跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/25 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃國麟
論文名稱:鈰摻雜ZnS(1-x)Ox奈米粒子/硫化石墨烯複合材料在產氫上之應用
論文名稱(外文):Ce-doped ZnS(1-x)Ox nanopartical/sulfonated graphene composites phtocatalyst for photocatalytic hydrogen production
指導教授:林屏杰張棋榕
口試委員:翁于晴曾怡享
口試日期:2014-07-14
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:102
中文關鍵詞:產氫光觸媒鈰摻雜硫氧化鋅鍛燒奈米粒子硫化石墨烯
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用水熱法製作鈰摻雜之ZnS1-xOx奈米粒子並用於光觸媒產氫之探討,分別調控鈰前驅物濃度與鍛燒條件使產氫效率達最大值,並利用FESEM、TEM、XPS等儀器探討不同觸媒製作條件對光觸媒產氫效率之影響。在氮氣環境下鍛燒可增加光觸媒之結晶性並避免光觸媒與空氣中之氧產生反應,使光觸媒保持良好的產氫效率。因鈰摻雜至觸媒後有不同組成使其電子軌域為未填滿之狀態,可提升電子電洞分離之數量並降低其再結合機率,並提升光觸媒之產氫效率。最佳鈰摻雜條件之產氫效率為1200 μmol g-1h-1。
得到最佳鈰摻雜條件後,我們再探討硫化石墨烯加入對光觸媒表面結構、結晶性與化學性質之影響。不同重量百分比的硫化石墨烯加入後,可增加光觸媒表面積與吸收波長並降低其能隙,使的產氫效率提升至2100μmol g-1h-1,並可用可見光作為能量來源,其產氫效率為650μmol g-1h-1。
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 光觸媒產氫發現與原理 2
1.3 Z-Scheme 之分解水產氫方式 6
1.4 研究動機與目的 8
第二章 基礎理論與文獻回顧 9
2.1 半導體光觸媒 9
2.1.1 氧化鋅(ZnO) 基本性質 15
2.1.2 硫化鋅(ZnS) 基本性質 15
2.2光觸媒合成方法及應用 16
2.2.1 水熱法(Hydrothermal Method) 16
2.2.2 VLS (Vapor-Liquid-Solid Method) 17
2.2.3 SLS (Solution-Liquid-Solid Method) 19
2.2.4化學氣相沉積法(Chemical Vapor Deposition,CVD) 20
2.2.5金屬有機化學氣相沉積法(MOCVD) 21
2.2.6熱蒸鍍法(Thermal Evaporation) 22
2.2.7 模板輔助法(Template-assisted) 23
2.3 光觸媒應用與改質 24
2.3.1 光觸媒應用 24
2.3.2 光觸媒改質 26
2.3.2.1 貴金屬沉積型光觸媒 27
2.3.2.2 複合半導體(Coupled semiconductor) 29
2.3.2.3 表面敏化 31
2.3.2.4 摻雜型金屬氧化物光觸媒 31
2.4氧化石墨烯 31
2.5 文獻回顧 33
第三章 實驗藥品與步驟 37
3.1實驗藥品、耗材及配件 37
3.2實驗儀器 37
3.3 實驗流程 39
3.4 實驗步驟 39
3.4.1器材前處理 39
3.4.2光觸媒製作:前驅液製備 40
3.4.3光觸媒製作:水熱法 40
3.4.4 光觸媒製作:水熱法後處理 40
3.4.5 硫化石墨烯合成 40
3.4.6 硫化石墨烯摻入觸媒 41
3.4.7 產氫實驗 41
3.5實驗樣品命名 41
3.6實驗分析及鑑定 42
3.6.1 冷場發射掃描式電子顯微鏡及能量散佈光譜儀(FESEM) 42
3.6.2 高解析度穿透式電子顯微鏡(HRTEM) 43
3.6.3多功能薄膜X 光繞射儀(HRXRD) 45
3.6.4化學分析電子能譜儀(XPS) 46
3.6.5反射式紫外光/可見光光譜儀(UV/Vis Spectrometer) 47
3.6.6掃描式電化學顯微鏡(SECM) 47
第四章 結果與討論 49
4.1 鈰摻雜ZnS1-xOx觸媒 49
4.1.1 光觸媒-表面結構(冷場發射掃描式電子顯微鏡 FESEM) 49
4.1.2 XRD光譜 51
4.1.3穿透式電子顯微鏡 (TEM分析) 52
4.1.4 表面化學性質 (化學分析電子能譜儀 XPS分析) 53
4.1.5 電化學性質 (掃描式電化學顯微鏡 SECM分析) 54
4.1.6光學性質(反射式吸收 DRS) 56
4.1.7 光觸媒-能帶圖 58
4.1.8 光觸媒之界面電位(Zeta Potential) 59
4.1.9 光觸媒之比表面積(BET) 60
4.1.10 光觸媒之產氫效率 60
4.2 硫化石墨烯(SG)/鈰摻雜ZnS1-xOx光觸媒 68
4.2.1光觸媒-表面結構(冷場發射掃描式電子顯微鏡 FESEM) 68
4.2.2光觸媒結晶特性(XRD圖) 69
4.2.3光觸媒電化學性質(掃描式電化學顯微鏡 SECM) 71
4.2.4 光觸媒之光學性質(反射式吸收 DRS) 73
4.2.5 光觸媒能帶圖 74
4.2.6光觸媒之(Zeta Potential) 74
4.2.7光觸媒比表面積分析(BET) 75
4.2.8 SG光觸媒之產氫效率 75
第五章 結論 81
第六章 參考文獻 85
[1]鄭光煒 http://memo.cgu.edu.tw/Secretariat/news/58/research/research_2.htm
[2]http://stn.nsc.gov.tw/popup_Print.asp?DOC_UID=0940909002
[3]A. Fujishima, &;quot;Electrochemical photolysis of water at a semiconductor electrode,&;quot; nature, vol. 238, pp. 37-38, 1972.
[4]廖秋榮, &;quot;可視光光觸媒在環境保護之應用技術,&;quot; 台灣土壤及地下水環境保護協會簡訊, vol. 27, pp. 13–21, 2008.
[5]黃思博, &;quot;氧化鋅奈米柱與二氧化鈦之混合結構在染料感光型太陽能電池光陽極之應用,&;quot; 清華大學材料科學工程學系學位論文, pp. 1-97, 2010.
[6]姚裕評, &;quot;三機一體太陽能光電玻璃環保節能綠建材.&;quot;
[7]K. Maeda and K. Domen, &;quot;New non-oxide photocatalysts designed for overall water splitting under visible light,&;quot; The Journal of Physical Chemistry C, vol. 111, pp. 7851-7861, 2007.
[8]C. Kittel, C, &;quot;Introduction to Solid State Physics,&;quot; John Wiley &; Sons Ltd, vol. 8, p. 186, 2005.
[9]M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, and K. Domen, &;quot;Two step water splitting into H 2 and O 2 under visible light by ATaO 2 N (A= Ca, Sr, Ba) and WO 3 with shuttle redox mediator,&;quot; Chemical Physics Letters, vol. 452, pp. 120-123, 2008.
[10]P. Gao and D. D. Sun, &;quot;Hierarchical sulfonated graphene oxide–TiO< sub> 2 composites for highly efficient hydrogen production with a wide pH range,&;quot; Applied Catalysis B: Environmental, vol. 147, pp. 888-896, 2014.
[11]簡佑達, &;quot;半導體,&;quot; 全人教育百寶箱, 2009.
[12]賈德昌;周玉;李佩雯, &;quot;電子材料,&;quot; 台北,滄海書局, pp. 133-142, 2002.
[13]吳孟奇;洪勝富;連振炘;龔正, &;quot;半導體元件,&;quot; 台北、東華書局, pp. 67-125, 2003.
[14]A. Goetzberger, Knobloch, J., &;quot;Crystalline Silicon Solar Cells,&;quot; John Wiley &; Sons Ltd, p. 5, 1998.
[15]瑞薩電子, &;quot;介於導體與絕緣體之間的半導體.&;quot;
[16]D. B. Yefan Chen, Takafumi Yao,, &;quot;ZnO as a novel photonic material for the UV region,&;quot; Materials Science and Engineering vol. B75, pp. 190-198, 2000.
[17]S. Velumani and J. Ascencio, &;quot;Formation of ZnS nanorods by simple evaporation technique,&;quot; Applied Physics A, vol. 79, pp. 153-156, 2004.
[18]S. S. Lee, K.-T. Byun, J. P. Park, S. K. Kim, J. C. Lee, S.-K. Chang, et al., &;quot;Homogeneous ZnS coating onto TiO< sub> 2 nanoparticles by a simple one pot sonochemical method,&;quot; Chemical Engineering Journal, vol. 139, pp. 194-197, 2008.
[19]J. Lee, S. Lee, S. Cho, S. Kim, I. Y. Park, and Y. D. Choi, &;quot;Role of growth parameters on structural and optical properties of ZnS nanocluster thin films grown by solution growth technique,&;quot; Materials chemistry and physics, vol. 77, pp. 254-260, 2003.
[20]Y. Li, F. He, S. Peng, G. Lu, and S. Li, &;quot;Photocatalytic H2 evolution from NaCl saltwater over ZnS1−x−0.5yOx(OH)y–ZnO under visible light irradiation,&;quot; International Journal of Hydrogen Energy, vol. 36, pp. 10565-10573, 8// 2011.
[21]J.-J. Wu and S.-C. Liu, &;quot;Catalyst-free growth and characterization of ZnO nanorods,&;quot; The Journal of Physical Chemistry B, vol. 106, pp. 9546-9551, 2002.
[22]S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, et al., &;quot;Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires,&;quot; Chemical Physics Letters, vol. 363, pp. 134-138, 2002.
[23]R. Wagner and W. Ellis, &;quot;Vapor‐liquid‐solid mechanism of single crystal growth,&;quot; Applied Physics Letters, vol. 4, pp. 89-90, 1964.
[24]K. Hiruma, T. Katsuyama, K. Ogawa, M. Koguchi, H. Kakibayashi, and G. Morgan, &;quot;Quantum size microcrystals grown using organometallic vapor phase epitaxy,&;quot; Applied physics letters, vol. 59, pp. 431-433, 1991.
[25]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, et al., &;quot;One‐dimensional nanostructures: synthesis, characterization, and applications,&;quot; Advanced materials, vol. 15, pp. 353-389, 2003.
[26]莊達人, &;quot;VLSI 製造技術,&;quot; 高麗圖書股份有限公司, 2000.
[27]W. Lee, M.-C. Jeong, and J.-M. Myoung, &;quot;Optical characteristics of arsenic-doped ZnO nanowires,&;quot; Applied physics letters, vol. 85, pp. 6167-6169, 2004.
[28]B. Yao, Y. Chan, and N. Wang, &;quot;Formation of ZnO nanostructures by a simple way of thermal evaporation,&;quot; Applied Physics Letters, vol. 81, pp. 757-759, 2002.
[29]曾展晧, &;quot;以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究,&;quot; 成功大學化學工程研究所碩士論文, 2005.
[30]藤嶋昭;橋本和仁;渡部俊也, &;quot;圖解光觸媒,&;quot; 台北,世茂出版有限公司, pp. 1-154, 1997.
[31]勘田博史, &;quot;光觸媒圖解,&;quot; 台北,商周出版社, pp. 1-148, 1994.
[32]Y. Miseki, H. Kato, and A. Kudo, &;quot;Water splitting into H2 and O2 over Cs2Nb4O11 photocatalyst,&;quot; Chemistry Letters, vol. 34, pp. 54-55, 2005.
[33]N. J. Crano, R. C. Chambers, V. M. Lynch, and M. A. Fox, &;quot;Preparation and photocatalytic studies on a novel Ti-substituted polyoxometalate,&;quot; Journal of Molecular Catalysis A: Chemical, vol. 114, pp. 65-75, 1996.
[34]X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, et al., &;quot;Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,&;quot; Journal of the American Chemical Society, vol. 131, pp. 1680-1681, 2009.
[35]X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, et al., &;quot;A metal-free polymeric photocatalyst for hydrogen production from water under visible light,&;quot; Nature Materials, vol. 8, pp. 76-80, 2008.
[36]J. K. Dohrmann and J. Reck, &;quot;Photocorrosion of polycrystalline CdSe in aqueous KOH: an in situ study by photocalorimetry,&;quot; Journal of Electroanalytical Chemistry, vol. 452, pp. 215-220, 1998.
[37]J. Nowotny, C. Sorrell, L. Sheppard, and T. Bak, &;quot;Solar-hydrogen: environmentally safe fuel for the future,&;quot; International journal of hydrogen energy, vol. 30, pp. 521-544, 2005.
[38]A. L. Linsebigler, G. Lu, and J. T. Yates Jr, &;quot;Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,&;quot; Chemical reviews, vol. 95, pp. 735-758, 1995.
[39]雷. 吳紀聖, &;quot;觸媒化學概論與應用,&;quot; 五南, 2014.
[40]J. Li and H. C. Zeng, &;quot;Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors,&;quot; Angewandte Chemie, vol. 117, pp. 4416-4419, 2005.
[41]Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, and J. Weber, &;quot;UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO< sub> 2 semiconductors suspension,&;quot; Journal of Photochemistry and Photobiology A: Chemistry, vol. 183, pp. 218-224, 2006.
[42]B. Bahrami, A. Khodadadi, M. Kazemeini, and Y. Mortazavi, &;quot;Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO< sub> 2 sensor in presence of propane and methane,&;quot; Sensors and Actuators B: Chemical, vol. 133, pp. 352-356, 2008.
[43]F. Pourfayaz, Y. Mortazavi, A. Khodadadi, and S. Ajami, &;quot;Ceria-doped SnO< sub> 2 sensor highly selective to ethanol in humid air,&;quot; Sensors and Actuators B: Chemical, vol. 130, pp. 625-629, 2008.
[44]F. Engelmann and A. Mayer, &;quot;Unterschiede der Frauen untereinander (Pathologie). Für die Gynäkologie wichtige Konstitutionsanomalien,&;quot; in Sterilität und Sterilisation, ed: Springer, 1927, pp. 386-510.
[45]N. Lavoie, F. M. Courtel, P. R. Malenfant, and Y. Abu-Lebdeh, &;quot;Graphene-Based Composite Anodes for Lithium-Ion Batteries,&;quot; in Nanotechnology for Lithium-Ion Batteries, ed: Springer, 2013, pp. 117-162.
[46]O. C. Compton and S. T. Nguyen, &;quot;Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials,&;quot; Small, vol. 6, pp. 711-723, 2010.
[47]M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, et al., &;quot;Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,&;quot; Nano Today, vol. 5, pp. 351-372, 2010.
[48]T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, &;quot;Enhanced photocatalytic hydrogen production over graphene oxide–cadmium sulfide nanocomposite under visible light irradiation,&;quot; The Journal of Physical Chemistry C, vol. 116, pp. 22720-22726, 2012.
[49]稻垣道夫, &;quot;先進碳材料科學與工程,&;quot; 清華大學出版社, 2013.
[50]E. Hong and J. H. Kim, &;quot;Oxide content optimized ZnS–ZnO heterostructures via facile thermal treatment process for enhanced photocatalytic hydrogen production,&;quot; International Journal of Hydrogen Energy, vol. 39, pp. 9985-9993, 6/24/ 2014.
[51]M.-H. Hsu and C.-J. Chang, &;quot;S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production,&;quot; International Journal of Hydrogen Energy.
[52]S. Liu, X. Wang, K. Wang, R. Lv, and Y. Xu, &;quot;ZnO/ZnS–PdS core/shell nanorods: Synthesis, characterization and application for photocatalytic hydrogen production from a glycerol/water solution,&;quot; Applied Surface Science, vol. 283, pp. 732-739, 10/15/ 2013.
[53]W. Nawawi and M. Nawi, &;quot;Electron scavenger of thin layer Carbon coated and Nitrogen doped P25 with enhanced photocatalytic activity under visible light fluorescent lamp,&;quot; Journal of Molecular Catalysis A: Chemical, vol. 374, pp. 39-45, 2013.
[54]J. Chen, F. Xin, S. Qin, and X. Yin, &;quot;Photocatalytically reducing CO< sub> 2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts,&;quot; Chemical Engineering Journal, vol. 230, pp. 506-512, 2013.
[55]X. Tang, Q. Tay, Z. Chen, Y. Chen, G. K. Goh, and J. Xue, &;quot;CuInZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production,&;quot; Journal of Materials Chemistry A, vol. 1, pp. 6359-6365, 2013.
[56]J. Zhou, G. Tian, Y. Chen, X. Meng, Y. Shi, X. Cao, et al., &;quot;In situ controlled growth of ZnIn 2 S 4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance,&;quot; Chemical Communications, vol. 49, pp. 2237-2239, 2013.
[57]P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, and S. Kaneco, &;quot;Photocatalytic Hydrogen Production from Aqueous Na2S+ Na2SO3 Solution with B-Doped ZnO,&;quot; ACS Sustainable Chemistry &; Engineering, vol. 1, pp. 982-988, 2013.
[58]P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, and S. Kaneco, &;quot;Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2S + Na2SO3 solution,&;quot; International Journal of Hydrogen Energy, vol. 38, pp. 8625-8630, 7/17/ 2013.
[59]Y. Wang, J. Wu, J. Zheng, R. Jiang, and R. Xu, &;quot;Ni 2+-doped Zn x Cd 1− x S photocatalysts from single-source precursors for efficient solar hydrogen production under visible light irradiation,&;quot; Catalysis Science &; Technology, vol. 2, pp. 581-588, 2012.
[60]A. Belhadi, S. Boumaza, and M. Trari, &;quot;Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system,&;quot; Applied Energy, vol. 88, pp. 4490-4495, 12// 2011.
[61]Y. Li, G. Ma, S. Peng, G. Lu, and S. Li, &;quot;Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1―x―0.5 yOx (OH) y) under visible light irradiation,&;quot; Applied catalysis. A, General, vol. 363, pp. 180-187, 2009.
[62]M. Murdoch, G. Waterhouse, M. Nadeem, J. Metson, M. Keane, R. Howe, et al., &;quot;The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles,&;quot; Nature Chemistry, vol. 3, pp. 489-492, 2011.
[63]J. Yu, Y. Hai, and M. Jaroniec, &;quot;Photocatalytic hydrogen production over CuO-modified titania,&;quot; Journal of colloid and interface science, vol. 357, pp. 223-228, 2011.
[64]A. Mukherji, B. Seger, G. Q. Lu, and L. Wang, &;quot;Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production,&;quot; ACS nano, vol. 5, pp. 3483-3492, 2011.
[65]Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, et al., &;quot;Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets,&;quot; Journal of the American Chemical Society, vol. 133, pp. 10878-10884, 2011.
[66]P. Gao and D. D. Sun, &;quot;Hierarchical sulfonated graphene oxide–TiO2 composites for highly efficient hydrogen production with a wide pH range,&;quot; Applied Catalysis B: Environmental, vol. 147, pp. 888-896, 4/5/ 2014.
[67]P. Gao, Z. Liu, and D. D. Sun, &;quot;The synergetic effect of sulfonated graphene and silver as co-catalysts for highly efficient photocatalytic hydrogen production of ZnO nanorods,&;quot; Journal of Materials Chemistry A, vol. 1, pp. 14262-14269, 2013.
[68]Q. Li, H. Meng, J. Yu, W. Xiao, Y. Zheng, and J. Wang, &;quot;Enhanced Photocatalytic Hydrogen‐Production Performance of Graphene–ZnxCd1− xS Composites by Using an Organic S Source,&;quot; Chemistry-A European Journal, vol. 20, pp. 1176-1185, 2014.
[69]Q. Xiang and J. Yu, &;quot;Graphene-based photocatalysts for hydrogen generation,&;quot; The Journal of Physical Chemistry Letters, vol. 4, pp. 753-759, 2013.
[70]Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, et al., &;quot;Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene‐Protected 3D Ni Foams,&;quot; Advanced Materials, vol. 25, pp. 756-760, 2013.
[71]J. Yang, X. Zeng, L. Chen, and W. Yuan, &;quot;Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light,&;quot; Applied Physics Letters, vol. 102, p. 083101, 2013.
[72]M. Zhu, Z. Li, B. Xiao, Y. Lu, Y. Du, P. Yang, et al., &;quot;Surfactant Assistance in Improvement of Photocatalytic Hydrogen Production with the Porphyrin Noncovalently Functionalized Graphene Nanocomposite,&;quot; ACS applied materials &; interfaces, vol. 5, pp. 1732-1740, 2013.
[73]X. Zhang, Y. Sun, X. Cui, and Z. Jiang, &;quot;A green and facile synthesis of TiO< sub> 2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution,&;quot; International Journal of Hydrogen Energy, vol. 37, pp. 811-815, 2012.
[74]H.-i. Kim, G.-h. Moon, D. Monllor-Satoca, Y. Park, and W. Choi, &;quot;Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet,&;quot; The Journal of Physical Chemistry C, vol. 116, pp. 1535-1543, 2011.
[75]F. Pei, Y. Liu, S. Xu, J. Lü, C. Wang, and S. Cao, &;quot;Nanocomposite of graphene oxide with nitrogen-doped TiO< sub> 2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution,&;quot; International Journal of Hydrogen Energy, vol. 38, pp. 2670-2677, 2013.
[76]P. Gao, J. Liu, S. Lee, T. Zhang, and D. D. Sun, &;quot;High quality graphene oxide–CdS–Pt nanocomposites for efficient photocatalytic hydrogen evolution,&;quot; Journal of Materials Chemistry, vol. 22, pp. 2292-2298, 2012.
[77]A. Ye, W. Fan, Q. Zhang, W. Deng, and Y. Wang, &;quot;CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation,&;quot; Catalysis Science &; Technology, vol. 2, pp. 969-978, 2012.
[78]Z. Li, Y. Chen, Y. Du, X. Wang, P. Yang, and J. Zheng, &;quot;Triphenylamine-functionalized graphene decorated with Pt nanoparticles and its application in photocatalytic hydrogen production,&;quot; International Journal of Hydrogen Energy, vol. 37, pp. 4880-4888, 2012.
[79]M. Zhu, Y. Dong, B. Xiao, Y. Du, P. Yang, and X. Wang, &;quot;Enhanced photocatalytic hydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxide hybrid,&;quot; Journal of Materials Chemistry, vol. 22, pp. 23773-23779, 2012.
[80]J. Hou, Z. Wang, W. Kan, S. Jiao, H. Zhu, and R. Kumar, &;quot;Efficient visible-light-driven photocatalytic hydrogen production using CdS@ TaON core–shell composites coupled with graphene oxide nanosheets,&;quot; Journal of Materials Chemistry, vol. 22, pp. 7291-7299, 2012.
[81]P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, &;quot;A cuprous oxide–reduced graphene oxide (Cu 2 O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu 2 O,&;quot; Nanoscale, vol. 4, pp. 3875-3878, 2012.
[82]X.-J. Lv, W.-F. Fu, H.-X. Chang, H. Zhang, J.-S. Cheng, G.-J. Zhang, et al., &;quot;Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals,&;quot; Journal of Materials Chemistry, vol. 22, pp. 1539-1546, 2012.
[83]羅聖全, &;quot;研發奈米科技的基本工具之一-電子顯微鏡介-SEM.&;quot;
[84]許宏泰、徐英展、陳志立、謝明勳, &;quot;高解析度穿透式電子顯微鏡分析,&;quot; 2009.
[85]鄭信民、林麗娟, &;quot;X 光繞射應用簡介,&;quot; 工業材料刊, vol. 181, p. 108, 2002.
[86]W. W. Wendlandt and H. G. Hecht, Reflectance spectroscopy: Interscience New York, 1966.
[87]S. Amemiya, &;quot;Scanning electrochemical microscopy,&;quot; Characterization of Materials, 2008.
[88]P. R. Potti and V. C. Srivastava, &;quot;Effect of dopants on ZnO mediated photocatalysis of dye bearing wastewater: A Review,&;quot; in Materials Science Forum, 2013, pp. 165-174.
[89]C. Wu, L. Shen, Y.-C. Zhang, and Q. Huang, &;quot;Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity,&;quot; Materials Letters, vol. 65, pp. 1794-1796, 2011.
[90]I. Watson, J. A. Connor, and R. Whyman, &;quot;Non-crystalline chromium, molybdenum and tungsten phosphate films prepared by metal organic chemical vapour deposition,&;quot; Thin solid films, vol. 201, pp. 337-349, 1991.
[91]K. C. Leonard, K. M. Nam, H. C. Lee, S. H. Kang, H. S. Park, and A. J. Bard, &;quot;ZnWO4/WO3 Composite for Improving Photoelectrochemical Water Oxidation,&;quot; The Journal of Physical Chemistry C, vol. 117, pp. 15901-15910, 2013.
[92]A. Yousef, N. A. Barakat, S. S. Al-Deyab, R. Nirmala, B. Pant, and H. Y. Kim, &;quot;Encapsulation of CdO/ZnO NPs in PU electrospun nanofibers as novel strategy for effective immobilization of the photocatalysts,&;quot; Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 401, pp. 8-16, 2012.
[93]&;quot;ZetaProbe Applications.&;quot;
[94]&;quot;The Dynamic Mobility.&;quot;
[95]A. Galtayries, C. Cousi, S. Zanna, and P. Marcus, &;quot;SO2 adsorption at room temperature on Ni (111) surface studied by XPS,&;quot; Surface and interface analysis, vol. 36, pp. 997-1000, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top