跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖健貿
論文名稱:無人飛行載具之雷達散射截面縮減技術開發
論文名稱(外文):The Technical Development of Radar Cross Section Reduction for Unmanned Aerial Vehicles
指導教授:楊瑞彬楊瑞彬引用關係
口試委員:林聖朝陳育德楊瑞彬
口試日期:2014-06-25
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:111
中文關鍵詞:無人飛行載具匿蹤技術雷達吸波材料雷達散射截面
相關次數:
  • 被引用被引用:2
  • 點閱點閱:470
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用高頻電磁分析軟體ANSYS HFSS之動差法與物理光學法分析載具於10 GHz單站雷達波照射下,其全機之雷達散射截面(RCS)與表面電流分佈。使用動差法計算載具之雷達散射截面時,其數值解精確度較高,然而該法於光學區之計算量龐大,易受電腦硬體資源限制。物理光學法採用高頻近似法,忽略雷達波於載具表面之繞射及表面波等現象,僅能計算導體材料之反射現象,導致其計算結果之精準度不如動差法。物理光學法則用以評估載具表面電流響應
本研究以動差法搭配網格分散處理法,克服高頻光學區計算之困難,以物理光學法評估載具表面電流響應並標定載具之強反射源(RCS亮點)後,貼覆自製之羰基鐵吸波膠片,利用同軸法量測其電磁參數並進行分析,以求得改善後之雷達散射截面,最後以微波暗室進行RCS實際驗證。研究結果顯示載具未貼覆吸波膠片之最大RCS值達13 dB,垂直尾翼經貼覆1.8 mm羰基鐵吸波膠片後,可將載具之最大RCS值縮減至6 dB,大幅提升載具之匿蹤效果。
In this study, the radar cross section (RCS) of the entire unmanned aerial vehicle (UAV) at 10 GHz is solved by the physical optics (PO) method and the method of moment (MoM) by using the high frequency electromagnetic simulation software ANSYS HFSS. The MoM can precisely predict the RCS of entire UAV, however, it requires huge computation time in the high frequency range. PO is a high frequency approximation which focuses on the specular reflection of conductive materials as well as neglects the diffraction phenomenon and thus causes a large discrepancy in the Rayleigh and resonance regions.
This thesis uses MoM and the domain decomposition method to overcome the high frequency calculation problem. PO is also used to obtain the electric current distribution over the UAV and locate the bright returns of RCS. The bright scattering area is then further coated with a layer of radar absorbing material (RAM) made of carbonyl iron/epoxy omposites. The electromagnetic characteristics of the RAM are measured through the transmission/reflection method and then used in the RCS calculation. The results show that the vertical tail of the UAV coated with 1.8-mm-thick carbonyl iron RAM can reduce the maximum RCS from 13 dB to 6 dB at 10 GHz, which significantly improves the stealth capability of UAVs.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 5
1.4 內容概述 7
第二章 基礎理論 9
2.1 基礎電磁波理論 9
2.1.1 馬克斯威爾方程式 9
2.1.2 電磁波於自由空間中的傳遞 11
2.1.3 電磁波於均勻介質中的傳遞 12
2.1.4 電磁波在平面介質的反射 13
2.1.5 材料之吸波效能計算與阻抗匹配 15
2.1.6 反射損耗 17
2.2 雷達散射截面 18
2.2.1 雷達探測技術 18
2.2.2 雷達散射截面定義 21
2.2.3 雷達散射機制 24
2.3 雷達散射截面計算法 29
2.3.1 動差法(Method of Moment) 29
2.3.2 物理光學法(Physical Optics) 30
第三章 吸波膠片製作與微波量測技術 33
3.1 吸波材料之特性量測 33
3.1.1 網路分析儀量測原理 34
3.1.2 同軸波導管法 36
3.1.3 自由空間法 40
3.2 實驗試片製備與量測 42
3.2.1 實驗材料 42
3.2.2 實驗試片製備 44
3.2.3 實驗材料特性量測與吸波效能評估 49
3.3 雷達散射截面量測 56
3.3.1 室內RCS量測架構 57
3.3.2 量測目標物製作 59
第四章 雷達散射截面分析與驗證 61
4.1 ANSYS HFSS之準確性驗證 61
4.1.1 文獻模擬 61
4.1.2 簡易外型驗證 63
4.1.3 吸波材料於雷達散射截面之驗證 68
4.2 全機雷達散射截面分析 72
4.2.1 無人飛行載具模型建立 74
4.2.2 全機雷達散射截面分析 75
4.2.3 表面電流分佈與全機RCS亮點分析 77
4.3 全機雷達散射截面縮減 88
4.3.1 雷達散射截面之縮減方法 88
4.3.2 吸波材料應用於亮點結構分析 90
第五章 結論 103
參考文獻 107
【1】Lt. Kendra L. B. Cook, “The Silent Force Multiplier: The History and Role of UAVs in Warfare”, Aerospace Conference, IEEE, pp 1-7, 2007.
【2】J.A. Tirpak , “The 6th Generation Fighter”, U.S. Air Force, 2009.
【3】L.N. Medgyesi-Mitschang and J. M. Putnam, “Electromagnetic Scattering From Electrically Large Coated Flat and Curved Strips: Entire Domain Galerkin Formulation” , IEEE Transactions on Antennas and Propagation, vol. ap-35, no. 7, July 1987.
【4】J. A. Stratton, “ Electromagnetic Theory”, McGraw-Hill, 1941.
【5】N.N. Youssef, “Radar Cross Section of Complex Targets”, Proceedings of IEEE, vol.77, no. 5, 1989.
【6】B. Kolundzija, “Evaluation of Radar Cross Section of Large Platforms by The Method of Moment at PC Computers”, Antennas and Propagation Society International Symposium, IEEE, vol.2, pp.94-97, 2002.
【7】周錫增、郭李瑞,“全機電磁散射效應分析”, 國防科技學術合作計畫成果發表會論文集,477-480頁,民國100年。
【8】M.A. Alves, “Simulations of the Radar Cross Section of a Stealth Aircraft”, Microwave and Optoelectronics Conference, pp.409-412, 2007.
【9】I.M. Martin, “Radar Cross Section Measurements and Simulations of a Model Airplane in the X-band”, PIERS Online, vol. 5, no.4, pp.377-380, 2009.
【10】吳劍秋,“基礎電磁學”,全華科技圖書股份有限公司,8-1~8-7頁,民國85年。
【11】郭仁財,“微波工程”,高立圖書有限公司,71-79頁,民國91年。
【12】W.C. Brown, “The History of Power Transmission by Radio Waves”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-32, no. 9, 1984.
【13】M.C. Wicks, “Four Problem in Radar”, Computational Noncommutative Algebra and Applications, pp.57-73, 2004.
【14】D.C. Jenn, Radar and Laser Cross Section Engineering, AIAA, 1995.
【15】陳保輝,“雷達目標反射特性”,國防工業出版社,17-19頁,1993。
【16】阮穎錚,“雷達截面與隱身技術”,國防工業出版社,30-33頁,1998。
【17】Y. Harada, “Radiation Forces on a Dielectric Sphere in the Rayleigh Scattering Regime”, Optics Communications 124, pp-529-541, 1996.
【18】E.F. Knott, “Radar Cross Section”, Artech House, 1993.
【19】許舜迪,“鐵基複合吸波材料之製備與最佳化研究”,逢甲大學碩士論文,2008。
【20】M.A.S. Miacci, “Indoor Radar Cross Section Measurements of Simple Targets” Journal of Aerospace Technology and Management, vol. 4, no 1, pp. 25-32, 2012.
【21】S.W. Wu, “High-Frequency RCS of Open Cavities with Rectangular and Circular Cross Sections”, IEEE Transactions on Antennas and Propagation, vol.37, no. 5, 1989.
【22】李明洋,“HFSS電磁仿真設計”,人民郵電出版社,2013。
【23】W.H. Choi, “Design of Circuit-Analog (CA) Absorber and Application to the Leading Edge of a Wing-Shaped Structure”, IEEE Transactions on Electromagnetic Compatibility, vol. 56, pp. 599-607, 2014.
【24】A. Motevasselian, “Radar Cross Section Reduction of Aircraft Wing Front End”, International Conference on Electromagnetics in Advanced Applications, pp. 237-240, 2009.
【25】E.L. Nohara, “Radar Cross Section Reduction of Dihedral and Trihedral Corner Reflectors Coated with Radar Absorbing Materials”, Microwave and Optoelectronics Conference, vol. 1, pp.479-484, 2003.
【26】J.W. Odendaal, “RCS Measurements and Results of an Engine inlet System Design Optimization”, IEEE Antennas and Propagation Magazine, vol. 42, no. 6, 2000.
【27】D. Yu, “Comparison of Various Full-Wave Methods in Calculating the RCS of Inlet”, International Conference on Microwave and Millimeter Wave Technology, vol. 2, pp.1018-1021, 2008.
【28】R. L. Fante, M. T. McCormack, “Reflection properties of the Salisbury screen,” Antennas and Propagation, IEEE, Vol.36, No.10, pp. 1443-1454, 1988.
【29】T. K. Wu, “Frequency Selective Surface and Grid Array,” John Wiley &; Sons, Inc., pp. 2-13, 1995.
【30】B. A. Munk, “Frequency Selective Surfaces Theory and Design,” John Wiley &; Sons, Inc., pp. 18-20, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top