跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭明傑
研究生(外文):Jay Kuo
論文名稱:高效益之低溫濕式化學合成製作透明氧化物導電膜
論文名稱(外文):Low-temperature Wet Chemical Synthesis for Highly Effective Fabrication of Transparent Conductive Oxide Films
指導教授:駱榮富
指導教授(外文):Rong-Fuh Louh
口試委員:蔡健益張育誠
口試委員(外文):Chien-Yie TsayYu-Cheng Chang
口試日期:2014-06-12
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:126
中文關鍵詞:化學浴沉積法(CBD)摻錫氧化銦(ITO)薄膜錫離子摻雜透明導電氧化物(TCO)低溫濕式化學合成
外文關鍵詞:chemical bath deposition (CBD)indium tin oxide (In2O3:Sn; ITO)tin dopanttransparent conductive oxide (TCO)low-temperature wet chemical synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用低溫濕式化學浴沉積法(Chemical Bath Deposition;
CBD) 製備摻錫氧化銦(In2O3:Sn; ITO)薄膜。沉積反應工作溫度為
80oC 和持溫沉積時間為2~8 hr,製得之ITO 試片在經由適當的熱處
理後,製得透明導電薄膜。並針對不同反應時間、反應溫度、前趨物
濃度及錯合劑濃度、錫摻雜濃度、退火熱處理溫度(100~500oC)等相
關CBD 製程參數進行分析探討。
吾人利用CBD 技術成功地製備ITO 薄膜,其薄膜厚度約為70 nm。
接著利用FE-SEM、UV-Vis 光譜、XRD、AFM、能隙計算、高阻抗
率計、四點探針、靜電模擬器等測試結果進行分析。結果顯示CBD
製程利用最佳化參數製備而得之ITO 薄膜經過純氮氣熱處理500oC
後,可得到最佳電阻值3.29×10-3 Ω-cm 且可見光平均穿透率約為90%
以上,此ITO 薄膜性質符合多數工業界所使用透明導電薄膜的規格要
求。我們成功以CBD 法製備出品質優良的ITO 薄膜,這開創性的研
究將成為發展下一代軟性電子技術的解決方案。
關鍵字:化學浴沉積法(CBD)、摻錫氧化銦(ITO)薄膜、錫離子摻雜、
透明導電氧化物(TCO)、低溫濕式化學合成。
The aim of this study is to employ a low-temperature wet chemical
synthesis method, namely chemical bath deposition (CBD), to effectively
fabricate indium tin oxide (In2O3:Sn; ITO) thin films as transparent
conductive oxide (TCO) films. We have achieved ITO films with very
good materials properties through CBD process at 80oC for deposition
duration of 2~8 hrs and the post-heat treatment. The essential processing
parameters regarding such fabrication of ITO films by CBD route consist
of deposition temperature, deposition time, types and concentrations of
chemical precursors and complexing agents, amount of tin dopants,
annealing temperature (100~500oC) and atmosphere. The obtained ITO
films by CBD technique turned out to be very smooth, dense and uniform
in thickness with average thickness of 70 nm on various substrates such
as glasses and PET polymer sheets. The deposited ITO films were
analyzed by FE-SEM, AFM, EDS, UV-Vis spectrometer, XPS, four-point
probe electrical resistance measurement, and electrostatic discharge (ESD)
testing. In addition, the simulation and calculation of energy gap for these
In2O3:Sn semiconductive materials were performed. The ITO films
produced with the optimized processing parameters and heat treated at
500oC could reach reasonably good properties with electrical resistivity
of 3.29×10-3 Ω-cm and optical transmittance of 90% and above, which
meet the specification requirements for most of industrial applications.
We have successfully demonstrated this pioneering study that ITO thin
film can be fabricated with CBD process and this would provide a
feasible technical solution for the development of next generation flexible
electronics.
Keywords: chemical bath deposition (CBD), indium tin oxide (In2O3:Sn;
ITO), tin dopant, transparent conductive oxide (TCO),
low-temperature wet chemical synthesis.
中文摘要 ..................................................................................................... I
英文摘要 .................................................................................................... II
目錄 ...................................................................................................... III
圖目錄 ....................................................................................................... V
表目錄 ..................................................................................................... IX
第一章緒論 ................................................................................................. 1
1.1 前言 ............................................................................................. 1
1.2 透明導電膜的應用 ..................................................................... 3
1.3 透明導電膜之製備技術 ........................................................... 11
1.4 研究動機與方向 ....................................................................... 14
第二章理論基礎與文獻回顧 .................................................................. 17
2.1 氧化物薄膜材料結構及特性 ................................................... 17
2.1.1 透明導電膜的種類 ....................................................... 17
2.1.2 N 型半導體的透明導電膜 .......................................... 19
2.1.3 P型半導體的透明導電膜 ............................................ 19
2.2 氧化銦錫薄膜特性簡介 ........................................................... 20
2.2.1 氧化銦薄膜之摻雜 ....................................................... 23
2.2.2 ITO 薄膜的光學特性 ................................................... 25
2.2.3 ITO 之導電性質 ........................................................... 28
2.3 薄膜成長機制 ........................................................................... 31
2.3.1 薄膜孕核機制 ............................................................... 31
2.3.2 同質成核與異質成核 ................................................... 32
2.4 化學浴沉積法(CBD) ................................................................ 37
2.4.1 化學浴沉積法基本化學反應機制[50] .......................... 40
2.4.2 化學浴沉積法製作氧化物之反應機制 ....................... 41
2.5 軟性基板的發展趨勢 ............................................................... 42
2.5.1 可撓性材料的種類及面臨之挑戰 ............................... 45
IV 逢甲大學 e-These (102 學年度)
第三章實驗步驟與方法 .......................................................................... 48
3.1 實驗藥品之物化性質 ............................................................... 48
3.2 化學浴沉積法基板放置 ........................................................... 49
3.3 基板清洗與表面處理 ............................................................... 51
3.4 CBD 法製備ITO 薄膜於玻璃基板 ......................................... 52
3.5 CBD 法的製程參數 .................................................................. 54
3.6 ITO 薄膜材料分析簡介 ............................................................ 56
第四章結果與討論 .................................................................................. 65
4.1 以CBD 法製備In2O3 薄膜之特性 .......................................... 65
4.1.1 氨水濃度對In2O3 薄膜成長特性之影響 .................... 65
4.1.2 HMTA 濃度對In2O3 薄膜特性之影響 ........................ 68
4.2 錫摻雜濃度對ITO 薄膜成長之影響 ...................................... 72
4.3 錯合劑濃度對CBD 法製備ITO 薄膜特性之影響 ................ 84
4.3.1 HMTA 添加濃度對ITO 薄膜沉積狀況之影響 .......... 84
4.3.2 檸檬酸鈉添加濃度對ITO 薄膜沉積狀況之影響 ...... 89
4.4 反應溫度對ITO 薄膜之影響................................................... 95
4.5 反應時間對ITO 薄膜之成長特性研究 .................................. 99
4.6 熱處理溫度對ITO 薄膜之成長特性研究 ............................ 103
4.7 CBD 法製備ITO 薄膜於不同基板之特性 ........................... 107
4.8 未來實驗工作方向與建議 ..................................................... 110
第五章 結論 ........................................................................................... 114
參考文獻 ................................................................................................. 116
[1] R. B. Hadj Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped
indium oxide thin films: Electrical properties,” Journal of Applied
Physics, 83 (1998) 2631.
[2] R. G. Gordon, “Criteria for choosing transparent conductors,”MRS
Bulletin, (2000) 52-57.
[3] B. Mayer,“Highly conductive and transparent films of tin and
fluorine doped indium oxide produced by APCVD,”Thin Solid
Film,221 (1992 )166-182.
[4] 黃敬佩,“ITO 導電玻璃及相關透明導電膜之原理及應用,”勝華科
技股份有限公司,2006。
[5] C. C. Huang, H. C. Huang, Y. J. Chen and R. C. Hwang,“An AI
system for the decision to control parameters of TP film
printing,”Expert System with Applications,36 (2009 )9580-9583.
[6] M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy,“Theoretical
modeling of TiO2/TCO interfacial effect on dye-sensitized solar cell
performance,”Solar Energy Materials and Solar Cells, 90
(2006)2000-2009.
[7] J. Muller, B. Rech, J. Springer and M. Vanecek, “TCO and light
trapping in silicon thin film solar cells,” Solar Energy, 77 (2004)
917-930.
[8] D. V.Morgan, Y. H. Aliyu, R. W. Bunce and A. Salehi, “Annealing
effects on opto-electronic properties of sputtered and thermally
evaporated indium-tin-oxide films,” Thin Solid Film, 312 (1998)
268-272.
[9] Se. Kim, S.H. Cho, S. R. Choi, M. C. Oh,J. H. Jang and P. K.
Song,“Crystallization and electrical properties of ITO:Ce thin film
for flat panel display applications,” Thin Solid Film, 517 (2009)
4061-4064.
[10] S. M. Park, K. Ebihara, T. Ikegami, B. J. Lee, K. B. Lim and P. K.
Shin, “Enhanced performance of the OLED with plasma treated ITO
and plasma polymerized thiophene buffer layer,”Current Applied
Physics, 7 (2007) 474-479.
[11] U. Leon-Silva, M. E. Nicho, H. Hu and R. Cruz-Silva,“Effect of
117 逢甲大學 e-These (102 學年度)
modified ITO substrate on electrochromic properties of polyaniline
films,” Solar Energy Materials and Solar Cells,91 (2007) 1444-1448
[12] T. P. Niesen and M. R. D. Guire, “Review: Deposition of ceramic
thin films at low temperature from aqueous solutions,” Journal of
Electroceramics, Vol.6 (2001) 169-207.
[13] C. G. Granqvist, E. Avendano and A. Azens,“Electrochromic
Coatings and Devices: Survey of Some Recent Advanced,” Thin
Solid Films,442 (2003) 201-211.
[14] G. H. Kim, W. J. Kim, S. M. Kim and J. G. Son, “Analysis of
thermo-physical and optical properties of a diffuser using
PET/PC/PBT copolymer in LCD backlight units,” Displays, 26
(2005) 37-43.
[15] C. Charton, N. Schiller, M. Fahland, A. Hollander, A. Wedel and K.
Noller,“Development of high barrier films on flexible polymer
substrates,” Thin Solid Film, 502 (2006) 99-103.
[16] Y. Hoshi and R. Ohki,“Low energy rf sputtering system for the
deposition of ITO thin films,” Electrochimica Acta, 44 (1999) 1-7.
[17] K. Zhang, F. Zhub, C. H. A. Huan and A. T. S. Wee, “Indium tin
oxide films prepared by radio frequency magnetron sputtering
method at a low processing temperature,” Thin Solid Film, 376
(2000) 255-263.
[18] A. K. Kulkarni, K. H. Schulz, T. S. Lim and M. Khan, “Electrical,
optical and structural characteristics of indium-tin-oxide thin films
deposited on glass and polymer substrates,” Thin Solid Film, 308
(1997) 1-7.
[19] M. Quaas, C. Eggs and H. Wulff, “Structural studies of ITO thin
films with the Rietveld method”, Thin Solid Films, 332(1998)
277-281.
[20] 楊明輝,“透明導電膜材料與成膜技術的新發展”,工業材料,第
189 期,(2002),161-174。
[21] T. Minami, “New n-type transparent conducting oxides”, MRS
Bulletin,25 (2000) 38-44.
[22] H. Kawazoe, H. Yanagi, K. Ueda and H. Hosono, “Transparent
p-type conducting oxide: design and fabrication of p-n
118 逢甲大學 e-These (102 學年度)
heterojunctions”, MRS Bulletin, 25 (2000) 28-36.
[23] T. Tomita, K. Yamashita, Y. Hayafuji, and H. Adachi, “The origin of
n -type conductivity in undoped In2O3”, Applied Physics Letters
87(2005) 051911
[24] I. Elfallal, R. D. Rilkington and A. E. Hill., “Formation of a
statistical thermodynamic model for the electron concentration in
heavily doped metal oxide semiconductors applied to the tin-doped
indium oxide system”, Thin solid films, 223 (1993) 303-310.
[25] E. Benamar, M. Rami, C. Messaoudi, D. Sayah and A. Ennaoui,
“Structural, optical and electrical properties of indium tin oxide thin
films prepared by spray pyrolysis”, Solar Energy Materials and Solar
Cells, 56 (1998) 125-139.
[26] K. Nishio, T. Sei, T. Tsuchiya, “Preparation and electrical properties
of ITO thin films by dip-coating process ”, Journal of Materials
Science, Volume 31(1996) pp 1761-1766.
[27] T. Furusaki, J. Takahashi, and K. Kodaira, “Preparation of ITO thin
films by sol-gel method,” J. Ceramic Soc. Jpn. (Int. Edition)
102(1992) 202–205.
[28] Radhouane, T. H. B., Takayuki, B., Yutaka, O., Yasutaka, T., J. Appl.
Phys.,83(1998) pp.2139.
[29] Djaoued, Y.; Phong, V.H.; Badilescu, S.; Ashrit, P.V.; Girouard, F.E.
Truong, “Sol-gel-prepared ITO films for electrochromic systems,”
Thin Solid Films, Volume 293 (1997), pp. 108-112.
[30] S. R. Ramanan, “Dip coated ITO thin-films through solgel process
using metal salts”, Thin Solid Films, 389 (2001) 207-212.
[31] S. S. Kim, S. Y. Choi, C. G. Park, and H. W. Jin, “Transparent
conductive ITO thin films through the sol-gel process using metal
salts,” Thin Solid Films, 347 (1999)155–160.
[32] 方俊、王秀峰、程冰、繆凌波, “微波輔助化學浴沉積法製備ZnO
薄膜,” 電子元件與材料,第25 卷,第10 期, (2006) 17-19
[33] P. O&;#39;Brien, D. J. Otway and D. Smyth-Boyle, “The Importance of
Ternary Complexes in Defining Basic Conditions for The Deposition
of ZnS by Aqueous Chemical Bath Deposition,” Thin Solid Films,
361 (2000) 17-21.
119 逢甲大學 e-These (102 學年度)
[34] D.A. Johnston, M.H. Carletto, K.T.R. Reddy, I. Forbes and R.W.
Miles,“Chemical Bath Deposition of Zinc Sulfide Based Buffer
Layers Using Low Toxicity Materials,” Thin Solid Films, 403 (2002)
102-106.
[35] A. Antony, K.V. Murali, R. Manoj and M.K. Jayaraj, “The Effect of
The pH Value on The Growth and Properties of Chemical Bath
Deposited ZnS Thin Films,” Mater. Chem. and Phys., 90 (2005)
106-110.
[36] J. Vidal, O. Vigil, O. de Melo, N. Lopez and O. Zelaya-Angel,
“Influence of NH3 Concentration and Annealing in The Properties of
Chemical Bath Deposited ZnS Films,” Materials Chemistry and
Physics, 61 (1999) 139-142.
[37] I.O. Oladeji and L. Chow, “A study of the effects of ammonium salts
on chemical bath deposited zinc sulfide Thin Films,” Thin Solid
Films, 339 (1999) 148-153.
[38] I.O. Oladeji and L. Chow, “Synthesis and Processing of CdS/ZnS
Multilayer Films for Solar Cell Application,” Thin Solid Films, 474
(2005) 77-83.
[39] O.L. Arenas, M.T.S. Nair and P.K. Nair, Semicond, “Chemical bath
deposition of ZnS thin films and modification by air annealing,”
Semicond. Sci. Technol., 10 (1997) 1323-1330.
[40] 邱顯浩, “透明導電金屬氧化物電子能帶結構計算,” 工業材料,
196 (2003) 114-120.
[41] H.S. Bae, J.H. Kim, and Seongil Im, “Mobility Enhancement in
ZnO-Based TFTs by H Treatment,” Electrochemical and Solid
Letters, 7 (2004) 279-281.
[42] 曾宗亮, “射頻磁控濺鍍氧化鋅摻雜鋁之透明導電膜特性研究及
應用於有機發光二極體,” 國立成功大學電機工程研究所碩士論
文(2007).
[43] 王應名、張萌、徐鵬、劉洋文、李禾、徐飛, 化學浴沉積法製備
ZnS 薄膜, 南昌大學學報, 第30 卷, 第3 期, (2006) pp. 279-282。
[44] P. O&;#39;Brien, T. Saeeda and J. Knowled, “Speciation and the nature of
ZnO thin films from chemical bath deposition,” J. Mater. Chem., 6
(1996) 1135-1139.
120 逢甲大學 e-These (102 學年度)
[45] 張琪芬, “利用化學水浴沉積法製作Ni-ZnO 光電極之研究,” 國立
中央大學能源工程工程研究所碩士論文(2008)。
[46] 李雯雯, “薄膜太陽能電池發展趨勢分析,” 工研院產業經濟與趨
勢研究中心(IEK)系統與能源研究組新興能源研究部 (2008)。
[47] 曲新生, “再生能源,台灣新貴產業,” 工業技術與資訊, 158 (1994)
3-5.
[48] H.L. Hartnagel, A.K. Jain, and C. Jagadish, “Semiconducting
Transparent Thin Films,” Paston Press, Lonodn, U.K. (1995)
pp.306-308.
[49] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen and T.Goto,
“High temperature excitonic stimulated emission from ZnO epitaxial
layers,” Appl. Phys. Lett., 73 (1998) 1038-1040.
[50] J. Hu and R.G. Gordon, “Textured aluminum-doped zinc oxide thin
films from atmospheric pressure chemical-vapor deposition,” J. Appl.
Phys., 71 (1992) 880-890.
[51] J. L. Stone, “Photovoltaics: Unlimited Electrical Energy from The
Sun,” Physics Today, 46 (1993) 1-7.
[52] 顧鴻濤, “太陽能電池元件導論-材料、元件、製程、系統,” 全威
圖書 (2008) pp.210-262.
[53] 王建義, “薄膜工程學:薄膜工學,” 全華科技圖書(2006) pp.7-9,
pp.33-39.
[54] 劉于菁, “CBD/SILAR 法製作雙層結構奈米薄層於薄膜太陽能電
池之應用,” 逢甲大學碩士論文(2011).
[55] P. Nunes, B. Fernandes, E. Fortunato, P. Vilarinho and R. Martins,
“Performances presented by zinc oxide thin films deposited by spray
pyrolysis,” Thin Solid Films, 337 (1999) 176-179.
[56] 呂奇明,蘇俊瑋,“可撓顯示器基板材料與成型技術”,工業材料
雜誌,第273 期,(2009),104-113。
[57] 田宏隆,“可撓式平面顯示器用基板材料”,工業材料雜誌,第234
期,(2005),144-152。
[58] ITRI 產業專題報告, “OLED 技術發展暨市場戰局剖析”,
TopologyResearch Institute,(2006),32-46。
[59] C. N. Lia, C. Y. Kwong, A. B. Djurisic, P. T. Lai, P. C. Chui, W. K.
Chan and S. Y. Liu, “Improved preformance of OLEDs with ITO
121 逢甲大學 e-These (102 學年度)
surface treatments”, Thin Solid Films, 477 (2005) 57-62.
[60] Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee and J. R. Lee, “Criteria
for ITO (indium-tin-oxide) thin film as the bottom electrode of an
organic light emitting diode”, Thin Solid Films, 411 (2002) 12-16.
[61] 郭惠隆,“可撓性透明導電膜”,電子與材料雜誌,第11 期,(2001),
68-73。
[62] 鄒淵翔、莊佳橙、鄭宇舜,“平面顯示器之軟板應用及取放技術
分析”,機械工業雜誌,第270 期,pp. 87-100 (2005)。
[63] H.L. Hartnagel, A.L. Dawar, A.K. Jain, and C. Jagadish,
“Semiconducting Transparent Thin Films,” Institute of Physics
Publishing, Bristol (1995) pp.13-15.
[64] 吳金寶, “無氧化鋁鋅(AZO)透明導電薄膜技術發展與應用,” 工業
材料雜誌 ,pp.1-6. (2008)
[65] Ian Y.Y.Bu, “A simple annealing process to obtain highly transparent
and conductive indium doped tin oxide for dye-sensitized solar cells,”
Ceramics International, 40 (2014) 3445–3451.
[66] H. Stroescu, M. Anastasescu, S. Preda, M. Nicolescu, M. Stoica, N.
Stefan, V. Kampylafka, E. Aperathitis, M. Modreanu, M. Zaharescu,
M. Gartner, “Influence of thermal treatment in N2 atmosphere on
chemical, microstructural and optical properties of indium tin oxide
and nitrogen doped indium tin oxide rf-sputtered thin films,” Thin
Solid Films, 541 (2013) 121–126.
[67] Y. Y. Kee, S. S. Tan, T. K. Yong,C. H. Nee, S. S. Yap, T. Y. Tou, G.
Safran,Z. E. Horvath, J. P. Moscatello and Y. K. Yap,
“Low-temperature synthesis of indium tin oxide nanowires as the
transparent electrodes for organic light emitting devices,”
Nanotechnology, 23 (2012) 025706.
[68] V. Brinzari, I. Damaskin, L. Trakhtenberg, B.K. Cho, G.
Korotcenkov, “Thermoelectrical properties of spray pyrolyzed
indium oxide thin films doped by tin,” Thin Solid Films, 552 (2014)
225–231
[69] S.Mohammadi,H.Abdizadeh,M. R. Golobostanfard, “Opto-electronic
properties of molybdenum doped indium tin oxide nanostructured
thin films prepared via sol–gel spin coating,” Ceramics International,
122 逢甲大學 e-These (102 學年度)
39(2013)6953–6961
[70] M. T. Kesim, C. Durucan, “Indium tin oxide thin films elaborated by
sol-gel routes The effect of oxalic acid addition on optoelectronic
properties,” Thin Solid Films, 545 (2013) 56-63
[71] P.K. Manoj, B. Joseph, V.K. Vaidyan , D. S. D. Amma “Preparation
and characterization of indium-doped tin oxide thin films,” Ceramics
International, 33 (2007) 273-278
[72] P. K. Biswas, A. De, L. K. Dua and L. Chkoda, “Surface
characterization of sol–gel derived indium tin oxide films on glass,”
Bull. Mater. Sci., Vol. 29 (2006) pp. 323-330. © Indian Academy of
Sciences.
[73] N. Al-Dahoudi, M.A. Aegerter, “Comparative study of transparent
conductive In2O3:Sn (ITO) coatings made using a sol and a
nanoparticle suspension,” Thin Solid Films 502 (2006) 193-197.
[74] V. R. Viji, K. S. Kumar, M. M. Stella, V. K. Vaidyan, “Studies on the
properties of dip-coated indium tin oxide films considering substrate
vibration,” Indian Journal of Pure &; Applied Physics Vol. 43,(2005)
pp. 368-371.
[75] K. Tarasov, O. Raccurt“ A wet chemical preparation of transparent
conducting thin films of Al-doped ZnO nanoparticles”, J Nanopart
Res 13 (2011) 6717-6724.
[76] R. S. Kumar, R.Sathyamoorthy, P. Sudhagar, P. Matheswaran, C.P.
Hrudhya, Y. SooKang, “Effect of aluminum doping on the structural
and luminescent properties of ZnO nanoparticles synthesized by wet
chemical method”, Physica E43 (2011)1166–1170.
[77] T. P. Niesen and M. R. D. Guire, “Review: Deposition of ceramic
thin films at low temperatures from aqueous solutions,” Journal of
Electroceramics, 6 (2001) 169-207.
[78] C. I. Oriaku, J. C. Osuwa, “On the optical dispersion parameters of
thin film Al3+ doped ZnO transparent conducting glasses,” Journal of
Ovonic Research, 5 (2009) 213-218.
[79] 洪家健“Electro-optical properties of Sn doped In2O3 thin film
derived from an ultrasonic atomization process,”國立中山大學材料
科學研究所碩士論文(2002).
123 逢甲大學 e-These (102 學年度)
[80] S. J. Hong, J. W. Kim, J. W. Lim, G. S. Choi and M. Isshiki
“Characteristics of Printed Thin Films Using Indium Tin Oxide (ITO)
Ink,” Materials Transactions, Vol. 51 (2010) pp. 1905 to 1908.
[81] S. V. N. Pammi, A. Chanda, N. J. Seong, S.G. Yoon, “Growth of
high-quality ITO thin films at low temperature by tuning the oxygen
flow rate using the nano-cluster deposition (NCD) technique,”
Chemical Physics Letters 490 (2010) 234-237.
[82] S. V. N. Pammi, N. J. Seong and S. G. Yoon, “Indium tin oxide thin
films crystallized at a low temperature using a nanocluster deposition
technique,” Scripta Materialia 61 (2009) 867-870.
[83] S. V. Pammi, Anupama Chanda, J. K. Ahn, J. H. Park,C.R. Cho, W.
J. Lee,d and S. G. Yoon, “Low Resistivity ITO Thin Films Deposited
by NCD Techniqueat Low Temperature: Variation of Tin
Concentration,” Journal of The Electrochemical Society, 157 (2010)
H937-H941.
[84] D. Xu, D. Fan and W. Shen, “Catalyst-free direct vapor-phase growth
of Zn1−xCuxO micro-cross structures and their optical properties,” Xu
et al. Nanoscale Research Letters 2013, 8:46
[85] F. O. Cantão, W. C. Melo, L. C. A. Oliveira, “Utilization of Sn/Nb2O5
composite for the removal of methylene blue,” Quim. Nova, Vol. 33,
(2010)528-531.
[86] S. Sladkevich, J. Gun, P. V. Prikhodchenko, V. Gutkin, A. A.
Mikhaylov,V M Novotortsev, J X Zhu, D Yang, H H Hng, Y Y
Tay,Z Tsakadze and O Lev, “Peroxide induced tin oxide coating of
graphene oxide at room temperature and its application for lithium
ion batteries,” Nanotechnology 23 (2012) 485601 (9pp)
[87] M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G.
Czempik, J. Szuber , “XPS study of the surface chemistry of L-CVD
SnO2 thin films after oxidation,” Thin Solid Films 490 (2005) 36-42
[88] 陳明武“Study on Anti-electrostatic in Passive STN LCD,” 逢甲大
學電 機工程學系碩士班碩士論文(2005)。
[89] 蔡瑞明,“ESD Analysis and Solutions of Capacitive Touch Panel
SmartPhone,” 逢甲大學資訊電機工程碩士在職專班碩士論文
(2010)。
124 逢甲大學 e-These (102 學年度)
[90] 吳忠衛, “低溫濕式化學合成法製作CIGS 薄膜太陽能電池ZnO
視窗層與特性之研究,” 逢甲大學碩士論文(2009)。
[91] 黃敬佩, “ITO 導電玻璃及相關透明導電膜之原理及應用,” 勝華
科技股份有限公司(2006)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top