(3.230.143.40) 您好!臺灣時間:2021/04/19 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭仲均
研究生(外文):Hsiao, Chung-Chun
論文名稱:低接觸電阻覆碳集流板於 電雙層超級電容之應用研究
論文名稱(外文):Low Contact Resistance Carbon Film Modified Current Collectors for Electric Double Layer Supercapacitor
指導教授:陳士堃邱國峰邱國峰引用關係
指導教授(外文):Chen, Shi-KunChiu, Kuo-Feng
口試委員:邱國峰呂晃志蕭世男
口試委員(外文):Chiu, Kuo-FengLeu, Hoang-ZyhHsiao, Shih-Nan
口試日期:2014-06-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:化學氣相沉積法集流板碳膜電雙層超級電容
外文關鍵詞:CVDCurrent collectorCarbon filmEDLC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
專利申請中,暫不公開。
專利申請中,暫不公開。
誌  謝
摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論及研究動機
1-1前言
1-2研究動機
第二章 文獻回顧與理論基礎
2-1 儲能元件之簡介
2-2 超級電容器之分類
2-3 超級電容器之元件
2-4 碳薄膜製備技術
2-5 碳膜成長理論
2-5-1 催化石墨化的機制
2-5-2 CVD奈米碳纖維在金屬基板上的成長機制
2-5-3 CVD碳膜成長機制
2-6 A.C. Ferrari 碳膜相轉變理論與拉曼光譜分析
第三章 實驗方法
3-1 實驗材料與設備
3-1-1實驗材料
3-1-2 實驗設備
3-2 超級電容器之製備
3-2-1 試片前處理
3-2-2 覆碳集流板之製備
3-2-3 活性碳電極之製備
3-3 覆碳集流板之材料分析
3-3-1冷場發射掃描式電子顯微鏡
3-3-2 低掠角X光繞射分析
3-3-3 拉曼光譜分析
3-3-4 界面接觸阻抗量測
3-4 超級電容之電化學分析
3-4-1 循環伏安測試
3-4-2 恆流充放電測試
3-4-3 交流阻抗分析
第四章 結果與討論
4-1 覆碳集流板表面形貌成形機制
4-2 覆碳集流板之碳膜晶體結構及電性探討
4-2-1 碳膜晶體結構分析
4-2-2 碳膜的碳鍵結構
4-2-3 碳膜對接觸電阻的影響
4-2-4 活性碳-覆碳集流板複合電極之接觸電阻分析
4-4 活性碳-覆碳集流板複合電極之電化學測試
4-4-1 循環伏安法測試
4-4-2 恆流充放電測試
4-4-3 交流阻抗測試
4-4-4 循環壽命測試
4-4-5 近年電雙層電容研究之比較
第五章 結論
第六章 未來研究方向
參考文獻
[1]A.F. Hollenkamp, A.G. Pandolfo, Carbon properties and their role in supercapacitors, Journal of Power Sources, 157 (2006) 11-17.
[2]Bingqing Wei, Xin Li, Supercapacitors based on nanostructured carbon, Nano Energy, (2012).
[3]Foivos Markoulidis, Chunhong Lei, Zenya Ashitaka, Constantina Lekakou, Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor, Electrochimica Acta, 92 (2013) 183– 187.
[4]Peter Wilson, Chunhong Lei, Constantina Lekakou, Effect of poly(3,4-ethylenedioxythiophene) in carbon-based composite electrodes for electrochemical supercapacitors, Journal of Power Sources, 196 (2011) 7823– 7827.
[5]Haegeun Chung, Byungwoo Kim, Kyo Seon Chu, Ho Gyu Yoon, Cheol Jin Lee, Woong Kim, Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties, Synthetic Metals, 160 (2010) 584–587.
[6]Jingxia Wang, Xiaochen Dong, Jing Wang, Mary B. Chan-Park, Xingao Li, Lianhui Wang, Wei Huang, Peng Chen, Supercapacitor electrode based on three-dimensional graphene-polyaniline hybrid, Materials Chemistry and Physics, 134 (2012) 576-580.
[7]Andriy Kovalenko, Ayumi Tanimura, Fumio Hirata, Molecular theory of an electrochemical double layer in a nanoporous carbon supercapacitor, Chemical Physics Letters, 378 (2003) 638–646.
[8]Li Xin-hai, Zhou Shao-yun, Wang Zhi-Xing,Guo Hua-jun, Peng Wen-jie, Effect of activated carbon and electrolyte on properties of supercapacitor, Transactions of Nonferrous Metals Society of China, 17 (2007) 1328- 1333.
[9]D. A. Evans, Q. L. Fang, S. L. Roberson, and J. P. Zheng, Ruthenium Oxide Film Electrodes Prepared at Low Temperatures for Electrochemical Capacitors, Journal of The Electrochemical Society, 148 (2001) A833-A837.
[10]Tianxin Wei, Li Li Zhang, Wenjuan Wang, X.S. Zhao, Manganese oxide-carbon composite as supercapacitor electrode materials, Microporous and Mesoporous Materials, 123 (2009) 260–267.
[11]Norio Miura, K. Rajendra Prasad, Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode, Applied Physics Letters, 85 (2004) 4199.
[12]LI Jian-ling, Wang Qin, Gao Fei, Li Wen-sheng, Wu Ke-zhong, Wang Xin-dong, Activated carbon coated with polyaniline as an electrode material in supercapacitors, New Carbon Materials, 23(3) (2008) 275–280.
[13]S.K. Rath, P. Sivaraman, V.R. Hande, A.P. Thakur, M. Patri, A.B. Samui, All-solid-supercapacitor based on polyaniline and sulfonated polymers, Synthetic Metals, 156 (2006) 1057–1064.
[14]Munir H. Nayfeh, Qiang Liu, Siu-Tung Yaua, Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes, Journal of Power Sources, 195 (2010) 7480–7483.
[15]Pon Kao, Graeme A. Snook, Adam S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources, 196 (2011) 1–12.
[16]Huaihe Song, Lixia Li, Qincang Zhang, Jingyuan Yao, Xiaohong Chen, Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors, Journal of Power Sources, 187 (2009) 268–274.

[17]Fabrice Leroux, Encarnacion Raymundo-Piñero, and François Béguin, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, Advanced Materials, 18 (2006) 1877–1882.
[18]Y.W. Chen-Yang, D. Saikia, Y.T. Chen, Y.K. Li, S.I. Lin, 7Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: A comparative study with variation of salt and plasticizer with filler, Electrochimica Acta, 54 (2009) 1218–1227.
[19]Z.-P. He, P.P. Chu, Lithium complex in polyacrylonitrile/EC/PC gel-type electrolyte, Polymer, 42 (2001) 4743-4749.
[20]Kohji Hasumi, Yuki Kato, Shoichi Yokoyama, Takeshi Yabe, Hiromasa Ikuta, and Masataka Wakihara Yoshiharu Uchimoto, Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and thermal stability, Solid State Ionics, 150 (2002) 355–361.
[21]T.R. Jow, J.P. Zheng, High energy and high power density electrochemical capacitors, +Journal of Power Sources, 62 (1996) 155-159.
[22]C.-H. Wang, H.-C. Hsu, L.-C. Chen, K.-H. Chen, Stand-up structure of graphene-like carbon nanowalls on CNT directly grown on polyacrylonitrile-based carbon fiber paper as supercapacitor, Diamond and Related Materials, 25 (2012) 176–179.
[23]鍾志業,。CVD碳膜之成長機制與電化學行為。博士論文,。(2009)。
[24]H. Marsh, Introduction to Carbon Science Butterworths, (1989).
[25]夏敏明。日本結晶成長學會志(日)。22 (1995) 29。
[26]T.N. Chang, A. Sacco, A.S.T. Chiang, P. Thacker, Journal of Catalysis, 85 (1984) 224-236.
[27]H.P. Boehm, The Initiation and Growth of Filamentous Carbon from a-Iron in H2 ,CH4 ,H2O, CO2 and CO Gas Mixture, Carbon, 11 (1973) 583.
[28]M.A. Barber, R.T.K. Baker, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Journal of Catalysis, 26 (1972) 51-62.
[29]V.I. Bukhtiyarov, A.I. Boronin, R. Kvon, V.V. Chesnokov, R.A. Buyanov, Decomposition of ethylene and a mechanism of graphite formation on the Pt(110) surface, Surface Science, 258 (1991) 289–301.
[30]K. Anderko, M. Hansen, Constitution of Binary Alloys, (1965).
[31]Haruo Kishida, Yuko Sone, Makoto Kobayashi, Takao Watanabe, A study of carbon deposition on fuel cell power plants- morphology of deposited carbon and catalytic metal in carbon deposition reactions on stainless steel, Journal of Power Sources, 86 (2000) 334-339.
[32]J. D. Mumford, C. M. Chun, T. A. Ramanarayanan, Carbon-Induced Corrosion of Nickel Anode, Journal of The Electrochemical Society, 147 (2000) 3680-3686 .
[33]J. D. Mumford, C. M. Chun, T. A. Ramanarayanan, Mechanisms of Metal Dusting Corrosion of Iron, Journal of The Electrochemical Society, 149 (2002) B348-B355.
[34]J. D. Mumford, C. M. Chun, T. A. Ramanarayanan, Metal Dusting Corrosion of Cobalt, Journal of The Electrochemical Society, 150 (2003) B76-B82..

[35]T. A. Ramanarayanan, C. M. Chun, Metal Dusting Corrosion of Austenitic 304 Stainless Steel, Journal of The Electrochemical Society, 152 (2005) B169-B177.
[36]Shi-Kun Chen, Chih-Yeh Chung, Po-Jen Chiu, Ming-Hsin Chang, Tien-Tsai Hung, Tse-Hao Ko, Carbon film-coated 304 stainless steel as PEMFC bipolar plate, Journal of Power Sources, 176 (2008) 276–281.
[37]J. Robertson, A. C. Ferrari, Interpretation of Raman spectra of disordered and amorphous carbon, Journal of Physical Review B, 61 (2000) 14095-14107.
[38]F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, Journal of Chemical Physics, 53 (1970) 1126.
[39]J. Robertson, A. C. Ferrari, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philosophical transactions of the royal society, 362 (2004) 2477-2512.
[40]J. Robertson, Advances in Diamond-like Carbon, Materials Science and Engineering, Report 37 (2002) 129-281.
[41]A.W. Phelps, K. E. Spear, W. B. White, Diamond polytypes and their vibrational spectra, Materials Research Society, 5 (1990) 2277-2285.
[42]Hyeongkeun Kim, Hyuck Lee, Mi Suk Cho, Jaeboong Choi, Youngkwan Lee, Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications, Electrochimica Acta, 56 (2011) 7460-7466.
[43]Jun Shen, Nianping Liu, Dong Liu, Activated high specific surface area carbon aerogels for EDLCs, Microporous and Mesoporous Materials, 167 (2013) 176-181.
[44]Meiten Koh, Ramasamy Chandrasekaran, Akiyoshi Yamauchi, Masashi Ishikaw, Electrochemical cell studies based on non-aqueous magnesium electrolyte for electric double layer capacitor applications, Journal of Power Sources, 195 (2010) 662-666.
[45]Chunhong Lei, Constantina Lekakou, Activated carbon-carbon nanotube nanocomposite coatings forsupercapacitor applications, Surface and Coatings Technology (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔