(3.238.174.50) 您好!臺灣時間:2021/04/16 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐新凱
研究生(外文):Sin-Kai Syu
論文名稱:低密度、高強度之環氧複合浮材的製備參數對其物性的影響
論文名稱(外文):Effect of Preparation Parameters on Physical Properties of Low Density and High Strength Epoxy-Based Buoyancy Composites
指導教授:蔡宜壽蔡宜壽引用關係
口試委員:呂晃志駱安亞
口試日期:2014-06-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:122
中文關鍵詞:中空玻璃微珠環氧樹脂低密度浮材
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
目前石油的含量逐漸減少,許多國家均在尋找替代能源,其中一項替代能源之探勘器具為無人水下遙控載具,國內在此設備所裝設的浮材是以進口為主。目前國內在這方面研究甚少,而這類深海域浮材需要在密度與強度兩方面考量,因此其製備工藝有一定困難度。本實驗將探討這類材料的製備參數對其性質的影響,製備出所需求之浮材。
本研究主要利用中空玻璃微珠與環氧樹脂製備環氧複合浮材,並以丙酮、丁酮(MEK)及乙二醇丁醚(BCS)當做稀釋劑,利用疏水矽粉與Al2O3作為補強粉體,以及使用偶合劑APTES將中空玻璃微珠表面改質,製備密度低且具一定強度的環氧複合浮材。並進行耐壓測試,觀察環氧複合浮材經測試後的潰縮量,藉此判斷所製備之環氧複合浮材是否能夠實際應用。
實驗結果得知,當中空玻璃微珠與環氧樹脂比為當中空玻璃微珠:環氧樹脂為55:45時,添加疏水矽粉與Al2O3各添加2 g,稀釋劑為60 g之丙酮與10 %之BCS相混,並添加3 wt%的APTES進行中空玻璃微珠改質,可成功使中空玻璃微珠之表面有機化後與環氧樹脂結合性提升,此參數下所製備之環氧複合浮材硬度為53.6 D,其硬度與未改質前相比提升了5.9 %。在其他性能方面,密度為0.41 g/cm3,吸水率為3.8 %,並成功承受水下4000 m處的壓力,潰縮量僅2.21 %。
最後本實驗成功製備出低密度且具有一定強度之環氧複合浮材,期望能使台灣在無人水下遙控載具的組裝可以不需仰賴進口,並在替代能源的探勘上能更順利的發展。

關鍵字:中空玻璃微珠、環氧樹脂、低密度、浮材
Due to oil content dwindled, many countries are looking for alternative sources of energy, including an exploration of alternative energy equipment for the Unmanned Underwater Remotely Operated Vehicle. At the moment, domestic equipment installed at the buoyancy material is dominated by imports and currently domestic research in this area is also limited. Such buoyancy material of abysmal sea need to be considered in two aspects of density and strength, so that the preparation process has a certain degree of difficulty. This experiment will explore the influence of preparation parameters on the properties of these materials for a demanded buoyancy material.
Experiment results showed that the optimal conditions for increasing the affiliation of hollow glass beads with acrylic epoxy resin were the hollow glass beads and epoxy resin ratio was 55:45, hydrophobic silica powder and Al2O3 was 2 g each, the thinner was mixed 60 g acetone and 10% BCS, and 3 wt% of APTES. The hardness of prepared buoyancy epoxy composites was 53.6 D, which is increased 5.9% compared with non-modified buoyancy material. Among other properties, density was 0.41 g/cm3, water absorption rate was 3.8%, and successfully subjected to underwater at 4000 m pressure where squeeze amount was only 2.21%.
The hardness of prepared buoyancy epoxy composites was 53.6 D, which is increased 5.9% compared with non-modified buoyancy material. Among other properties, density was 0.41 g/cm3, water absorption rate was 3.8%, and successfully subjected to underwater at 4000 m pressure where squeeze amount was only 2.21%.
We successfully prepared epoxy low density with a certain strength of epoxy composite buoyancy material and hopes the Unmanned Underwater Remotely Operated Vehicle can be assembled in Taiwan and may not need to rely on imports and to promote the exploration of alternative energy sources.

Key word: hollow glass microspheres、epoxy、low density、buoyancy
中文摘要....................................................................................................ii
英文摘要...................................................................................................iv
目錄...........................................................................................................vi
圖目錄.......................................................................................................xi
表目錄.....................................................................................................xvi
第一章 前言.................... 1
1.1 緒論.................... 1
1.2 浮材及無人水下載具之介紹.... 2
1.3 高分子複合材料............ 3
1.3.1 高分子材料之背景.......... 3
1.3.2 複合材料................. 4
1.3.3 有機/無機複合材料......... 6
1.4 環氧樹脂介紹.............. 7
1.4.1 環氧樹脂的介紹與發展....... 7
1.4.2 環氧樹脂的種類............ 9
1.4.3 硬化劑的種類.............. 10
1.4.4 環氧樹脂之應用與注意事項.... 10
1.5 中空玻璃微珠的介紹與應用.... 11
1.5.1 中空玻璃微珠概述.......... 11
1.5.2 中空玻璃微珠的製備......... 11
1.5.3 中空玻璃微珠的應用......... 14
1.6 研究動機與目的............ 16
第二章 文線回顧及原理............ 18
2.1 微球應用之文獻回顧......... 18
2.2 添加三氧化二鋁(Al2O3)之文獻回顧 ................................20
2.3 SiO2表面改質介紹與文獻回顧.. 20
2.4 環氧樹脂硬化原理.......... 22
2.5 球磨分散技術與工作原理...... 24
第三章 實驗.................... 28
3.1 實驗藥品................. 28
3.2 實驗儀器................. 31
3.3 實驗流程................. 33
3.3.1 不同中空玻璃微珠與環氧樹脂的比例製備環氧複合浮材....................... 33
3.3.2 改變不同含量及種類的稀釋劑製備環氧複合浮材............................ 36
3.3.3 添加疏水矽粉及Al2O3並改變不同添加比例與球磨前後製備環氧複合浮材.......... 39
3.3.4 使用偶合劑APTES改質中空玻璃微珠製備環氧複合浮材....................... 42
3.4 測試分析................. 45
3.4.1 硬度測試................. 45
3.4.2 吸水率測試............... 47
3.4.3 耐壓測試................. 49
3.4.4 掃描式電子顯微鏡分析(SEM).. 51
3.4.5 雷射粒徑分析(SPSA)........ 51
3.4.6 傅立葉轉換紅外光譜儀(FTIR) 51
第四章 結果與討論............... 52
4.1 中空玻璃微珠與環氧樹脂比例對製成環氧複合浮材的影響...................... 52
4.1.1 密度之影響............... 52
4.1.2 SEM觀察表面型態........... 53
4.2 改變不同含量及種類的稀釋劑對環氧複合浮材的影響......................... 55
4.2.1 單一種類稀釋劑............ 55
4.2.2 丙酮與BCS混合稀釋劑....... 61
4.2.3 丙酮與少量BCS混合稀釋劑.... 66
4.3 添加疏水矽粉及AL2O3對環氧複合浮材的影響.............................. 70
4.3.1 固定疏水矽粉及Al2O3之添加量. 70
4.3.2 改變疏水矽粉及Al2O3之添加量. 76
4.3.3 疏水矽粉與Al2O3球磨後之影響. 82
4.4 添加APTES改質後製備環氧複合浮材 ................................91
4.5 不同參數下製備環氧複合浮材對耐壓測試後之影響........................... 96
第五章 結論.................... 98
參考文獻................................................................................................100
[1] K. Kvenvolden, &;quot;A review of the geochemistry of methane in natural gas hydrate.,&;quot; Organic Geochemistry, vol. 23, p. 997–1008, 1995.
[2] 林武文, &;quot;無人水下載具發展趨勢及軍事之運用,&;quot; 海下技術季刊, vol. 11, no. 4, pp. 43-48, 2000.
[3] 王兆璋、劉金源、黃千芬, &;quot;無人水下遙控載具之簡介,&;quot; 海下技術季刊, vol. 9, no. 2, pp. 4-9, 1999.
[4] 楊麟傑, “應用田口法於聚氨酯/珍珠貝粉體多孔複合薄膜之製備與功能性之研究,” 逢甲大學纖維與複合材料學系碩士論文, p. 3~5, 2011.
[5] 許明發,柯澤豪,劉顯光,郭文雄, “複合材料入門,” 中華民國尖端材料科技協會, pp. 3-2~3-12, 2005.
[6] 馬振基, “高分子複合材料,” 國立編譯館, 1995.
[7] 許明發,郭文雄編著, “複合材料,” 高立圖書有限公司, 1998.
[8] 游錫揚, “纖維複合材料,” 國彰出版社, 1992.
[9] 翁慶隆, “高分子複合材料之應用與未來發展,” 尖端材料科技協會會訊, 編號 9, pp. 29-33, 1994.
[10] S. K. Chaturvedi, C. P. Chao, &;quot;Thermoplastic Constivitutive Modeling of Irradiated Polymer Composites with Matrix Property Change and Fiber-Matrix Debonding,&;quot; Composites Science &; Technology, vol. 54, pp. 201-210, 1995.
[11] S. K. Chaturvedi, C. P. Chao, &;quot;Thermomechanical Modeling of Irradiated Polymer Composites,&;quot; Composites Materials, vol. 28, pp. 980-1008, 1994.
[12] 林冠甫, “奈米α-Al2O3/Epoxy複合板抗壓、抗彎及熱傳導物性的影響,” 逢甲大學紡織工程研究所碩士論文, 2010.
[13] Roy, R., Komarneni, S., Roy, D. M., Mater. Res. Soc. Symp. Proc, vol. 22, p. 347, 1984.
[14] Fu, X. and Qutubuddin,S., Polymer, vol. 42, p. 807, 2001.
[15] Wen, J. and Wilkes, G.L., &;quot;Organic/inorganic hybrid network materials by the sol-gel approach,&;quot; Chem.Mater., vol. 13, pp. 3306-3319, 1996.
[16] S. J. Komarnei, Mater. Chem., vol. 2, p. 1219, 1982.
[17] B. M. Novak, Adv. Mater., vol. 5, p. 422, 1993.
[18] 賴耿陽, “環氧樹脂應用實務,” 復漢出版社, p. 1~44, 1986.
[19] 林兼民, “加工變因對四官能基環氧樹脂TGDDM/DDS系性質之影響,” 逢甲大學紡織工程研究所碩士論文, p. 1, 1994.
[20] 覺志堅, “玻璃纖維/SiO2-Clay-TiO2/環氧樹脂複合材料板的製備與特徵之研究,” 逢甲大學紡織工程研究所碩士論文, p. 4~7, 2009.
[21] C. Swetha , Ravi Kumar, &;quot;Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams,&;quot; Materials and Design, vol. 32, pp. 4152-4163, 2011.
[22] P. Bunn, J.T. Mottram, &;quot;Manufacture and compression properties of syntactic foams,&;quot; COMPOSITES, vol. 24, no. 7, pp. 565-571, 1993.
[23] 劉亞輝,馮建林,許傳華, &;quot;高性能空心玻璃微珠的應用研究,&;quot; 化學工程與裝備, vol. 5, p. 33, 2011.
[24] Wu Huazhu, Yu Ping. Wu Huazhu, &;quot;Production and echnology progress of hollow glass microsphere,&;quot; NEW CHEMICAL MATERIALS, vol. 40, no. 4, pp. 26-27, 2012.
[25] 彭壽,王芸,彭程,彭小波, &;quot;空心玻璃微珠製備方法及應用研究進展,&;quot; 矽酸鹽通報, vol. 40, no. 4, pp. 1508-1513, 2012.
[26] Chun-bao, WANG Qi-feng, DU Zhu-wei, CHEN Xian, LI Hao-ran, SUN, &;quot;Preparation and Characterization of Solid Buoyancy Materials Based on Epoxy Resins,&;quot; FINE CHEMICALS, vol. 22, no. 3, pp. 174-176, 2005.
[27] Guang-zhi, PAN Shun-long, ZHANG Jing-jie, SONG, &;quot;Research progress of hollow glass microsphere and solid buoyant material for deep-sea application,&;quot; JOURNAL OF TROPICAL OCEANOGRAPHY, vol. 28, no. 4, pp. 17-24, 2009.
[28] J. Lee, A.F. Yee, &;quot;Fracture of glass bead/epoxy composites: on micro-mechanical,&;quot; Polymer, vol. 41, pp. 8363-8373, 2000.
[29] Nikhil Gupta, Eyassu Woldesenbet, Patrick Mensah, &;quot;Compression properties of syntactic foams: effect of cenosphere,&;quot; Composites: Part A, vol. 35, p. 103–111, 2003.
[30] Erwin M. Wouterson, Freddy Y.C. Boey , Xiao Hu , Shing-Chung Wong, &;quot;Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures,&;quot; Composites Science and Technology, vol. 65, p. 840–850, 2005.
[31] Walid Naous, Xiao-Yan Yu Qing-Xin Zhang, Kimiyoshi Naito andYutaka Kagawa, &;quot;Morphology, tensile properties, and fracture toughness of epoxy/Al2O3 nanocomposites,&;quot; Polymer Physics, vol. 44, pp. 1466-1473, 2006.
[32] Yates, P.C. and Trebilock, J. W., &;quot;Chemistry of Cr complexs used as coupling agents in Fiberglas resin laminates.,&;quot; SPI, 16th Ann.Tech. Conf. Reinf. Plast., pp. 8-B, 1961.
[33] Hatsuo Ishida, Jack L. Koenig, &;quot;Molecular organization of the coupling agent interphase of fiber-glass reinforced plastics,&;quot; Polymer Physics, vol. 17, no. 10, pp. 1807-1813, 1979.
[34] L. H. Dubois and B. R. Zegarski, &;quot;Reaction of alkoxysilane coupling agents with dehydroxylated silica surfaces,&;quot; Journal of the American Chemical Society, vol. 115, no. 3, pp. 1190-1191, 1993.
[35] 陳世珉, “製備Epoxy/SiO2混成有機/無機奈米複合材料及其性質之研究,” 國立中興大學化學工程學系碩士論文, 2003.
[36] Carmen C. Riccardi, Roberto J.J. Williams, &;quot;A Kinetic Scheme for an Amine-Epoxy Reaction with Simultaneous Etherification,&;quot; Applied Polymer, vol. 32, no. 2, pp. 3445-3456, 1986.
[37] 黃琇嫈, “環氧樹脂/蒙脫土奈米複合材料之製備與性質之探討,” 中原大學化學研究所碩士論文, 2003.
[38] 林彥宏, “透明二氧化矽奈米粒子薄膜表面的超疏水/超親水圖案化及超疏水-超親水梯度化研究,” 國立成功大學化學工程學系碩士論文, p. 4, 2008.
[39] Bishop, J.F. and Czekai,D.A., US Patent, vol. 679, p. 138, 1997.
[40] Czekai, D.A. and Seman,L.P., US Patent, vol. 500, p. 331, 1996.
[41] 吳秀敏, &;quot;PTFE/SiO2奈米複合板材製備及其物理性質之研究,&;quot; 逢甲大學紡織工程研究所碩士論文, 2005.
[42] Fu.J.M, Li,Y and Guo,J.L.,J., Colloid & Int, vol. 202, pp. 404-455, 1998.
[43] R. Kohen, &;quot;Skin antioxidants: their role in aging and in oxidative stress—new approaches for their evaluation.,&;quot; Biomed. Pharmacother., vol. 53, pp. 181-192, 1999.
[44] 黃淑娟, “奈米粉體製程技術,” 化工資訊, pp. 34-38, 2002.
[45] 黃才薰, “螢光素@聚乙二醇/聚丙二醇@二氧化矽奈米複合粒子之製備,” 逢甲大學紡織工程研究所碩士論文, 2010.
[46] 鄧芹英、劉嵐、鄧慧敏編著, “波譜分析教程,” 科學出版社, pp. 29-88, 2003.
[47] 王明光、王敏昭編著, “實用儀器分析,” 合記圖書出版社, pp. 335-366, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔