跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 00:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳守豪
論文名稱:三維邊界元素法之自動網格生成與裂紋強度因子分析
論文名稱(外文):3D Automatic Mesh Generation for the Boundary Element Method and Its Analysis of the Stress Intensity Factors of Cracks
指導教授:賴盈誌賴盈誌引用關係
口試委員:賴盈誌夏育群楊瑞彬
口試日期:2014-07-07
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:邊界元素法裂紋強度因子自動網格生成
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是以邊界元素法來對三維物件及裂紋做分析計算,並透過與ANSYS的分析比對,來驗證比較其結果之準確性和誤差值。但目前邊界元素法在建立分析模型上,是藉由人工來做判斷,劃分所需要的節點之座標,來完成網格切割,因此在建立模型上常常需要耗費極大的時間,與有限元素法建構模型之時間來做比較,相對的會變的比較沒效率。因此,為了兼顧過程中的精確度和速度,本論文的程式開發部分,是使用 Compaq Visual Fortran 為計算核心,並以邊界元素法為基礎編寫其程式,來開發 3D 圖形的自動網格生成,減低切割網格時的難度和時間。之後將配合不同的分析模型和邊界條件的組合,來驗證其可靠性。本論文對模擬3D基本圖形做探討,透過邊界元素法模擬分析三維裂紋問題。
This paper is mainly used the boundary element method to analysis and calculate for three-dimensional objects and the cracks, then, compared with the results of ANSYS to verify the accuracy and the error values. But currently, used the boundary element method to establish the analysis model is done by artificial judgment, dividing the required node coordinates to complete cutting the grid, so, often takes a great time to establish the model. And, compared with the time it takes to use the finite element method to establish the model, the boundary element method becomes less efficient. Therefore, in order to look after both accuracy and speed in the process, in this paper the part of program development , is using the Compaq Visual Fortran to calculate, and, based on the boundary element method to write programs, to develop to automatically generate the 3D mesh graphics for reducing the difficulty and the time when cutting the mesh. After that, will combinate the different analysis models with the boundary conditions to verify its reliability. In this paper, to discuss with the basic 3D graphics, and analyze the problems of three-dimensional cracks by boundary element method.
目錄
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 IX
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.3 文獻回顧 5
第二章 理論回顧 12
2.1 邊界積分方程式 12
2.2 異向性材料之位移解 14
2.3 異向性材料之應力解 16
2.4 邊界元之裂紋強度因子計算 17
第三章 3-D自動網格生成之程式開發 20
3.1 程式開發目的 20
3.2 模型建構理論 20
3.3 建構3D模型 21
3.3.1 長方體 21
3.3.2 梯形體 22
3.3.3 中空圓柱體 22
3.3.4 球體 22
3.3.5 圓柱體中心含圓形裂紋 23
3.3.6 長方體中心含橢圓形裂紋 23
3.3.7 長方體含邊緣裂紋 23
3.4 程式發展說明 24
第四章 數值範例 36
4.1 範例一 36
4.2 範例二 37
4.3 範例三 38
4.4 範例四 38
4.5 範例五 39
第五章 結論與未來展望 60
參考文獻 61
參考文獻

【1】Muskhelishvili N.I. (1953): Singular Integral Equations, Noordhoff, Gronigen.
【2】Kupradze V.D. (1965): Potential Mechods in the Theory of Elasticity, Program of Scientific Translations.
【3】Cruse T.A. (1969): Numerical Solutions in Three Dimensional Elastostatics”, Journal of Solids and Structures, Vol. 5, pp. 1259-1274.
【4】Rizzo F.J. (1967): An Integral Equation Approach to Boundary Value Problems of Classics Elastostatics, Journal of Applied Mathematics, Vol. 25, pp. 83-95.
【5】Fichera G. (1961) :Linear Elliptic Equations of Higher Order in Two Independent Variables and Singular Integral Equations with Applications to Anisotropic Inhomogeneous Elasticity, Proceedings of Symposium in Partial Differential Equations and Continuous Mechanics, University of Wisconsin Press, pp. 55-80,.
【6】Hsiao G. and MacCamy R.C. (1973):Solutions of Boundary Value Problems by Integral Equations of the Fiest Kind”, SIAM Review, Vol. 15, pp. 687-705.
【7】Hsiao G. and Wendland W.L. (1977):A Finite Element Method for Some Integral Equations of the First Kind, Journal of Mathematical Analysis Applications, Vol. 58, pp. 449-481.
【8】Aliabadi, M.H. (2002): The Boundary Element Method: Volume 2 Applications in Solids and Structures. John Wiley &; Sons, Chichester, England.
【9】Tan, C.L.; Gao, Y.L. (1992): Boundary element analysis of plane anisotropic bodies with stress concentrations and cracks, Composite Struct., 20, 17-28.
【10】Tan, C.L.; Gao, Y.L.; Afagh, F.F. (1992): Anisotropic stress analysis of inclusion problems using the boundary integral equation method, J. Strain Analysis Eng’ng Design, 27, 67-76.
【11】Shiah, Y.C.; Tan, C.L. (2000): Fracture mechanics analysis in 2D anisotropic thermoelasticity using BEM, CMES: Computer Modeling in Engineering &; Sciences, 1, 91-99.
【12】Shiah, Y.C.; Guao, T.L.; Tan, C.L. (2005): Two-dimensional BEM thermoelastic analysis of anisotropic media with concentrated heat sources, CMES: Computer Modeling in Engineering &; Sciences, 7, 321-338.
【13】Liu, G.R.; Achenbach, J.D. (1994): A strip element method for stress analysis ofanisotropic linearly elastic solids, Trans. ASME J. Appl. Mech., 61, 270-277.
【14】Paik, H.S.; Lee, S.Y. Chang, S.Y. (2004): Finite difference stress analysis ofanisotropic three-dimensional curved bodies with free boundaries, KSCE J. Civil Engng., 8, 49-57.
【15】Sladek, J.; Sladek, V.; Atluri, S.N. (2004): Meshless local Petrov-Galerkin method in anisotropic elasticity, CMES: Computer Modeling in Engineering &; Sciences, 6,477-489.
【16】Li, S.; Atluri, S.N. (2008): The MLPG mixed collocation method for materialorientation and topology optimization of anisotropic solids and structures, CMES:Computer Modeling in Engineering &; Sciences, 30, 37-56.
【17】Synge, J.L. (1957): The Hypercircle in Mathematical Physics, Cambridge University Press, Cambridge.
【18】Barnett, D.M. (1972): The precise evaluation of derivatives of the anisotropic elastic Green’s functions. Phys. Stat. Sol. (b) 49, 741–748.
【19】Nakamura, G.; Tanuma, K. (1997): A formula for the fundamental solution of anisotropic elasticity. Q. J. Mech. Appl. Math., 50, 179-194.
【20】Chen, T.; Lin, F.Z. (2001): Numerical evaluation of derivatives of the anisotropic elastic Green’s functions. Mech. Res. Comm., 20, 501-506.
【21】Pan, E.; Yuan, F.G. (2000): Boundary element analysis of three dimensional cracks in anisotropic solids. Int. J. Numer. Methods Engng., 48, 211-237.
【22】Wang, C.Y.; Denda, M. (2007): 3D BEM for general anisotropic elasticity. Int. J.Solids Struct., 44, 7073-7091.
【23】Wilson, R.B.; Cruse, T.A. (1978): Efficient implementation of anisotropic three dimensional boundary integral equation stress analysis. Int. J. Numer. Methods Engng., 12, 1383-1397.
【24】Sales, M.A.; Gray, L.J. (1998): Evaluation of the anisotropic Green’s function and its derivatives. Comp. &; Struct., 69, 247-254.
【25】Phan, P.V.; Gray, L.J.; Kaplan, T. (2004): On the residue calculus evaluation of the 3D anisotropic elastic Green’s function. Comm. Numer. Methods Engng., 20,335-341.
【26】Tonon, F.; Pan, E.; Amadei, B. (2001): Green’s functions and boundary element method formulation for 3D anisotropic media. Comp. &; Struct., 79, 469-482.
【27】Wang, C.Y. (1997): Elastic fields produced by a point source in solids of general anisotropy. J. Engng. Math., 32, 41-52.
【28】Ting, T.C.T.; Lee,V.G. (1997):The three-dimensional elastostic Green’s function for general anisotropic linear elastic solid. Q. J. Mech. Appl. Math., 50, 407-426.
【29】Lee,V.G. (2003): Explicit expression of derivatives of elastic Green’s functions for general anisotropic materials. Mech. Res. Comm., 30, 241–249.
【30】Shiah, Y.C.; Tan, C.L.; Lee, V.G.; Chen, Y.H. (2008a): Evaluation of Green’s functions for 3D anisotropic elastic solids. Advances in Boundary Element Techniques IX, Proc. BeTeq 2008 Conf., Seville, R. Abascal &; M.H. Aliabadi (eds.),E.C. Ltd. (U.K.), pp. 119-124.
【31】Shiah, Y.C.; Tan, C.L.; Lee, V.G. (2008b): Evaluation of explicit-form fundamentalsolutions for displacements and stresses in 3D anisotropic elastic solids. CMES:Computer Modeling in Engineering &; Sciences, 34, 205-226.
【32】劉文正,遞迴網格生成法,國立中央大學數學研究所碩士論文,2002.
【33】黃駿宇,二維邊界元素法之自動網格生成與其應用,逢甲大學航太與系統工程學系碩士論文,2007.
【34】夏育群、陳春來,「邊界元素法之入門介紹」,高立圖書有限公司,中華民國93年12月15日。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top