跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯仁程
論文名稱:高功率脈衝磁控濺鍍銦鎵鋅氧化薄膜用於薄膜電晶體
論文名稱(外文):High Power Impulse Magnetron Sputter Deposited Indium Gallium Zinc Oxide for Thin-Film Transistor
指導教授:何主亮何主亮引用關係
口試委員:何主亮武東星蔡健益
口試日期:2014-07-23
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:113
中文關鍵詞:高功率脈衝磁控濺鍍結晶銦鎵鋅氧化物薄膜電晶體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:578
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
隨世代的演進,顯示器在生活中已成為不可或缺的必需品,然而生活的進步與需求的增加,對於顯示器的要求也逐漸提升,例如更輕、更薄、大面積和低能耗等方面,為了達成此要求則必須從顯示器中扮演開關角色的薄膜電晶體(Thin-film transistor, TFT)來著手,其中TFT結構中通道層(Channel layer)材料為影響顯示器品質的關鍵。近期備受矚目的非晶銦鎵鋅氧化物(Amorphous indium gallium zinc oxide, a-IGZO)因為具有高遷移率以及非晶帶來的大面積均勻性,因而成為通道層的主流材料。進一步研究結晶性對IGZO的影響,發現結晶性IGZO TFT擁有高薄膜均勻性、高環境穩定性及更低的漏電流優勢,更能夠提升顯示器的品質,但由於需要高溫退火後處理使之結晶,因此有效利用高功率脈衝磁控濺鍍(High power impulse magnetron sputtering, HIPIMS)高電漿密度、高離化率的優點,能直接製備具有結晶IGZO薄膜,對於顯示器的發展有極大幫助。由於HIPIMS有別於傳統的直流磁控濺鍍(Direct-current magnetron sputtering, DCMS),並且HIPIMS在反應性濺鍍過程中,會因為高離化率的原因使二次電子回饋於靶面,使得電流增加並促使功率提升,更有機會得到具有結晶性的IGZO薄膜。因此本研究分兩個部分進行探討,首先,以DCMS及HIPIMS以相同平均功率下製備IGZO薄膜。再來,HIPIMS以相同電源設定下調控氧氬流量比,並進行IGZO薄膜的顯微組織觀察、光電特性量測。最後,製備IGZO薄膜並製備為Glass/Al/SiO2/IGZO/Al底閘極堆疊式(Staggered bottom-gate)的IGZO TFT,探討其元件特性。
在不同電源所製備IGZO薄膜結果,薄膜的晶體結構皆為非晶,而HIPIMS的薄膜生長速度56 nm/min低於 DCMS (100 nm/min),並且成分分析的結果皆為富鎵的IGZO薄膜。HIPIMS除了具有較高的光學能隙約3.4 eV,在電氣特性中也擁有較高的載子遷移率11.9 cm2/Vs及較低的電阻率5.5 m.cm。在元件特性的結果中,HIPIMS相較於DCMS具有較好之輸出特性(Output characteristics),並在轉換特性(Transfer characteristics)結果得到門檻電壓(Threshold voltage, Vth)約0.7 V、漏電流(Off current, Ioff)約1.0×10-10 A、飽和區電流(Saturated current, Ion)約5.5×10-5 A、電流開關比(On-off current ratio, Ion/off)約2.5×105、次門檻電壓擺幅(Subthreshold swing, S.S.)約0.6 V/decade以及場效遷移率(Field-effect mobility, μFE) 12.0 cm2/Vs。而在調控氧氬流量比所製備IGZO薄膜結果,薄膜的晶體結構隨著氧氬流量比從0.00增加0.28時,從非晶轉變為尖晶石結構,並且薄膜生長速度也隨之增加,而成分分析結果依舊為富鎵的IGZO薄膜。在氧氬流量比0.28具有最低的光學能隙,並在電氣特性中隨著氧氬流量比從0.00增加至0.21,載子遷移率及電阻率分別從11.9 cm2/Vs下降至9.7 cm2/Vs以及從5.5 m.cm上升至8.0 m.cm。雖然氧氬流量比0.28為結晶的IGZO,但主要傳導電子的氧空缺被填滿,因此IGZO TFT在轉換特性結果中得到Vth約3.0 V、Ion約1.3×10-6 A、Ioff約6.2×10-11 A、Ion/off約2.1×104 、S.S.約1.1 V/decade以及μFE約1.0 cm2/Vs。
Over many evolutionary generations, the display technology has become an indispensable part in our daily life. However, due to the living demand expansion, especially for the display applications, a lighter, thinner, large-sized, and low-power display has been aiming. In order to achieve these requirements, the thin-film transistor (TFT) that plays an important role in the on-off switch of the display device must be improved. The channel layer material of the TFT structure is a key factor maily influencing to display quality. Recently, the amorphous indium gallium zinc oxide (a-IGZO) has been extensively investigated and commercialized. Because IGZO has a high mobility, and its amorphous structure is uniform in large area, this material has become a noticeable material for channel layer. The study of the effects of crystallinity on IGZO found that crystalline IGZO TFT with better uniformity, higher stability and lower off-state leakage current might have more opportunities to improve the display quality. Unfortunately, it requires high temperature during post-annealing treatment for obtaining crystalline IGZO. By utilizing high power impulse magnetron sputtering (HIPIMS) of high-density plasma source, a direct deposition of crystalline IGZO on the substrate was realized, which greatly inluences to the development of the display devices. HIPIMS is different from conventional direct-current magnetron sputtering (DCMS). HIPIMS is used in the reactive sputtering process because the high ionization rate causes a high number of secondary electron accelerated towards the target surface, making an increase of current and an enhancement of the power. This study focused on two main parts. Firstly, DCMS and HIPIMS were used to deposit IGZO films under the same average power. Secondly, HIPIMS was used to deposit IGZO film with different oxygen/argon flow ratios. Microstructure of IGZO films was analysed, and electrical and optical properties were also measuared. Finally, the IGZO TFT with staggered bottom-gate structure Glass/Al/SiO2/IGZO/Al was prepared, and its device properties were investigated.
Experimental results show that with different plasma sources, the structure of IGZO films is amorphous structure. HIPIMS film with the growth rate of 56 nm/min is less than that of DCMS film (100 nm/min). The results of components analysis are all rich gallium IGZO films. The optical band gap of HIPIMS film is high (approximately 3.4 eV). The mobility and electrical resistivity of HIPIMS-deposited-IGZO film are 11.9 cm2/Vs and 5.5 mΩ.cm, respectively. HIPIMS-deposited-IGZO TFT device indicates better output characteristics, say, threshold voltage of 0.7 V, off current of 1.0×10-10 A, saturated current of 5.5×10-5 A, on-off current ratio of 2.5×105, subthreshold swing of 0.6 V/decade, and field-effect mobility of 12.0 cm2/Vs. When the O2/Ar flow ratio was increased, the crystal structure of IGZO films was converted from amorphous to spinel structure, and the film growth rate was also increased. The results of components analysis are all rich gallium IGZO films, and the lowest optical band gap was seen at the O2/Ar flow ratio of 0.28. When the O2/Ar flow ratio was increased from 0.00 to 0.21, the mobility was decreased from 11.9 to 9.7 cm2/Vs, and electrical resistivity was increased from 5.5 to 8.0 mΩ.cm. The crystalline IGZO film was obtained at O2/Ar flow ratio of 0.28; however, almost oxygen vacancies were filled. The crystalline IGZO film was obtained at O2/Ar flow ratio of 0.28, threshold voltage of 3.0 V, off current of 6.2×10-11 A, saturated current of 1.3×10-6 A, on-off current ratio at 2.1×104, subthreshold swing of 1.1 V/decade, and field-effect mobility of 1.0 cm2/Vs.
誌 謝 i
摘 要 ii
Abstract iv
總 目 錄 vi
圖 目 錄 viii
表 目 錄 xi
符號說明 xii
第一章 前言 1
第二章 文獻回顧 3
2.1 顯示器簡介 3
2.1.1 顯示器之發展現況 3
2.1.2 彩色顯示器之介紹 4
2.2 薄膜電晶體簡介 16
2.2.1 薄膜電晶體之介紹 16
2.2.2 常見薄膜電晶體之介紹 20
2.3 銦鎵鋅氧化物簡介 23
2.3.1 銦鎵鋅氧化物之介紹 23
2.3.2 銦鎵鋅氧化物各元素對其電性及結構之影響 32
2.3.3 銦鎵鋅氧化薄膜電晶體之電性關係 36
2.3.4 銦鎵鋅氧化薄膜電晶體之發展現況 37
2.4 常見製備結晶銦鎵鋅氧化薄膜方法 40
2.4.1 常見製備方法之種類 40
2.4.2 高功率脈衝磁控濺鍍簡介 43
2.5 研究動機 48
第三章 研究方法 49
3.1 研究流程 49
3.2 試片準備及前處理 50
3.3 高功率脈衝磁控濺鍍之設備 50
3.4 高功率脈衝磁控濺鍍製備銦鎵鋅氧化薄膜 52
3.5 顯微組織觀察 55
3.5.1 薄膜晶體結構鑑定 55
3.5.2 表面及截面微觀形貌 55
3.5.3 薄膜成分及化學組態分析 57
3.6 光電特性量測 57
3.6.1 薄膜光學特性分析 57
3.6.2 薄膜電氣特性分析 58
3.7 高功率脈衝磁控濺鍍製備銦鎵鋅氧化物薄膜電晶體元件 59
3.8 電晶體元件特性量測 60
第四章 結果與討論 62
4.1 高功率脈衝磁控濺鍍之電源觀測 62
4.1.1 高功率脈衝磁控濺鍍模式之測定 62
4.1.2 DCMS及HIPIMS之電漿診斷 63
4.1.3 調控氧氬流量比對應電流之關係 64
4.2 電源對銦鎵鋅氧化薄膜影響 66
4.2.1 晶體結構鑑定 66
4.2.2 微觀形貌觀察 66
4.2.3 薄膜成分及化學組態分析 68
4.2.4 光學特性 70
4.2.5 電氣特性 71
4.2.6 電晶體元件之特性分析 72
4.3 調控氧氬流量比對銦鎵鋅氧化薄膜影響 75
4.3.1 晶體結構鑑定 75
4.3.2 微觀形貌觀察 76
4.3.3 薄膜成分及化學組態分析 79
4.3.4 光學特性 81
4.3.5 電氣特性 82
4.3.6 電晶體元件之特性分析 84
第五章 結論 88
未來展望 89
參考文獻 90
[1]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science, 300 (2003) 1269-1272.
[2]S. Yamazaki, “A possibility of crystalline indium-gallium-zinc-oxide to very large scale integration”, ECS Transactions, 54 (2013) 85-96.
[3]T. Chen, M. Y. Wu, R. Ishihara, K. Nomura, T. Kamiya, Hideo Hosono,“Excimer laser crystallization of InGaZnO4 on SiO2 substrate”,Journal of Materials Science: Materials in Electronics, 22 (2011) 1694-1696.
[4]A. Anders, J. Andersson and A. Ehiasarian, “High power impulse magnetron sputtering: Current-voltage-time haracteristics indicate the onset of sustained self-sputtering”, Journal of Applied Physics, 102 (2007) 113303.
[5]F. Horstmann, V. Sittinger, B. Szyszka,“Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering”, Thin Solid Films, 517 (2009), 3178-3182.
[6]K. Ghaffarzadeh and R. Das, Metal oxide TFT backplanes for displays 2013-2018: analysis, trends, forecasts, ID TechEx, (2012).
[7]拓墣產業研究所網。http://www.topology.com.tw/report/reportcontent.asp?id=0TKK511KDXHA8G6TH9B7P1VL12
[8]徐敘瑢,光電材料與顯示技術,五南圖書出版公司,台灣,(2004), P.P. 91-95。
[9]維基百科網。http://en.wikipedia.org/wiki/File:CRT_color_enhanced.png
[10]徐敘瑢,光電材料與顯示技術,五南圖書出版公司,台灣,(2004),P.P. 177-181。
[11]Howstuffworks. http://electronics.howstuffworks.com/plasma-display2.htm
[12]林清富,光學與光電導論,五南圖書出版公司,台灣,(2012),P.P. 290-296。
[13]http://serdis.dis.ulpgc.es/~itis-byp/NotasDeClase/informacion/Material%20Complementario/VIDEO/Toppoly%20-%20LTPS%20Technology.htm
[14]中山大學圖書與資訊處網路系統組。http://www2.nsysu.edu.tw/IEE/lou/elec/web/process/light-images/light.3.jpg
[15]游孟潔,TFT彩色液晶顯示器,全華圖書股份有限公司,台灣,(2008),P.P. 52-59。
[16]Chihaya Adachi &; Takuma Yasuda lab. http://www.cstf.kyushu-u.ac.jp/~adachilab/lab/?page_id=3893
[17]黃孝文、陳金鑫,“有機發光二極體技術及應用”,光電科技資料叢書,29 (2004) 9-12。
[18]Howstuffworks. http://www.howstuffworks.com/oled3.htm
[19]E. Fortunato, P. Barquinha and R. Martins, “Oxide semiconductor thin‐film transistors: a review of recent advances”, Advanced materials, 24 (2012) 2945-2986.
[20]E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira and R. Martins, “Recent advances in ZnO transparent thin film transistors”, Thin Solid Films, 487 (2005) 205-211.
[21]K. S. Karima, P. Servatib and A. Nathanb, “High voltage amorphous silicon TFT for use in large area applications”, Microelectronics Journal, 35 (2004) 311-315.
[22]N. V. Hieu, “Formation of source and drain of a-Si:H TFT by ion implantation through metal technique”, Physica B, 392 (2007) 38-42.
[23]S. H. Kim, J. H. Cheon, E. B. Kim, J. H. Bae, J. H. Hur and J. Jang, “High-performance hydrogenated amorphous silicon TFT on flexible metal foil with polyimide planarization”, Journal of Non-Crystalline Solids, 354 (2008) 2529-2533.
[24]S. Uchikoga and N. Ibaraki, “Low temperature poly-Si TFT-LCD by excimer laser anneal”, Thin Solid Films, 383 (2001) 19-24.
[25]T. Fuyukia, K. Kitajimaa, H. Yanoa, T. Hatayamaa, Y. Uraokaa, S. Hashimotob and Y. Moritab, “Thermal degradation of low temperature poly-Si TFT”, Thin Solid Films, 487 (2005) 216-220.
[26]C. C. Tsai, Y. J. Lee, J. L. Wang, K. F. Wei,I. C. Lee ,C. C. Chen and H. C. Cheng, “High-performance top and bottom double-gate low-temperature poly-silicon thin film transistors fabricated by excimer laser crystallization”, Solid-State Electronics, 52 (2008) 365-371.
[27]R. L. Hoffman, “Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors”, Solid-State Electronics, 50 (2006) 784-787.
[28]P. Barquinha, G. Gonçalves, L. Pereira, R. Martins and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs”, Thin Solid Films, 515 (2007) 8450-8454.
[29]H. S. Bae and S. Im, “Ultraviolet detecting properties of ZnO-based thin film transistors”, Thin Solid Films, 469 (2004) 75-79.
[30]R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films”, Journal of Non-Crystalline Solids, 352 (2006) 1471-1474.
[31]S. Dutta and A. Dodabalapur, “Zinc tin oxide thin film transistor sensor”, Sensors and Actuators B, 143 (2009) 50-55.
[32]K. Jang, H. Park, S. Jung, N. V. Duy, Y. Kim, J. Cho, H. Choi, T. Kwon, W. Lee, D. Gong, S. Park, J. Yi, D. Kim and H. Kim,“ Optical and electrical properties of 2 wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators”, Thin Solid Films, 518 (2010) 2808-2811.
[33]C. H. Jung, D. J. Kim, Y. K. Kang and D. H. Yoon,“Transparent amorphous In-Ga-Zn-O thin film as function of various gas flows for TFT applications”, Thin Solid Films, 517 (2009) 4078-4081.
[34]T. Kamiya, K. Nomura and H. Hosono, “Present status of amorphous In-Ga-Zn-O thin-film transistors”, Science and Technology of Advancedmaterials, 11 (2010) 044305.
[35]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, 432 (2004) 488-492.
[36]H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, “Amorphous oxide channel TFTs”, Thin Solid Films, 516 (2008) 1516-1522.
[37]M. Nakata, K. Takechi, K. Azuma, E. Tokumitsu,H. Yamaguchi and S. Kaneko, “Improvement of InGaZnO4 thin film transistors characteristics utilizing excimer laser annealing”, Applied Physics Express, 2 (2009) 021102.
[38]Y. S. Chun, S. Chang and S. Y. Lee, “Effects of gate insulators on the performance of a-IGZO TFT fabricated at room-temperature”, Microelectronic Engineering, 88 (2011) 1590-1593.
[39]B. Kim, E. Chong, D. H. Kim, Y. W. Jeon, D. H. Kim and S. Y. Lee, “Origin of threshold voltage shift by interfacial trap density in amorphous InGaZnO thin film transistor under temperature induced stress”, Applied Physics Letters , 99 (2011) 062108.
[40]H. S. Shin, K. H. Choi and H. K. Kim, “Low energy deposition of InGaZnO channel layer using linear facing target sputtering for oxide TFTs”, Current Applied Physics, 12 (2012) S39-S43.
[41]H. H. Hsu, C. Y. Chang and C. H Cheng, “Room-temperature flexible thin film transistor with high mobility”, Current Applied Physics, 13 (2013) 1459-1462.
[42]C. H. Jung, H. I. Kang and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors”, Solid-State Electronics, 79 (2013) 125-129.
[43]日本經濟新聞。http://special.nikkeibp.co.jp/as/201207/igzo_vol2/
[44]材料世界網。http://www.materialsnet.com.tw/DocView.aspx?id=11151
[45]Extremetech. http://www.extremetech.com/computing/170970-igzo-display-tech-finally-makes-it-to-mass-market-ipad-air-now-high-res-laptops-and-desktops-next
[46]News.oled-display. http://news.oled-display.net/why-igzo-oled/
[47]K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano and H. Hosono, “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films”, Applied Physics Letters, 85 (2004) 1993-1995.
[48]H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application”, Journal of Non-Crystalline Solids, 352 (2006) 851-858.
[49]A. Takagia, K. Nomurab, H. Ohtab, H. Yanagia, T. Kamiya, M. Hiranob and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4”, Thin Solid Films, 486 (2005) 38-41.
[50]K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors”, Japanese Journal of Applied Physics, 45 (2006) 4303-4308.
[51]T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system”, Applied Physics Letters, 90 (2007) 242114.
[52]K. Nomura, T. Kamiya, Y. Kikuchi, M. Hirano and H. Hosono, “Comprehensive studies on the stabilities of a-In-Ga-Zn-O based thin film transistor by constant current stress”, Thin Solid Films, 518 (2010) 3012-3016.
[53]H. S. Bae, J. H. Kwon, S. Chang, M. H. Chung, T. Y. Oh, J. H. Park, S. Y. Lee, J. J. Pak and B. K. Ju, “The effect of annealing on amorphous indium gallium zinc oxide thin film transistors”, Thin Solid Films, 518 (2010) 6325-6329.
[54]C. J. Chiu, Z. W. Pei, S. T. Chang, S. P. Chang and S. J. Chang, “Effect of oxygen partial pressure on electrical characteristics of amorphous indium gallium zinc oxide thin-film transistors fabricated by thermal annealing”, Vacuum, 86 (2011) 246-249.
[55]X. Li, E. Xin, L. Chen, J. Shi, C. Li and J. Zhang, “Dependence of annealing on stability of transparent amorphous InGaZnO thin film transistor”,Materials Science in Semiconductor Processing, 16 (2013) 1292-1296.
[56]D. Ohgarane, M. Konishi, K. Dairiki, M. Oota, T. Hirohashi, M. Takahashi, M. Tsubuku and S. Yamazaki, Crystallography of In-Ga-Zn-O thin film having CAAC structure, 2013 In Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, (2013), P.P 235-238.
[57]SPIE newsroom. http://www2.units.it/ramponi/teaching/DIP/materiale/Displays_igzo_SPIE.pdf
[58]K. Ide, K. Nomura, H. Hiramatsu, T. Kamiya and H. Hosono, “Structural relaxation in amorphous oxide semiconductor, a-In-Ga-Zn-O”, Journal of Applied Physics, 111 (2012) 073513.
[59]A. Shimomura, M. Koyama, T. Ishiyama, M. Ohta, M. Tsubuku, E. Kikuchi, T. Hirohashi, M. Takahashi and S. Yamazaki, Crystallography of excimer laser-crystallized In-Ga-Zn-O film, 2013 In Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, (2013), P.P. 155-158.
[60]G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park and H. J. Kimz, “Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor”, The Electrochemical Society, 156 (2009) H7-H9.
[61]G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong and H. J. Kim, “Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors”, Applied Physics Letters, 94 (2009) 233501.
[62]H. Q. Le and S. J. Chua, “Gallium and indium co-doping of epitaxial zinc oxide thin films grown in water at 90 ◦C”, Journal of Physics D: Applied Physics, 44 (2011) 125104.
[63]郭韋汝,低溫溶液法製備氧化銦鎵鋅半導體薄膜之特性檢測與應用,逢甲大學材料科學與工程研究所碩士論文,2013。
[64]A. Anders, “A structure zone diagram including plasma-based deposition and ion etching”, Thin Solid Films, 518 (2010) 4087-4090.
[65]O. V. Vozniy, D. Duday, A. Lejars and T. Wirtz, “Double magnetron self-sputtering in HiPIMS discharges”, Plasma Sources Science and Technology, 20 (2011) 065008.
[66]A. Anders, “High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition”, Surface and Coatings Technology, 204 (2010) 2864-2868.
[67]J. R. Roth, Industrial Plasma Engineering Volume 1 Principles, Institute of Physics Publishing, UK, (1995).
[68]K. Sarakinos, J. Alami and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art”, Surface and Coatings Technology, 204 (2010) 1661-1684.
[69]A. Anders, Handbook of plasma immersion ion implantation and deposition, John Wiely and Sons Inc., Canada, (2000) 383-384.
[70]吳錦裕、梁文龍、艾啟峰,“新鍍膜技術-高功率脈衝磁控濺射之介紹及研發”,真空科技,22 (2009) 24-33。
[71]J. Alami, K. Sarakinos, F. Uslu and M. Wuttig, “On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering”, Journal of Physics D: Applied Physics, 42 (2009) 1-7.
[72]J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, J. A. Rees, Z. Wua, R. Chistyakov and B. Abraham, “Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering”, Surface and Coatings Technology, 203 (2009) 3676-3685.
[73]M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson and U. Helmersson,“On the film density using high power impulse magnetron sputtering”, Surface and Coatings Technology, 205 (2010) 591-596.
[74]V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy and R. Hippler, “Effect of nitrogen doping on TiOxNy thin film formation at reactive high-power pulsed magnetron sputtering”, Journal of Physics D: Applied Physics, 43 (2010) 285203.
[75]P. J. Kelly, P. M. Barker, S. Ostovarpour, M. Ratova, G. T. West, I. Iordanova and J. W. Bradley, “Deposition of photocatalytic titania coatings on polymeric substrates by HiPIMS”, Vacuum, 86 (2012) 1880-1882.
[76]V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka and D. J. Christie, “High power pulsed magnetron sputtering of transparent conducting oxides”, Thin Solid Films, 516 (2008) 5847-5859.
[77]V. Sittinger, O. Lenck, M. Vergöhl, B. Szyszka and G. Bräuer, “Applications of HIPIMS metal oxides”, Thin Solid Films, 548 (2013) 18-26.
[78]K. Sarakinos, J. Alami and M. Wuttig, “Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering”, Journal of Physics D: Applied Physics, 40 (2007) 2108-2114.
[79]A. A Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E Crossan and F. Placido, “The influence of rf power and oxygen flow rate during deposition on the optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering”, Journal of Physics D: Applied Physics., 38 (2005)266-271.
[80]E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philosophical Magazine, 22 (1970) 0903-0922.
[81]J. Tauc, R. Grigorovici and A. Vancu, “Optical properties and electronic structure of amorphous germanium”, Physica Status Solidi (b), 15 (1966) 627-637.
[82]J. Alami, K. Sarakinos, G. Mark and M. Wuttig, “On the deposition rate in a high power pulsed magnetron sputtering discharge”, Applied physics letters, 15 (2006) 154104.
[83]K. Sarakinos, J. Alami, C. Klever and M. Wuttig, “Growth of TiOx films by high power pulsed magnetron sputtering from a compound TiO1.8 target”, Reviews on Advanced Materials Science, 15 (2007) 44-48.
[84]Q. M. Wang, S. H. Kwon, K. N. Hui, D. I. Kim, K. S. Hui and K. H. Kim, “Synthesis and properties of crystalline TiO2 films deposited by a HIPIMS+ technique”, Vacuum, 89 (2013) 90-95.
[85]J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water”, Applied Physics Letters, 92 (2008) 072104.
[86]K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano and H. Hosono,“Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy”, Applied Physics Letters, 92 (2008) 202117.
[87]A. Bouhemadou and R. Khenatab, “Pseudo-potential calculations of structural and elastic properties of spinel oxides ZnX2O4 (X = Al, Ga, In) under pressure effect”, Physics Letters A, 360 (2006) 339-343.
[88]Z. G. Li, S. Miyake, M. Makino and Y. X. Wu, “Microstructure and properties of nanocrystalline titanium monoxide films synthesized by inductively coupled plasma assisted reactive direct current magnetron sputtering”, Applied Surface Science, 255 (2008) 2370-2374.
[89]J. Raja, K. Jang, H. H. Nguyen, T. T. Trinh, W. Choi and J. Yi, “Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel”, Current Applied Physics, 13 (2013) 246-251.
[90]Y. S. Lee, Z. M. Dai, C. I. Lin and H. C. Lin, “Relationships between the crystalline phase of an IGZO target and electrical properties of a-IGZO channel film”, Ceramics International, 38S (2012) S595-S599.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top