跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯俊民
研究生(外文):Chun_Min Ko
論文名稱:亞醯胺化對聚亞醯胺非揮發性電阻式記憶體的影響
論文名稱(外文):Impact of Imidization on Polyimide-based Nonvolatile Resistance Random Access Memories
指導教授:楊文祿
指導教授(外文):Wen_Luh Yang
口試委員:李景松楊文祿劉堂傑
口試日期:2014-07-18
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:47
中文關鍵詞:聚亞醯胺電阻式記憶體亞醯胺化
外文關鍵詞:Resistance Random Access Memory (ReRAM)polyimide (PI)organic materialimidization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
新式記憶體的提出與發展受到關注與研究,其中電阻式記憶體具有低耗能、高操作速度、結構簡單與良好的微縮性的等優點所以備受矚目。可應用於電阻式記憶體絕緣層的材料種類繁多,近年來,有機材料被提出替換傳統的無機材料。有機電阻式記憶可應用於軟型基板上,達到可撓式電子產品的製作,此外,低成本的製程與化學架構的多變性,使得有機材料成為電阻式記憶體的發展重點之一。
本實驗採用由達興公司所提供的聚亞醯胺薄膜,製成Al/DAXIN-PI/TaN結構的電阻式記憶體,其表現出優良的特性,包括相當大的記憶窗(on/off ratio > 108)與相當低的操作能量(ca. 2.7×106Vm-1)。透過控制熱亞醯胺化的溫度,我們發現在高溫的製程下會改變聚亞醯胺薄膜的微結構,提高操作電壓,同時降低高阻態時漏電流。
The proposed novel memories has been attracted attention and investigated for replacing the chief non-volatile memory, floating gate memory. Resistive Random Access Memory (ReRAM) with low power consumption, high operation speed, sample structure, and well scaling is considered as the candidate for the next generation. Various materials is used as the resistive switching layer of ReRAM. In recent years, organic material is proposed to replace traditional inorganic material. The organic-based ReRAM is appropriate for flexible electronic device with low cost fabrication technology and the device characteristics can be modulated with multiple chemical synthesis. Therefore, the organic-based ReRAM is thought to be the one of most importance issue in the ReRAM area.
In this study, a Al/DAXIN-PI/TaN structure ReRAM device was fabricated with the polyimide thin film is provided from the DAXIN company. The DAXIN-PI device shows excellent performance, including wider large memory window (Ron/Roff >108) and low operation energy (ca. 2.7×106Vm-1). Furthermore, we found that the macro-structure of PI thin film is modulated with thermal imidization temperature and operation voltage is increasing and high resistance state (HRS) leakage current is decreasing.
目錄
致謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 新穎式記憶體 2
1.2.1 磁阻記憶體(MRAM) 4
1.2.2 相變化記憶體(PCM) 5
1.2.3 鐵電記憶體(FeRAM) 6
1.3 電阻式記憶體 7
1.3.1 電阻式記憶體(ReRAM) 7
1.3.2 電阻轉換現象 9
1.3.3 電阻轉換機制 10
1.4 電流傳導機制 14
1.4.1 歐姆傳導(Ohmic conduction) 14
1.4.2 熱離子激發(Thermionic emission) 14
1.4.3 Fowler-Nordheim tunneling (F-N tunneling) 15
1.4.4 Poole-Frenkel emission 15
1.4.5 空間電荷限制電流(Space charge limit current,SCLC) 16
第二章 有機材料電阻式記憶體 19
2.1 有機材料 19
2.1.1 聚亞醯胺(Polyimide-PI) 19
2.2 電荷轉移(Charge transfer,CT) 23
第三章 聚亞醯胺電阻式記憶體特性探討 25
3.1 研究動機 25
3.2 實驗方法與步驟 25
3.2.1 表面輪廓儀(Alpha-step profilometer) 27
3.3 電壓電流特性探討 27
3.3.1 電壓電流量測 27
3.3.2 起始特性差異 30
3.3.3 電阻轉換機制 33
3.3.4電流傳導機制 34
3.4 電阻率穩定度 38
3.5 資料保存能力 39
第四章 結論 42
參考文獻 43
[1]簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介”,國研科技,1,31-36,(2004)。
[2]W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM Tech. Dig., pp. 193-196, 2002.
[3]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in IEDM Tech. Dig., pp. 297-300, 2008.
[4]R. Waser, R. Dittmann, G. Staikov, K. Szot,” Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, pp. 2632–2663, 2009.
[5]S. Peng, F. Zhuge, X. Chen, X. Zhu, B. Hu, L. Pan, B. Chen, and R. W. Li, “Mechanism for resistive switching in a oxide-based electrochemical metallization memory,” Appl. Phys. Lett., vol. 102, pp. 072101-072101-4, 2012.
[6]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, &;quot;Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, pp. 033715-1-033715-10,2005
[7]C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, &;quot;High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application,&;quot; Appl. Phys. Lett., vol. 91, pp. 223510-223510-3, 2007.
[8]W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, &;quot;Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, pp. 022110-022110-3, 2008.
[9]M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C.J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett., vol. 9, pp. 1476-1481, 2009.
[10]F. Pan, C. Chen, Z. Wang, Y. Yang, J. Yang, F. Zeng, “Nonvolatile resistive switching memories-characteristics, mechanisms and challenges,” Prog. Nat. Sci. Mater. Int., vol. 20, pp. 1-15, 2010.
[11]A. Sawa, ”Resistive switching in transition metal oxide,” Mater. Today, vol.11, pp. 28-36, 2008.
[12]S. M. Sze, and K. K. Ng, “Physics of semiconductor devices,” 3rd edition, Wiley-Interscience, pp. 227-228, 2007.
[13]M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev., vol. 103, pp. 1648–1656, 1956.
[14]K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, “Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 91, pp. 012907-012910, 2007.
[15]F. Claudius, and F. Hilmar, “Polyimides: fundamentals and application,” ed. M.K. Ghosh, and K. L. Mittal, p759, 1996.
[16]Y. L. Liu, Q. D. Ling, E. T. Kang, K. G .Neoh, D. J. Liaw, W. T. Liou, C. X. Zhu, and D. S. H. Chan, “Volatile electrical switching in a functional polyimide containing electron-donor and –acceptor moieties,” J. Appl. Phys., vol. 105, pp. 044501-044501-9, 2009.
[17]T. Kuorosawa, C. C. Chueh, C. L. Liu, T. Higashihara, M. Ueda, and W. C. Chen, “High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages,” Macromolecules, vol. 43, pp. 1236–1244, 2010.
[18]C. J. Chen, H. J. Yen, W. C. Chen, and G. S. Liou, “Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties,” J. Mater.Chem., vol. 22, pp. 14085-14093, 2012.
[19]N. H. You, C. C. Chueh, C. L. Liu, M. Ueda, and W. C. Chen, “Synthesis and memory device characteristics of new sulfur donor containing polyimides,” Macromolecules, vol. 42, pp. 4456-4463, 2009.
[20]Q. D. Ling, F. C. Chang, Y. Song, C. X. Zhu, D. J. Liaw, D. S. H. Chan, E. T. Kang, and K. G. Neoh, “Synthesis and dynamic random access memory behavior of a functional polyimide,” J. Am. Chem. Soc., vol. 128 , pp. 8732-8733, 2006.
[21]Q. D. Ling, D. J. Liaw, E. Y. H. Teo, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, ”Polymer memories: bistable electrical switching and device performance,” Polymer, vol. 48, pp. 5182-5201, 2007.
[22]Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, ”Polymer electronic memories: materials, devices and mechanisms,” Prog. Polym. Sci., vol. 33, pp. 917-978, 2000.
[23]J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “Programmable polymer thin film and non-volatile memory device,” Nat.Mater., vol. 3, pp. 918-922, 2004.
[24]Y. J. Cheng, S. H. Yang, and C. S. Hsu, “Synthesis of conjugated polymer for organic solar cell applications,” Chem. Rev., vol. 109, pp. 5868-5923, 2009.
[25]C. J. Chen, H. J. Yen, W. C. Chen, and G. S. Liou, ”Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties,” J. Mater. Chem., vol. 22, pp. 14085-14093, 2012.
[26]T. Kurosawa,T Higashihara, and M. Ueda, ”Polyimide memory: a pithy guideline for future applications,” Polym. Chem., vol 4, pp. 16-30, 2013.
[27]B. Hu, F. Zhuge, X. Zhu, S. Peng, X. Chen, L. Pan, Q. Yan, and R. W. Li, ”Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant,” J. Mater. Chem., vol. 22, pp. 520-526, 2012.
[28]G. W. Becker, L. Bottenbruch, R. Binsack, and D. Braun: Engineering Thermoplastics. Polyamides. (in German) Hanser Verlag, 1998.
[29]Wolfgang Weissbach: Materials science and materials testing. 2007.
[30]B. Lei, W. L. Kwan, Y. Shao, and Y. Yang, “Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices,” Org. Electron., vol. 10, pp. 1048–1053, 2009.
[31]W. L. Kwan, B. Lei, Y. Shao, S. V. Prikhodko, N. Bodzin, and Y. Yang, “Direct observation of localized conduction pathways in photocross- linkable polymer memory,” J. Appl. Phys., vol. 105, pp. 124516-124516-5, Jun. 2009.
[32]B. Chao, J.–M. Yun, S. Song, Y. Ji, D. Y. Kim, and T. Lee, ”Direct observation of Ag filamentary paths in organic resistive memory devices,” Adv. Funct. Mater., vol. 21, pp. 3976–3981, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top