跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/21 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李季潾
論文名稱:氧化鋅光陽極利用電漿表面改質應用於染料敏化太陽能電池之研究
論文名稱(外文):The Study of Plasma Surface Modification of ZnO Electrodes for Dye-sensitized Solar Cell
指導教授:呂晃志吳昌謀
口試委員:呂晃志吳昌謀羅仕守
口試日期:2014-07-14
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:氧化鋅染料敏化太陽能電池大氣電漿
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究是利用大氣電漿進行表面改質的方式,讓氧化鋅光陽極具有更粗糙的表面來提升光陽極對染料的吸附量,以提高光電轉換效率。
在實驗過程中,不僅改變薄膜的厚度,同時也改變大氣電漿所使用的氣體。利用SEM、XRD與FT-IR檢測氧化鋅薄膜的表面形態與光學特性。使用光強度為1000 W/m2的太陽光模擬器,量測染料敏化太陽能電池的電壓電流特性曲線,最後,再透過 EIS 分析,進行光陽極製程條件對染料敏化太陽能電池的影響探討。
結果指出,使用20%O2大氣電漿對氧化鋅進行五分鐘表面改質,在浸泡N719染料後,能獲得最佳的光電流密度11.8 mA/cm2與最佳的光電轉換效率4.0 %。
In this study, atmospheric pressure plasma was used for surface treatment on ZnO electrodes. This treatment can make the rough surface to enhance the absorption of dye molecule on photoanode and promote the photoelectric conversion efficiency. During the experiment, both the film thickness of ZnO and plasma of mixed gases were changed. The surface morphology and optical property of ZnO films were also investigated by SEM, XRD, and FT-IR. The current-voltage curves of the DSSC were obtained by solar simulator whose incident light intensity is 1000 W/m2. Finally, through electrochemical impedance spectroscopy analysis, we can investigate the influence of structure on dye- sensitized solar cell. The results of this study indicate that the optimal process of ZnO electrodes use 20% oxygen and 80% nitrogen mixed gases plasma to modify ZnO electrode surface for 5 min. After immersing N719 dye, the dye-sensitized solar cell has the best Jsc 11.8 mA/cm2 and efficiency 4.0%.
致  謝 i
摘  要 ii
Abstract iii
目  錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 7
第二章 原理及文獻回顧 8
2.1 氧化鋅的簡介 8
2.2 太陽能電池簡介 10
2.2.1矽晶類太陽能電池 11
2.2.2 化合物半導體太陽能電池 16
2.2.3 有機太陽能電池 19
2.3 染料敏化太陽能電池 22
2.3.1 染料敏化太陽能電池結構 22
2.3.2 染料敏化太陽能電池工作原理與傳輸損失 29
2.3.3 染料敏化太陽能電池電壓-電流量測特性 32
2.4 大氣電漿簡介與工作原理 34
第三章 實驗 39
3.1 實驗材料 39
3.2 實驗設備及測試儀器 41
3.3 實驗流程 43
3.4 染料敏化太陽能電池的製備 44
3.4.1 氧化鋅漿料的製備(ZNP) 44
3.4.2 氧化鋅工作電極製備與電漿(Plasma)處理 44
3.4.3 染料的製備與敏化 47
3.4.4電解液的製備 47
3.4.5 白金對電極的製備 47
3.4.6 染料敏化太陽能電池的封裝 48
3.5 氧化鋅薄膜特性分析 49
3.5.1 X-ray繞射儀(X-ray Diffraction, XRD) 49
3.5.2 掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM) 50
3.5.3 紫外-可見光光譜儀(Ultraviolet-Visible Spectophotometer, UV-Vis) 50
3.5.4 傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 51
3.5.5 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 51
3.5.6 拉曼光譜分析儀(Raman Spectrometer) 52
3.6 染料敏化太陽能電池的特性分析 53
3.6.1 電化學交流阻抗分析儀(Electrochemical impedance spectroscopy, EIS) 53
3.6.2 染料敏化太陽能電池效率量測 55
第四章 結果與討論 56
4.1 純氧化鋅與純二氧化鈦工作電極之分析 56
4.2 大氣電漿不同載流氣體對氧化鋅工作電極之分析 58
4.2.1 不同氣體電漿轟擊對氧化鋅電極之染料吸附分析 58
4.2.2 FT - IR分析 60
4.3大氣電漿改質DSSC電池相關分析 61
4.3.1 氮氣電漿改質氧化鋅光陽極之相關分析 62
4.3.2 混合氧氣/氮氣(20/80)電漿改質氧化鋅光陽極之相關分析 66
4.3.3混合氧氣/氮氣(40/60)電漿改質氧化鋅光陽極之相關分析 71
4.3.4 不同氣體電漿轟擊之XRD分析 75
4.3.5混合氧氣/氮氣(20/80)與(40/60)電漿改質氧化鋅光陽極之FTIR分析 78
4.3.6混合氧氣/氮氣(20/80)電漿改質氧化鋅與未改質氧化鋅之UV-Vis分析 79
第五章 結論 80
第六章 未來展望 81
參考文獻 82
[1] Graßl H., Kokott J., Kulessa M., Luther J., Nuscheler F., Sauerborn R., Schellnhuber H., Schubert R., Schulze E.: World in transition. Earthscan, (2004)
[2] 張品全. 太陽電池. in (eds.: 科學發展, (2002)
[3] Brittany L. O., Andrew R. B.: An Introduction to Solar Cell Technology. (2008)
[4] Green M. A., Emery K., Hishikawa Y., Warta W., Dunlop E. D.: Solar cell efficiency tables (version 42). Progress in Photovoltaics: Research and Applications, 21, 827-837 (2013)
[5] Grätzel M.: Photoelectrochemical cells. nature, 414, 338-344 (2001)
[6] O’regan B., Grfitzeli M.: A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353, 24 (1991)
[7] Chou T. P., Zhang Q., Fryxell G. E., Cao G. Z.: Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Advanced Materials, 19, 2588-2592 (2007)
[8] Nakade S., Saito Y., Kubo W., Kitamura T., Wada Y., Yanagida S.: Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells. The Journal of Physical Chemistry B, 107, 8607-8611 (2003)
[9] Pettersson H., Gruszecki T.: Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. Solar Energy Materials and Solar Cells, 70, 203-212 (2001)
[10] Xia J., Masaki N., Jiang K., Yanagida S.: Sputtered Nb2O5 as a Novel Blocking Layer at Conducting Glass/TiO2 Interfaces in Dye-Sensitized Ionic Liquid Solar Cells. The Journal of Physical Chemistry C, 111, 8092-8097 (2007)
[11] Sharma R., Mane R. S., Min S.-K., Han S.-H.: Optimization of growth of In2O3 nano-spheres thin films by electrodeposition for dye-sensitized solar cells. Journal of Alloys and Compounds, 479, 840-843 (2009)
[12] He C., Zheng Z., Tang H., Zhao L., Lu F.: Electrochemical Impedance Spectroscopy Characterization of Electron Transport and Recombination in ZnO Nanorod Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 113, 10322-10325 (2009)
[13] Özgür Ü., Alivov Y. I., Liu C., Teke A., Reshchikov M. A., Doğan S., Avrutin V., Cho S.-J., Morkoç H.: A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98, - (2005)
[14] Quintana M., Edvinsson T., Hagfeldt A., Boschloo G.: Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells:  Studies of Charge Transport and Carrier Lifetime. The Journal of Physical Chemistry C, 111, 1035-1041 (2006)
[15] Hoyer P., Weller H.: Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films. The Journal of Physical Chemistry, 99, 14096-14100 (1995)
[16] Redmond G., Fitzmaurice D., Graetzel M.: Visible Light Sensitization by cis-Bis(thiocyanato)bis(2,2&;#39;-bipyridyl-4,4&;#39;-dicarboxylato)ruthenium(II) of a Transparent Nanocrystalline ZnO Film Prepared by Sol-Gel Techniques. Chemistry of Materials, 6, 686-691 (1994)
[17] Vayssieres L., Keis K., Hagfeldt A., Lindquist S.-E.: Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes. Chemistry of Materials, 13, 4395-4398 (2001)
[18] Yoshida T., Tochimoto M., Schlettwein D., Wöhrle D., Sugiura T., Minoura H.: Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition. Chemistry of Materials, 11, 2657-2667 (1999)
[19] Keis K., Magnusson E., Lindström H., Lindquist S.-E., Hagfeldt A.: A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Solar Energy Materials and Solar Cells, 73, 51-58 (2002)
[20] Kim Y., Yoo B. J., Vittal R., Lee Y., Park N.-G., Kim K.-J.: Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells. Journal of Power Sources, 175, 914-919 (2008)
[21] Meng X. Q., Zhao D. X., Zhang J. Y., Shen D. Z., Lu Y. M., Dong L., Xiao Z. Y., Liu Y. C., Fan X. W.: Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing. Chemical Physics Letters, 413, 450-453 (2005)
[22] Wang Z. L., Kong X. Y., Ding Y., Gao P., Hughes W. L., Yang R., Zhang Y.: Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces. Advanced Functional Materials, 14, 943-956 (2004)
[23] Pearton S. J., Norton D. P., Ip K., Heo Y. W., Steiner T.: Recent progress in processing and properties of ZnO. Progress in Materials Science, 50, 293-340 (2005)
[24] Krishnamoorthy S., Iliadis A. A.: Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates. Solid-State Electronics, 52, 1710-1716 (2008)
[25] Al-Hajry A., Umar A., Hahn Y. B., Kim D. H.: Growth, properties and dye-sensitized solar cells–applications of ZnO nanorods grown by low-temperature solution process. Superlattices and Microstructures, 45, 529-534 (2009)
[26] Lokhande C. D., Gondkar P. M., Mane R. S., Shinde V. R., Han S.-H.: CBD grown ZnO-based gas sensors and dye-sensitized solar cells. Journal of Alloys and Compounds, 475, 304-311 (2009)
[27] Pearton S. J., Norton D. P., Ip K., Heo Y. W., Steiner T.: Recent progress in processing and properties of ZnO. Superlattices and Microstructures, 34, 3-32 (2003)
[28] Tsubomura H., Matsumura M., Nomura Y., Amamiya T.: Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. (1976)
[29] Nazeeruddin M. K., Kay A., Rodicio I., Humphry-Baker R., Mueller E., Liska P., Vlachopoulos N., Graetzel M.: Conversion of light to electricity by cis-X2bis(2,2&;#39;-bipyridyl-4,4&;#39;-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115, 6382-6390 (1993)
[30] Nazeeruddin M. K., De Angelis F., Fantacci S., Selloni A., Viscardi G., Liska P., Ito S., Takeru B., Grätzel M.: Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 127, 16835-16847 (2005)
[31] Yella A., Lee H.-W., Tsao H. N., Yi C., Chandiran A. K., Nazeeruddin M. K., Diau E. W.-G., Yeh C.-Y., Zakeeruddin S. M., Grätzel M.: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334, 629-634 (2011)
[32] Grätzel M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164, 3-14 (2004)
[33] 楊明輝. 太陽電池用透明導電膜材料. 工業材料雜誌, 265, (2009)
[34] 翁敏航. 太陽能電池. 東華書局, 第七章 (2010)
[35] Grätzel M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic chemistry, 44, 6841-6851 (2005)
[36] Mishra A., Fischer M. K., Bäuerle P.: Metal‐Free Organic Dyes for Dye‐Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angewandte Chemie International Edition, 48, 2474-2499 (2009)
[37] Horiuchi T., Miura H., Uchida S.: Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chemical Communications, 3036-3037 (2003)
[38] Horiuchi T., Miura H., Sumioka K., Uchida S.: High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. Journal of the American Chemical Society, 126, 12218-12219 (2004)
[39] 薛惟聰. 新型含雙噻吩環戊烷之有機小分子光敏化染料的合成與性質探討. 中央大學化學系學位論文, 1-113 (2008)
[40] Fredin K.: Studies of Charge Transport Processes in Dye-sensitized Solar Cells. (2007)
[41] Schlichthörl G., Huang S. Y., Sprague J., Frank A. J.: Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 101, 8141-8155 (1997)
[42] Hauch A., Georg A.: Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta, 46, 3457-3466 (2001)
[43] 閔庭輝, 姬梁文, 陳文瑞, 陳胤維, 邱騰震. 不同的二氧化鈦電極結構應用於染料敏化太陽能電池之研究. 科儀新知, 73-81 (2007)
[44] 陳昇卲. 含微孔性陶瓷膜於染料敏化太陽能電池性能之研究. 長庚大學, (2009)
[45] Schutze A., Jeong J. Y., Babayan S. E., Park J., Selwyn G. S., Hicks R. F.: The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Plasma Science, IEEE Transactions on, 26, 1685-1694 (1998)
[46] Reece Roth J., Nourgostar S., Bonds T. A.: The one atmosphere uniform glow discharge plasma (OAUGDP)—a platform technology for the 21st century. Plasma Science, IEEE Transactions on, 35, 233-250 (2007)
[47] Roth J. R., Rahel J., Dai X., Sherman D. M.: The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications. Journal of Physics D: Applied Physics, 38, 555 (2005)
[48] Tippayawong N., Khongkrapan P.: Development of a laboratory scale air plasma torch and its application to electronic waste treatment. Int J Environ Sci Tech, 6, 407-414 (2009)
[49] Chang J. S., Lawless P. A., Yamamoto T.: Corona discharge processes. Plasma Science, IEEE Transactions on, 19, 1152-1166 (1991)
[50] Kostov K., Honda R., Alves L., Kayama M.: Characteristics of dielectric barrier discharge reactor for material treatment. Brazilian Journal of Physics, 39, 322-325 (2009)
[51] 蘇郁芸. 以靜電紡絲製備氧化鋅奈米纖維電極應用於染料敏化太陽能電池之研究. 逢甲大學綠色能源科技碩士學位論文, (2013)
[52] 林麗娟. X光繞射原理及其應用. 工業材料雜誌, 86期, (1994)
[53] 莊志烽. 中央山脈能高越嶺路碳質物拉曼光譜分析及其應用. 國立東華大學自然資源與環境學系碩士學位論文, (2011)
[54] Han L., Koide N., Chiba Y., Mitate T.: Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 84, 2433-2435 (2004)
[55] Adachi M., Sakamoto M., Jiu J., Ogata Y., Isoda S.: Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry B, 110, 13872-13880 (2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top