跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭郁
研究生(外文):Yu Cheng
論文名稱:雙機流線型機台在有優先限制下最小化總完工時間的排程問題
論文名稱(外文):Minimizing the total completion time on two-machine flowshop scheduling problem with a precedence constraint
指導教授:吳進家吳進家引用關係林文欽林文欽引用關係
指導教授(外文):Wu Chin ChiaLin Win Chin
口試委員:許洲榮楊肅正
口試日期:2014-06-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:統計學系統計與精算碩士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:排程模擬退火法最大值排序搜尋法優先限制分枝界限法
外文關鍵詞:Schedulingsimulated annealinglargest order value methodjob precedencebranch-and-bound algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本文針對雙機流線型機台在作業順序有優先限制情況下的排程問題的研究,其中的目標是要找到一組排序使總完工時間最小化。為了解決所提出的問題,本文提出若干凌越性質和下界值嵌在分枝界限法中,來有效尋找一個最佳的解。本文也提出了一種模擬退火法(SA)和一種最大值排序搜尋法(LOV)及一些改進方法來尋找近似解。最後,本文對所有演算法進行小工作件和大工作件的模擬測試。
This research addresses a two-machine flowshop scheduling problem with a job constraint in which the goal is to find a sequence to minimize the total completion time. To solve the proposed problem, we develop several dominance rules and lower bounds used in a branch-and-bound method for efficiently finding an optimal solution. We also propose a simulated annealing and a largest order value method and their corresponding improvements for a near-optimal solution. In addition, we test the performances of all the proposed algorithms for the small and big numbers of jobs.
第一章 緒論 1
第一節 研究動機與背景 1
第二節 研究目的 2
第三節 研究範圍與假設 2
第四節 問題描述 3
第五節 研究架構 4
第二章 文獻探討 6
第三章 建立啟發式演算法與分枝界限法 11
第一節 最大值排序搜尋法(LOV) 11
第二節 模擬退火法(SA) 14
第三節 改善方法 18
第四節 分枝界限法 19
第四章 資料模擬與結果分析 25
第一節 資料模擬 25
第二節 分枝界限法節點數 26
第三節 模擬小工作件數與結果分析 28
第四節 模擬大工作件數與結果分析 33
第五章 結論與建議 43
第一節 研究結論 43
第二節 研究建議 43
參考文獻 45
1.Allahverdi, A., Aldowaisan, T. (2002) New heuristic to minimize total completion time in m-machine flowshops. International Journal of Production Economics 77: 71-83.
2.Bean, J.C. (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA Journal of Computing 6: 154-160.
3.Chandra, C., Liu, Z., He, J., Ruohonen, T. (2014) A binary branch and bound algorithm to minimize maximum scheduling cost. Omega 42: 9-15.
4.Chung, C.S., Flynn, J., Kirca, O. (2002) A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems. International Journal of Production Economics 79: 185-196.
5.Chung, C.S., Flynn, J., Kirca, O. (2006) A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problem. Eur. J. Oper. Res. 174:1-10
6.Cadambi, B.V., Sathe, Y.S. (1993) Two-machine flowshop scheduling to minimise mean flow time. Operations 30: 35-41.
7.Croce, F.D., Narayan, V., Tadei, R. (1996) The two-machine total completion time flow shop problem. European Journal of Operational Research 90: 227-237.
8.Croce, F.D., Ghirardi, M., Tadei, R. (2002) An improved branch-and-bound algorithm for the two machine total completion time flow shop problem. European Journal of Operational Research 139: 293-301.
9.Das, S., Canel, C. (2005) An algorithm for scheduling batches of parts in a multi-cell flexible manufacturing system. International Journal of Production Economics 97: 247-262.
10.Eren, T., Guner, E. (2008) A bicriteria flowshop scheduling with a learning effect. Applied Mathematical Modelling 32: 1719-1733.
11.Fisher, M.L. (1971) A dual algorithm for the one-machine scheduling problem. Mathematical Programming 11: 229-251.
12.French, S. (1982) Sequence and Scheduling: An introduction to the Mathematics of the Job-Shop, Ellis Horwood Ltd.
13.Gonzalez, T., Sahni, S. (1978). Flowshop and jobshop schedules: Complexity and approximation. Operations Research 26 (1): 36-52.
14.Hoogeveen, H., Kawaguchi, T. (1999) Minimizing total completion time in a two-machine flowshop: Analysis of special cases. Mathematics of Operations Research 24: 887-913.
15.Ignall, E., Schrage, L.(1965) Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems. Operations Research 13: 400-412.
16.Kirkpatrick, S., Gellat, C.D., Vecchi, M.P. (1983) Optimization by simulated annealing algorithm. Science 220: 671-680.
17.Kohler, W.H., Steiglitz, K. (1975) Exact, approximate and guaranteed accuracy algorithms for the flowshop scheduling problem n/2/F/ . Journal of Association for Computing Machinery 22: 106-114.
18.Lee, W.C., Wu, C.C. (2004) Minimizing total completion time in a two-machine flowshop with a learning effect. International Journal of Production Economics 88: 85-93.
19.Lee, W.C., Chen, S.-K., Chen C.-W., Wu, C.-C. (2011) A two-machine flowshop problem with two agents. Computers &; Operations Research 38: 98-104.
20.Nawaz, M.(1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11: 91–95
21.Pinedo, M.L. (2008) Scheduling Theory, Algorithm, System, Third edition, 2008.
22.Pan, C.H., Wu, C.C. (1996) An asymptotic two-phase algorithm to minimize total flow time for a two-machine flowshop. International Journal of System Science 27: 925-930.
23.Storn, R., Priced, K., (1997) Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11: 341–359.
24.Wang, C., Chu, C., Proth, J.M. (1996) Efficient heuristic and optimal approaches for n/2/F/ scheduling problems. International Journal of Production Economics 44: 225-237.
25.Wang, J.B., Xia, Z.Q. (2005) Flow-shop scheduling with a learning effect. Journal of the Operational Research Society 56: 1325-1330.
26.Wang, J.B., Liu, L.L. (2009) Two-machine flow shop problem with effects of deterioration and learning. Computers &; Industrial Engineering 57: 1114-1121.
27.Wang, J.B., Wang, M.Z. (2013) Solution algorithms for the weighted completion time minimization flow shop scheduling with decreasing linear deterioration. Int. J adv. Manufacturing Technology 67:243-253.
28.Wu, C.C., Lee, W.C. (2006) Two-machine flowshop scheduling to minimize mean flow time under linear deterioration. International Journal of Production Economics 103: 572-584.
29.Wu, C.C., Lee, W.C., Wang, W.C. (2007) A two-machine flowshop maximum tardiness scheduling problem with a learning effect. International Journal of Advanced Manufacturing Technology 31: 743-750.
30.Wu, C.C., Lee, W.C. (2009) A note on the total completion time problem in a permutation flowshop with a learning effect. European Journal of Operational Research 192: 343-347
31.Wu, C.C., Wu, W.-H., Hsu, P.-H., Lai, K (2012) A two-machine flowshop scheduling problem with a truncated sum of processing-times-based learning function. Applied Mathematical Modelling 36:5001-5014
32.Xiang, S., Tang, G., Cheng, T.C.E. (2000) Solvable cases of permutation flowshop scheduling with dominating machines. International Journal of Production Economics 66: 53-57.
33.Yang, S.-H., Wang, J..-B. (2011) Minimizing total weighted completion time in a two-machine flow shop scheduling under linear deterioration. Applied Mathematics and Computation 217: 4819-4826.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊