. 5, pp. 485-493, 2000.
[10]A. Ashkin, J. Dziedzic, J. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett, Vol. 11, No. 5, pp.288, 1986.
[11]A. Ashkin, J. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, Vol. 330, No. 6105, pp. 769–771, 1987.
[12]Karel Svoboda and Steven M. Block,“Biological Applications of Optical Forces,”Annu. Rev. Biophys. Biomol. Struct., Vol. 23, pp. 247-285, 1994.
[13]J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Apply Phys Letts, Vol. 85, pp.6048, 2004.
[14]J. P. Mills, L. Qie, M. Dao, C. T. Lim and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech Chem Biosyst, Vol. 1, No. 3, pp. 169-80, 2004.
[15]S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater.,Vol. 1,No.1 pp. 15-30, 2005.
[16]Manas Khan, Harsh Soni and A. K. Sood, “Optical tweezer for probing erythrocyte membrane deformability,” Applied Physics Letters,Vol. 95, pp. 233703-1~3, 2009.
[17]Yuquan Zhang, XiaojingWu, Changjun Min, Siwei Zhu, H. Paul Urbach and Xiaocong Yuan, “Engineered Tumor Cell Apoptosis Monitoring Method Based on Dynamic Laser Tweezers Yuquan,” BioMed Research International, Vol. 2014, 2014.
[18]http://zh.wikipedia.org/zh-tw/%E9%9D%A9%E8%98%AD%E6%B0%8F%E6%9F%93%E8%89%B2
[19]謝曜駿, “以生物取像系統探討綠色螢光蛋白在不同培養條件下之基因重組大腸桿菌內涵體的形成,” 國立成功大學,2010.
[20]Steen A, Buist G, Horsburgh GJ, Venema G, Kuipers OP, Foster SJ and Kok J., “AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning,” FEBS J., Vol. 272, pp. 2854-2868, 2005.
[21]Shramik Sengupta, Jason E. Gordon, and Hsueh-Chia Chang,“Microfluidic Diagnostic Systems for the Rapid Detection and Quantification of Pathogens,” In Microfluidics for Biological applications, Springer USA, 2009.
[22]Nantana Nuchtavorn, Fritz Bek, Mirek Macka, Worapot Suntornsuk and Leena Suntornsuk, “Rapid separations of nile blue stained microorganisms as cationic charged species by chip-CE with LIF,”Electrophoresis, Vol. 33, pp. 1421–1426, 2012.
[23]Moosung Kim, David J. Hwang, Hojeong Jeon, Kuniaki Hiromatsu and Costas P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip, Vol. 9, pp. 311–318, 2009.
[24]ShuQi Wang , Fatih Inci, Tafadzwa L Chaunzwa, Ajay Ramanujam, Aishwarya Vasudevan, Sathya Subramanian, Alexander Chi Fai Ip, Banupriya Sridharan, Umut Atakan Gurkan and Utkan Demirci1, “Portable microfluidic chip for detection of Escherichia coli in produce and blood,”International Journal of Nanomedicine, Vol. 7, pp. 2591–2600, 2012.
[25]Jeong Ha Yoo, Deok Ha Woo, Mi-Sook Chang and Myung-Suk Chun, “Microfluidic based biosensing for Escherichia coli detection byembedding antimicrobial peptide-labeled beads,” J.H. Yoo et al. / Sensors and Actuators B , Vol. 191, pp. 211– 218, 2014.
[26]http://www.ctimes.com.tw/DispNews/tw/%E5%AF%A6%E9%A9%97%E5%AE%A4%E6%99%B6%E7%89%87/A*STAR%E8%88%87Veredus/1305050959U8.shtml
[27]S. Maruo, O. Nakamura, and S. Kawata, &;quot;Three-dimensional microfabrication with two-photon-absorbed photopolymerization,&;quot; Optics Letters, Vol. 22, No. 2, pp. 132-134, 1997.
[28]潘恩亞, 蒲念文, 董玉平, 游漢輝, “雙光子吸收光致聚合技術應用於微元件製作之研究,” Journal of C.C.I.T., Vol. 34, No. 1, 2005.
[29]S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optics Letters, Vol.22, No. 2, pp. 132-134, 1997.
[30]C. L. Lin, “Opto-Mechanical Application of Micro structured Materials: Laser-driven polymer micro-sensors,” pp. 76, 2004.
[31]M. Goepper-Mayer, “Ober Elementarakte mit zwei Quantensprungen,” Annalen der Physik, Vol. 9, No.2, pp. 273-294, 1931.
[32]W. Kaiser, and C. G. B. Garrett, “Twophoton Excitation in CaF2:Eu2+,” Physical Review Letters, Vol. 7, No. 6, pp. 229-231, 1961.
[33]H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Applied Physics Letters, Vol. 74, pp. 786-788, 1999.
[34]H.-B. Sun, T. Kawakami, Y. Xu, J.-Y. Ye, S. Matsuo, H. Misawa, M. Miwa and R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Optics Letters, Vol. 25, pp. 1110-1112, 2000.
[35]M . Iosin, O. Stephan, S. Astilean, A. Dupperay, P.L. Baldeck, “Microstructuration of protein matrices by laser-induced photochemistry,” Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 3, pp. 716-720, 2007.
[36]P.L. Baldeck, T. Scheul, J. Bosson, M. Iosin, C.L. Lin, G. Vitrant and O. Stephan,“Advances in Two-Photon Microstructuration of Polymers, Proteins and Metallic Materials with Q-switched Microlasers,” Nonlinear Optics and Quantum Optics, Vol. 00, pp. 1–5,2010.
[37]M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, P.L. Baldeck, “Laser microstructuration of Three-dimensional enzyme reactors in microfluidic channels,” Springer-Verlag, Vol. 10.1007, pp.0698-0699, 2010.
[38]Barbara Pui Chan, Jiao Ni Ma, Jin Ye Xu, Chuen Wai Li, Jin Ping Cheng and Shuk Han Cheng,“Femto-Second Laser-Based Free Writing of 3D Protein Microstructures and Micropatterns with Sub-Micrometer Features: A Study on Voxels, Porosity, and Cytocompatibility,” Adv. Funct. Mater., Vol 24, pp. 277–294, 2014.
[39]G.M. Hale, M.R. Querry, &;quot;Optical constants of water in the 200nm-200mm wavelength region,&;quot; Appl. OpL, Vol. 12, pp. 555-563, 1973.
[40]Jia-Wen Chen, Chuen-Fu Lin, Shyang-Guang Wang, Yi-Chieh Lee, Chung-Han Chiang, Min-Hui Huang, Yi-Hsiung Lee, Guy Vitrant, Ming-Jeng Pan, Horng-Mo Lee, Yi-Jui Liu, Patrice L. Baldeck and Chih-Lang Lin, “New biodiagnostics based on optical tweezers: typing red blood cells, and identification of drug resistant bacteria,” SPIE Proceedings, Vol. 8810, 8 pages, 2013.
[41]Lin L., Fei Z., Lu H. and Li Z.-Y., “Optical forces on arbitrary shaped particles in optical tweezers,” Journal of Applied Physics, Vol. 108, No. 7,pp. 073110-1~8 , 2010.
[42]Jannasch A., Demirors A. F., Oostrum P. D. J. Blaaderen van, A. van and Schaffer E., “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nature Photonics, Vol. 6, pp. 469-473, 2012.
[43]Longzhu Cui, Hiroko Murakami, Kyoko Kuwahara-Arai, Hideaki Hanaki, and Keiichi Hiramatsu, “Contribution of a Thickened Cell Wall and Its Glutamine Nonamidated Component to the Vancomycin Resistance Expressed by Staphylococcus aureus Mu50,” Antimicrobial Agents and Chemotherapy, Vol. 44, No. 9, pp. 2276–2285, 2000.
[44]Ronaldw. Harvey, Davidw. Metge, Nancykinner, And Naleen Mayberry, “Physiological Considerations in Applying Laboratory-Determined Buoyant Densities to Predictions of Bacterial and Protozoan Transport in Groundwater: Results of In-Situ and Laboratory Tests,” Environ. Sci. Technol., Vol. 31, pp. 289-295, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top