跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/02/25 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪天富
論文名稱:閔考斯基碎型貼片堆疊天線之圓極化設計研究
論文名稱(外文):Study of Aperture-coupled Stack Antenna with Minkowski island-based Fractal Patch for Circular Polarization Operation
指導教授:柏小松劉智群劉智群引用關係
口試委員:張道治田春林鄧聖明劉智群柏小松沈昭元蔡慶龍
口試日期:2014-01-13
學位類別:博士
校院名稱:逢甲大學
系所名稱:電機與通訊工程博士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:112
中文關鍵詞:多頻帶圓極化共平面波導饋入槽孔耦合天線
外文關鍵詞:Multi-bandCircularly PolarizedCoplanar waveguide-fedAperture-coupled Antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文專研於閔考斯基碎形之碎形理論、實驗與天線設計應用,並提出兩支具有圓形極化特性的閔考斯基碎形堆疊天線。第一支為單頻帶圓極化操作的閔考斯基碎形堆疊天線,證明閔考斯基碎形具有縮小化之特性;第二支為互補式閔考斯基碎形堆疊天線,依照閔考斯基碎形規則,提出互補式閔考斯基碎形理論並設計出具有雙頻帶圓極化操作的天線。天線設計流程依據下述三步驟。首先,以碎形理論中的規則,如碎形維度、碎形遞迴等,將閔考斯基碎形與互補式閔考斯基碎形建構出圖形的數學式。接著藉由ANSYS HFSS模擬軟體進行天線電氣參數分析,如軸比、電流分布、場型、阻抗匹配等。最後進行天線的實作分析比較與討論。本論文的天線架構,使用雙層玻璃纖維(FR4)基板,將單饋入槽孔耦合的饋入機制,建構於下層玻璃纖維(FR4)基板,接著在上層玻璃纖維(FR4)基板的上表面使用閔考斯基碎形與互補式閔考斯基碎形,並加入微擾元件激發出正交模態,達到圓極化設計。
The dissertation presents fractal theories, experiments and antenna design for Minkowski-island-based (MIB) fractal patch and complementary Minkowski-island-based (CMIB) fractal patch. Two antennas are discussed in this dissertation. The first antenna is a compact single-feed stack antenna consisting of a MIB fractal patch with perturbation element for circular polarization (CP) application, also proves the MIB fractal which can reduce antenna&;#39;s area. The second antenna is a single-feed stack antenna consisting of a complementary MIB (CMIB) fractal patch with perturbation element for dual-band and dual circular polarization applications, also presents a new transformation which can be expressed in mathematical form for complementary MIB fractal. Three steps for antenna design are as follow: first, to use fractal theories as designing rules such as fractal dimension, fractal iteration, and to use a mathematical form as being expressed MIB and CMIB fractal geometries. Second, by using commercial software of ANSYS HFSS to analysis antenna&;#39;s features such as AR spectrum, current distribution, radiation patterns, and reflection coefficient. Finally, experiment, verify and discuss by an investigation on those antenna&;#39;s features. The antenna configuration is makeed with double-layer FR4 glass-fiber board. The lower layer is fed by a 50Ω microstrip line with aperture-coupled to the upper fractal patch. The upper layer is fractal patch, and using perturbation element to excite orthogonal mode for CP operation.
ACKNOWLEDGMENT i
摘 要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
CHAPTER 1 - Introduction 1
1.1. Background 1
1.2. Research Motivation 2
1.3. Thesis Contributions and Research Outcomes 5
1.4. Thesis Structure 6
CHAPTER 2 - Fractal Antenna and Circular Polarization Basis 7
2.1. Antenna Basis 7
2.1.1. Antenna&;#39;s parameters 7
2.1.2. The overview of fractal Antenna 9
2.2. Circular Polarization 24
2.3. MIB fractal and complementary MIB fractal 29
2.3.1. Fractal features and fractal dimension 29
2.3.2. MIB fractal geometry and iteration 30
2.3.3. Iterated function systems (IFS) of MIB fractal 33
2.3.4. Fractal dimension of MIB fractal 35
2.3.5. Complementary Minkowski island fractal geometry and iteration 36
2.4. The design construction of fractal antenna 40
2.4.1. Minkowski island based fractal antenna 40
2.4.2. Complementary Minkowski island base fractal antenna 42
2.4.3. Antenna&;#39;s feeding structure 43
CHAPTER 3 - Compact Single-Feed Circularly Polarized Aperture-coupled Stack Antenna with Minkowski-island-based Fractal Patch 46
3.1. Introduction 46
3.2. Antenna Configuration and Basis 49
3.2.1. MIB fractal patch 49
3.2.2. orthogonal mode 52
3.2.2. Proposed Antenna 53
3.3. Simulation and Measurement 54
3.3.1. Return loss spectrums 54
3.3.2. Circular polarization 55
3.3.3. Radiation patterns 59
3.4. Summary 62
CHAPTER 4 - Dual-band Circularly Polarized Aperture-coupled Stack Antenna with Fractal Patch for WLAN and WiMAX Applications 64
4.1. Introduction 64
4.2. Antenna Configuration and Basis 67
4.3. Simulation and Measurement 75
4.4. Summary 83
CHAPTER 5-Conclusions 85
5.1. Summary 85
5.2. Suggestions for Further Research 87
References 88
PUBLICATION LIST 111
References
[1] Mandelbrot, B. B., The Fractal Geometry of Nature, W.H. Freeman, 1994.
[2] Werner, D. H. and Mittra, R., &;quot;Part I: Geometry, topology, and group,&;quot; Frontier in Electromanetics, IEEE Microwave Technology and RF, 2000.
[3] D. H. Werner and S. Ganguly, &;quot;An overview of fractal antenna engineering research,&;quot; IEEE Antennas and Propagation Magazine, vol. 45, pp. 38-57, 2003.
[4] C. Puente, J. Romeu, R. Pous, J. Ramis, and A. Hijazo, &;quot;Small but long Koch fractal monopole,&;quot; Electronics Letters, vol. 34, pp. 9-10, 1998.
[5] C. P. Baliarda, J. Romeu, and A. Cardama, &;quot;The Koch monopole: a small fractal antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 48, pp. 1773-1781, 2000.
[6] P. Jonsson, J. Siden, T. Olsson, and W. Gang, &;quot;High-directivity fractal-vee dipoles,&;quot; IEEE Antenna and Propagation society International Symposium, vol. 4, pp. 558-561, 2002.
[7] S. R. Best, &;quot;On the resonant properties of the Koch fractal and other wire monopole antennas,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 74-76, 2002.
[8] S. R. Best, &;quot;On the performance properties of the Koch fractal and other bent wire monopoles,&;quot; IEEE Transactions on Antennas and Propagation, vol. 51, pp. 1292-1300, 2003.
[9] K. J. Vinoy, J. K. Abraham, and V. K. Varadan, &;quot;On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves,&;quot; IEEE Transactions on Antennas and Propagation, vol. 51, pp. 2296-2303, 2003.
[10] M. B. Abdillah, O. Pascal, and H. Aubert, &;quot;Cross-shaped fractal antenna: A compact circularly polarized radiating element,&;quot; Microwave and Optical Technology Letters, vol. 43, pp. 518-521, 2004.
[11] S. H. Zainud-Deen, K. H. Awadalla, S. A. Khamis, and N. A. El shalaby, &;quot;Radiation and scattering from Koch fractal antennas,&;quot; Proceedings of 21 National Radio Science Conference, pp. B8-1-9, 2004.
[12] J. Guterman, A. A. Moreira, and C. Peixerio, &;quot;Dual-band miniaturized microstrip fractal antenna for a small GSM 1800 + UMTS mobile handset,&;quot; IEEE Proceedings of the 12th Mediterranean Electro-technical Conference, vol. 2, pp. 499-501, 2004.
[13] K. J. Vinoy, K. A. Jose, V. K. Varadan, and V. V. Varadan, &;quot;Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications,&;quot; Microwave and Optical Technology Letters, vol. 29, pp. 215-219, 2001.
[14] J. Anguera, C. Puente, and J. Soler, &;quot;Miniature monopole antenna based on the fractal Hilbert curve,&;quot; IEEE International Antennas and Propagation Symposium, vol. 4, pp. 546-549, 2002.
[15] S. R. Best and J. D. Morrow, &;quot;The effectiveness of space-filling fractal geometry in lowering resonant frequency,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 112-115, 2002.
[16] S. R. Best, &;quot;A comparison of the performance properties of the Hilbert curve fractal and meander line monopole antennas,&;quot; Microwave and Optical Technology Letters, vol. 35, pp. 258-262, 2002.
[17] J. Anguera, C. Puente, E. Martínez, and E. Rozan, &;quot;The fractal Hilbert monopole: A two-dimensional wire,&;quot; Microwave and Optical Technology Letters, vol. 36, pp. 102-104, 2003.
[18] D. Gala, J. Soler, C. Puente, C. Borja, and J. Anguera, &;quot;Miniature microstrip patch antenna loaded with a space-filling transmission line based on the fractal Hilbert curve,&;quot; Microwave and Optical Technology Letters, vol. 38, pp. 311-312, 2003.
[19] J. M. González-Arbesú, S. Blanch, and J. Romeu, &;quot;The Hilbert curve as a small self-resonant monopole from a practical point of view,&;quot; Microwave and Optical Technology Letters, vol. 39, pp. 45-49, 2003.
[20] X.-S. Yang, B.-Z. Wang, and Y. Zhang, &;quot;Two-port reconfigurable Hilbert curve patch antenna,&;quot; Microwave and Optical Technology Letters, vol. 48, pp. 91-93, 2006.
[21] C. Puente, J. Claret, F. Sagues, J. Romeu, M. Q. Lopez-Salvans, and R. Pous, &;quot;Multiband properties of a fractal tree antenna generated by electrochemical deposition,&;quot; Electronics Letters, vol. 32, pp. 2298-2299, 1996.
[22] D. H. Werner, A. R. Bretones, and B. R. Long, &;quot;Radiation characteristics of thin-wire ternary fractal trees,&;quot; Electronics Letters, vol. 35, pp. 609-610, 1999.
[23] M. Sindou, G. Ablart, and C. Sourdois, &;quot;Multiband and wideband properties of printed fractal branched antennas,&;quot; Electronics Letters, vol. 35, pp. 181-182, 1999.
[24] J. P. Gianvittorio and Y. Rahmat-Samii, &;quot;Fractal element antennas: a compilation of configurations with novel characteristics,&;quot; IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 1688-11691, 2000.
[25] J. S. Petko and D. H. Werner, &;quot;Dense 3D fractal tree structures as miniature end-loaded dipole antennas,&;quot; IEEE Antenna and Propagation Society International Symposium, vol. 4, pp. 94-97, 2002.
[26] J. S. Petko and D. H. Werner, &;quot;Miniature reconfigurable three-dimensional fractal tree antennas,&;quot; IEEE Transactions on Antennas and Propagation, vol. 52, pp. 1945-1956, 2004.
[27] N. Cohen, “Fractal antenna applications in wireless telecommunications” Professional Program Proceedings in Electronics Industries, New England, pp. 43-49, 1997.
[28] A. Lamecki and P. Debicki, &;quot;Broadband properties of a Minkowski fractal curve antenna,” 14th International Conference on Microwaves, Radar and Wireless Communications, vol. 3, pp. 785-788, 2002.
[29] S. R. Best, &;quot;A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas,&;quot; IEEE Antennas and Propagation Magazine, vol. 45, pp. 9-28, 2003.
[30] H. M. Elkamchouchi and M. N. A. El-Salam, &;quot;Square loop antenna miniaturization using fractal geometry,&;quot; IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 254-257, 2003.
[31] S. R. Best, &;quot;A comparison of the resonant properties of small space-filling fractal antennas,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 197-200, 2003.
[32] C. Puente, J. Romeu, R. Pous, X. Garcia, and F. Benitez, &;quot;Fractal multiband antenna based on the Sierpinski gasket,&;quot; Electronics Letters, vol. 32, pp. 1-2, 1996.
[33] C. Puente, J. Romeu, R. Bartoleme, and R. Pous, &;quot;Perturbation of the Sierpinski antenna to allocate operating bands,&;quot; Electronics Letters, vol. 32, pp. 2186-2188, 1996.
[34] C. Puente, M. Navarro, I. Romeu, and R. Pous, &;quot;Variations on the fractal Sierpinski antenna flare angle,&;quot; IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 2340-2343, 1998.
[35] C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, &;quot;On the behavior of the Sierpinski multiband fractal antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 46, pp. 517-524, 1998.
[36] G. J. Walker and J. R. James, &;quot;Fractal volume antennas,&;quot; Electronics Letters, vol. 34, pp. 1536-1537, 1998.
[37] X. Liang and M. Yan Wah Chia, &;quot;Multiband characteristics of two fractal antennas,&;quot; Microwave and Optical Technology Letters, vol. 23, pp. 242-245, 1999.
[38] M. Navarro, J. M. Gonzalez, C. Puente, J. Romen, and A. Aguasca, &;quot;Self-similar surface current distribution on fractal Sierpinski antenna verified with infra-red thermograms,&;quot; IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 1566-1569, 1999.
[39] C. P. Baliarda, C. B. Borau, M. N. Rodero, and J. R. Robert, &;quot;An iterative model for fractal antennas: application to the Sierpinski gasket antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 48, pp. 713-719, 2000.
[40] S. R. Best, &;quot;On the significance of self-similar fractal geometry in determining the multiband behavior of the Sierpinski gasket antenna,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 22-25, 2002.
[41] S. R. Best, &;quot;Operating band comparison of the perturbed Sierpinski and modified Parany Gasket antennas,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 35-38, 2002.
[42] S. R. Best, &;quot;On the radiation pattern characteristics of the Sierpinski and modified Parany gasket antennas,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 39-42, 2002.
[43] G. Montesinos, J. Anguera, C. Puente, and C. Borja, &;quot;The Sierpinski fractal bowtie patch: a multifracton-mode antenna,&;quot; IEEE Antenna and Propagation Society International Symposium, vol. 4, pp. 542-545, 2002.
[44] J. Parron, J. Romeu, J. M. Rius, and J. R. Mosig, &;quot;Method of moments enhancement technique for the analysis of Sierpinski pre-fractal antennas,&;quot; IEEE Transactions on Antennas and Propagation, vol. 51, pp. 1872-1876, 2003.
[45] J. Anguera, E. Martinez, C. Puente, C. Borja, and J. Soler, &;quot;Broad-band dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry,&;quot; IEEE Transactions on Antennas and Propagation, vol. 52, pp. 66-73, 2004.
[46] C. T. P. Song, P. S. Hall, H. Ghafouri-Shiraz, and D. Wake, &;quot;Fractal stacked monopole with very wide bandwidth,&;quot; Electronics Letters, vol. 35, pp. 945-946, 1999.
[47] D. Zhengwei, G. Ke, J. S. Fu, and G. Baoxin, &;quot;Analysis of microstrip fractal patch antenna for multi-band communication [by FDTD],&;quot; Electronics Letters, vol. 37, pp. 805-806, 2001.
[48] S. Wong and B. L. Ooi, &;quot;Analysis and bandwidth enhancement of Sierpinski carpet antenna,&;quot; Microwave and Optical Technology Letters, vol. 31, pp. 13-18, 2001.
[49] Y. Liu, S.-x. Gong, and D.-m. Fu, &;quot;Microstrip fractal patch antenna for multi-band communication,&;quot; IEEE 3rd International Conference on Microwave and Millimeter Wave Technology, pp. 600-602, 2002.
[50] T. W. Hee, P. S. Hall, and K. Y. Liew, &;quot;Novel shorted Minkowski-based wideband fractal monopole,&;quot;, IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 246-249, 2003.
[51] T. W. Hee, P. S. Hall, and C. T. P. Song, &;quot;Fractal PIFA, dipole and monopole antennas,&;quot; IEEE Topical Conference on Wireless Communication Technology, pp. 275-276, 2003.
[52] K. Siakavara and F. Tsaldaris, &;quot;A multi-wideband microstrip antenna designed by the square-curve fractal technique,&;quot; Microwave and Optical Technology Letters, vol. 41, pp. 180-185, 2004.
[53] G. S. Lee, &;quot;A uniplanar wideband loop-antenna design using an alternate inverted 2D cantor set sequence,&;quot; Microwave and Optical Technology Letters, vol. 39, pp. 437-439, 2003.
[54] P. W. Tang, &;quot;Fractal multiband antennas based on polygons,&;quot; IEEE Antenna and Propagation Society International Symposium, vol. 4, pp. 230-233, 2003.
[55] P. W. Tang and P. F. Wahid, &;quot;Hexagonal fractal multiband antenna,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 3, pp. 111-112, 2004.
[56] K. Siakavara, &;quot;Enhanced fractal microstrip-antenna performance by using photonic-bandgap fractal ground plane,&;quot; Microwave and Optical Technology Letters, vol. 42, pp. 397-402, 2004.
[57] J. C. Liu, Y. J. Liu, D. C. Chang, C. C. Chang, and C. Cheng, &;quot;Fractal multiband antennas based on lotus-pod patterns,&;quot; Microwave and Optical Technology Letters, vol. 33, pp. 223-228, 2002.
[58] C. T. P. Song, P. S. Hall, and H. Ghafouri-Shiraz, &;quot;Multiband multiple ring monopole antennas,&;quot; IEEE Transactions on Antennas and Propagation, vol. 51, pp. 722-729, 2003.
[59] H. Tang, R. Donnan, and C. Parini, &;quot;Printed multiple ring fractal antennas,&;quot; IEEE International Conference on Communications, Circuits and Systems, vol. 1, pp. 489-492, 2005.
[60] J. C. Liu, D. C. Chang, D. Soong, C. H. Chen, C. Y. Wu, and L. Yao, &;quot;Circular fractal antenna approaches with descrates circle theorem for multiband/wideband applications,&;quot; Microwave and Optical Technology Letters, vol. 44, pp. 404-408, 2005.
[61] J. C. Liu, D. C. Lou, C. Y. Liu, C. Y. Wu, and T. W. Soong, &;quot;Precise determinations of the CPW-fed circular fractal slot antenna,&;quot; Microwave and Optical Technology Letters, vol. 48, pp. 1586-1592, 2006.
[62] J. C. Liu, C. Y. Wu, D. C. Chang, and C. Y. Liu, &;quot;Relationship between Sierpinski gasket and Apollonian packing monopole antennas,&;quot; Electronics Letters, vol. 42, pp. 847-848, 2006.
[63] J. C. Liu, C. Y. Wu, C. H. Chen, D. C. Chang, and J. Y. Chen, &;quot;Modified Sierpinski fractal monopole antenna with Descartes circle theorem,&;quot; Microwave and Optical Technology Letters, vol. 48, pp. 909-911, 2006.
[64] H. Rmili, O. E. Mrabet, J. M. Floc&;#39;h, and J. L. Miane, &;quot;Study of an electrochemically-deposited 3-D random fractal tree-monopole antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 55, pp. 1045-1050, 2007.
[65] R. Azaro, E. Zeni, P. Rocca, and A. Massa, &;quot;Synthesis of a Galileo and Wi-MAX three-band fractal-eroded patch antenna,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 510-514, 2007.
[66] S. N. Sinha and M. Jain, &;quot;A self-affine fractal multiband antenna,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 110-112, 2007.
[67] A. Sundaram, M. Maddela, and R. Ramadoss, &;quot;Koch-fractal folded-slot antenna characteristics,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 219-222, 2007.
[68] D. D. Krishna, M. Gopikrishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, &;quot;CPW-fed Koch fractal slot antenna for WLAN/WiMAX applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 389-392, 2008.
[69] W. He, R. Jin, and J. Geng, &;quot;Low radar cross-section and high performances of microstrip antenna using fractal uniplanar compact electromagnetic bandgap ground,&;quot; IET Microwaves, Antennas and Propagation, vol. 1, pp. 986-991, 2007.
[70] B. Mirzapour and H. R. Hassani, &;quot;Size reduction and bandwidth enhancement of snowflake fractal antenna,&;quot; IET Microwaves, Antennas and Propagation, vol. 2, pp. 180-187, 2008.
[71] D. C. Chang, B. H. Zeng, and J. C. Liu, &;quot;CPW-fed circular fractal slot antenna design for dual-band applications,&;quot; IEEE Transactions on Antennas and Propagation, vol. 56, pp. 3630-3636, 2008.
[72] Y. Kim and D. L. Jaggard, &;quot;The fractal random array,&;quot; Proceedings of the IEEE, vol. 74, pp. 1278-1280, 1986.
[73] H. Werner and P. L. Werner, &;quot;On the synthesis of fractal radiation patterns,&;quot; Radio Science, vol. 30, pp.29-45, 1995.
[74] J. Shaker and M. Cuhaci, &;quot;Multi-band, multi-polarisation reflector-reflectarray antenna with simplified feed system and mutually independent radiation patterns,&;quot; IEE Proceedings Microwaves, Antennas and Propagation, vol. 152, pp. 97-101, 2005.
[75] J. Yeo, J.-F. Ma, and R. Mittra, &;quot;GA-based design of artificial magnetic ground planes (AMGS) utilizing frequency-selective surfaces for bandwidth enhancement of microstrip antennas,&;quot; Microwave and Optical Technology Letters, vol. 44, pp. 6-13, 2005.
[76] S. S. Bor, T. C. Lu, J. C. Liu, and B. H. Zeng, &;quot;Fractal monopole-like antenna with series Hilbert-curves for WLAN dual-band and circular polarization applications,&;quot; Microwave and Optical Technology Letters, vol. 51, pp. 876-880, 2009.
[77] J. C. Liu, B. H. Zeng, H. L. Chen, S. S. Bor, and D. C. Chang, &;quot;Compact fractal antenna with self-complementary Hilbert-curves for WLAN dual-band and circular polarization applications,&;quot; Microwave and Optical Technology Letters, vol. 52, pp. 2535-2539, 2010.
[78] M. N. A. Karim, M. K. A. Rahim, and T. Masri, &;quot;Fractal Koch dipole antenna for UHF band application,&;quot; Microwave and Optical Technology Letters, vol. 51, pp. 2612-2614, 2009.
[79] R. Barroso, D. Marcano, and M. Diaz, &;quot;Two-stage Parany monopole antenna with triangular complements,&;quot; Electronics Letters, vol. 45, pp. 492-493, 2009.
[80] A. Mehdipour, I. D. Rosca, A. Sebak, C. W. Trueman, and S. V. Hoa, &;quot;Full-composite fractal antenna using carbon nanotubes for multiband wireless applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 891-894, 2010.
[81] K. C. Hwang, &;quot;Dual-wideband monopole antenna using a modified half-sierpinski fractal gasket,&;quot; Electronics Letters, vol. 45, pp. 487-489, 2009.
[82] W. J. Krzysztofik, &;quot;Modified Sierpinski fractal monopole for ISM-bands handset applications,&;quot; IEEE Transactions on Antennas and Propagation, vol. 57, pp. 606-615, 2009.
[83] K. Siakavara, &;quot;Hybrid-fractal direct radiating antenna arrays with small number of elements for satellite communications,&;quot; IEEE Transactions on Antennas and Propagation, vol. 58, pp. 2102-2106, 2010.
[84] J. Pourahmadazar, C. Ghobadi, J. Nourinia, and H. Shirzad, &;quot;Multiband ring fractal monopole antenna for mobile devices,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 863-866, 2010.
[85] T. F. Hung, S. S. Bor, C. Y. Wei, J. C. Liu, and H. T. Sun, &;quot;An aperture-couple stack antenna with Minkoski-island-based patch for circular polarization and wide-band applications,&;quot; Progress In Electromagnetics Research Symposium, pp. 1084 - 1086, 2011.
[86] Y. K. Choukiker, S. K. Behera, and R. Jyoti, &;quot;Sectoral Sierpinski gasket fractal antenna for wireless LAN applications,&;quot; International Journal of RF and Microwave Computer-Aided Engineering, vol. 22, pp. 68-74, 2012.
[87] R. Kumar, P. Malathi, and K. Sawant, &;quot;On the design of wheel-shaped fractal antenna,&;quot; Microwave and Optical Technology Letters, vol. 53, pp. 155-158, 2011.
[88] M. K. A. Rahim, M. N. A. Karim, F. Zubir, O. Ayop, and N. A. Samsuri, &;quot;Second iteration fractal Koch planar log periodic antenna design,&;quot; Microwave and Optical Technology Letters, vol. 53, pp. 1869-1875, 2011.
[89] D. O. Kim, C. Y. Kim, J. K. Park, and N. I. Jo, &;quot;Compact band notched ultra-wideband antenna using the Hilbert-curve slot,&;quot; Microwave and Optical Technology Letters, vol. 53, pp. 2642-2648, 2011.
[90] R. Kumar and P. N. Chaubey, &;quot;On the design of inscribed pentagonal-cut fractal antenna for ultra wideband applications,&;quot; Microwave and Optical Technology Letters, vol. 53, pp. 2828-2830, 2011.
[91] L. Lizzi and A. Massa, &;quot;Dual-band printed fractal monopole antenna for LTE applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 760-763, 2011.
[92] A. Azari, &;quot;A new super wideband fractal microstrip antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 59, pp. 1724-1727, 2011.
[93] D. T. Li and J. F. Mao, &;quot;A Koch-like sided fractal bow-tie dipole antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 60, pp. 2242-2251, 2012.
[94] H. Oraizi and S. Hedayati, &;quot;Miniaturization of microstrip antennas by the novel application of the Giuseppe Peano fractal geometries,&;quot; IEEE Transactions on Antennas and Propagation, vol. 60, pp. 3559-3567, 2012.
[95] S. Behera and K. J. Vinoy, &;quot;Multi-port network approach for the analysis of dual band fractal microstrip antennas,&;quot; IEEE Transactions on Antennas and Propagation, vol. 60, pp. 5100-5106, 2012.
[96] W. L. Chen, G. M. Wang, and C. X. Zhang, &;quot;Small-size microstrip patch antennas combining Koch and Sierpinski fractal-shapes,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 738-741, 2008.
[97] J. Pourahmadazar, C. Ghobadi, and J. Nourinia, &;quot;Novel modified pythagorean tree fractal monopole antennas for UWB applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 484-487, 2011.
[98] A. Azari, A. Ismail, A. Sali, and F. Hashim, &;quot;A new super wideband fractal monopole-dielectric resonator antenna,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1014-1016, 2013.
[99] R. Kumar and P. N. Chaubey, &;quot;Design of coplanar waveguide-feed pentagonal-cut ultra-wide bandwidth fractal antenna and its backscattering,&;quot; IET Microwaves, Antennas and Propagation, vol. 6, pp. 1407-1414, 2012.
[100] Antennas (3rd edition), by J. Kraus and R. Marhefka, McGraw-Hill, 2001.
[101] J. S. Row, &;quot;Design of aperture-coupled annular-ring microstrip antennas for circular polarization,&;quot; IEEE Transactions on Antennas and Propagation, vol. 53, pp. 1779-1784, 2005.
[102] Y. T. Chen, S. W. Wu, and J. S. Row, &;quot;Broadband circularly-polarised slot antenna array,&;quot; Electronics Letters, vol. 43, pp. 1323-1324, 2007.
[103] Nasimuddin and Z. N. Chen, &;quot;Aperture-coupled asymmetrical C-shaped slot microstrip antenna for circular polarization,&;quot; IET Microwaves, Antennas and Propagation, vol. 3, pp. 372-378, 2009.
[104] A. Buffi, R. Caso, M. R. Pino, P. Nepa, and G. Manara, &;quot;Single-feed circularly polarised aperture-coupled square ring slot microstrip antenna,&;quot; Electronics Letters, vol. 46, pp. 268-269, 2010.
[105] T. N. Chang and J. M. Lin, &;quot;Serial aperture-coupled dual band circularly polarized antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 59, pp. 2419-2423, 2011.
[106] S. Liang, &;quot;The elliptical microstrip antenna with circular polarization,&;quot; IEEE Transactions on Antennas and Propagation, vol. 29, pp. 90-94, 1981.
[107] S. A. Long, S. Liang, D. Schaubert, and F. Farrar, &;quot;An experimental study of the circular-polarized elliptical printed-circuit antenna,&;quot; IEEE Transactions on Antennas and Propagation, vol. 29, pp. 95-99, 1981.
[108] P. C. Sharma and K. Gupta, &;quot;Analysis and optimized design of single feed circularly polarized microstrip antennas,&;quot; IEEE Transactions on Antennas and Propagation, vol. 31, pp. 949-955, 1983.
[109] I. Wolff, &;quot;Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,&;quot; Electronics Letters, vol. 8, pp. 302-303, 1972.
[110] J. C. Liu, B. H. Zeng, L. Badjie, S. Drammeh, S. S. Bor, T. F. Hung, et al., &;quot;Single-feed circularly polarized aperture-coupled stack antenna with dual-mode square loop radiator,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 887-890, 2010.
[111] J.-C. Liu, S.-H. Chiu, C.-P. Kuei, and B.-H. Zeng, &;quot;A novel Minkowski-island-based fractal patch for dual-mode and miniaturization band-pass filters,&;quot; Microwave and Optical Technology Letters, vol. 53, pp. 594-597, 2011.
[112] HFSS version 11.0, Ansoft Software Inc., Pittsburgh, PA, 2007.
[113] C. Y. Pan, T. S. Horng, W. S. Chen, and C. H. Huang, &;quot;Dual wideband printed monopole antenna for WLAN/WiMAX applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 149-151, 2007.
[114] C. Mahatthanajatuphat, S. Saleekaw, and P. Akkaraekthalin, &;quot;A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application,&;quot; Progress in Electromagnetics Research, vol. 89, pp. 57-74, 2009.
[115] S. T. Fan, Z. Yin, H. Li, S. J. Wei, X. H. Li, and L. Kang, &;quot;A novel tri-band printed monopole antenna with an embedded ∩-shaped slot and a parasitic ring resonator for WLAN and WiMAX applications ,&;quot; Progress In Electromagnetics Research Letters, vol. 16, pp. 61-68, 2010.
[116] L. H. Wen, Y. Z. Yin, Z. Y. Liu, D. Xi, M. Zhang, and Y. Wang, &;quot;Performance enhancement of tri-band monopole antenna for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 15, pp. 61-68, 2010.
[117] J. H. Lu and Y. H. Li, &;quot;Planar multi-band T-shaped monopole antenna with a pair of mirrored L-shaped strips for WLAN/WiMAX operation,&;quot; Progress In Electromagnetics Research C, vol. 21, pp. 33-44, 2011.
[118] Z. N. Song, Y. Ding, and K. Huang, &;quot;A compact multiband monopole antenna for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 23, pp. 147-155, 2011.
[119] K. Song, Y. Z. Yin, and B. Chen, &;quot;Triple-band open L-slot antenna with a slit and a strip for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 22, pp. 139-146, 2011.
[120] J. Pei, A. G. Wang, S. Gao, and W. Leng, &;quot;Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 298-301, 2011.
[121] W. C. Liu, C. M. Wu, and Y. Dai, &;quot;Design of triple-frequency microstrip-fed monopole antenna using defected ground structure,&;quot; IEEE Transactions on Antennas and Propagation, vol. 59, pp. 2457-2463, 2011.
[122] Q. X. Chu and L. H. Ye, &;quot;Design of compact dual-wideband antenna with assembled monopoles,&;quot; IEEE Transactions on Antennas and Propagation, vol. 58, pp. 4063-4066, 2010.
[123] D. Parkash and R. Khanna, &;quot;Design and development of CPW-fed microstrip antenna for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research C, vol. 17, pp. 17-27, 2010.
[124] Z. Y. Liu, Y. Z. Yin, S. F. Zheng, W. Hu, and L. H. Wen, &;quot;A compact CPW-fed monopole antenna with a U-shaped strip and a pair of L-slits ground for WLAN AND WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 16, pp. 11-19, 2010.
[125] F. Li, L. S. Ren, G. Zhao, and Y. C. Jiao, &;quot;Compact triple-band monopole antenna with C-shaped and S-shaped meander strips for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 15, pp. 107-116, 2010.
[126] A. F. Sunl, Y. Z. Yin, S. H. Jing, Y. Yang, B. W. Liu, and Z. Li, &;quot;Broadband CPW-fed antenna with band-rejected characteristic for WLAN/WiMAX operation,&;quot; Progress In Electromagnetics Research C, vol. 22, pp. 47-54, 2011.
[127] Q. Zhao, S. X. Gong, W. Jiang, B. Yang, and J. Xie, &;quot;Compact wide-slot tri-band antenna for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 18, pp. 9-18, 2010.
[128] W. Hu, Y.-Z. Yin, P. Fei, and X. Yang, &;quot;Compact triband square-slot antenna with symmetrical L-strips for WLAN/WiMAX applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 462-465, 2011.
[129] A. P. Saghati, M. Azarmanesh, and R. Zaker, &;quot;A novel switchable single and multifrequency triple-slot antenna for 2.4-GHz Bluetooth, 3.5-GHz WiMAX, and 5.8-GHz WLAN,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 534-537, 2010.
[130] L. Kang, Y. Z. Yin, H. Li, W. J. Huang, and S. F. Zheng, &;quot;Dual-wideband symmetrical G-shaped slotted monopole antenna for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 17, pp. 55-65, 2010.
[131] F. Li, L. S. Ren, G. Zhao, and Y. C. Jiao, &;quot;A compact microstrip-line-fed slot antenna with dual band-notched characteristics for WLAN/WiMAX applications,&;quot; Progress In Electromagnetics Research Letters, vol. 16, pp. 89-97, 2010.
[132] A. Mehdipour, A. Sebak, C. W. Trueman, and T. A. Denidni, &;quot;Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications,&;quot; IEEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 144-147, 2012.
[133] E. Nishiyama and M. Aikawa, &;quot;FDTD analysis of stacked microstrip antenna with high gain,&;quot; Progress in Electromagnetics Research, PIER, vol. 33, pp. 29-43, 2001.
[134] J. S. Row, &;quot;Design of square-ring microstrip antenna for circular polarisation,&;quot; Electronics Letters, vol. 40, pp. 93-95, 2004.
[135] A. A. Serra, P. Nepa, G. Manara, G. Tribellini, and S. Cioci, &;quot;A wide-band dual-polarized stacked patch antenna,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 141-143, 2007.
[136] J. Anguera, C. Puente, C. Borja, and J. Soler, &;quot;Dual-frequency broadband-stacked microstrip antenna using a reactive loading and a fractal-shaped radiating edge,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 309-312, 2007.
[137] K. L. Lau and K. M. Luk, &;quot;A wideband dual-polarized L-probe stacked patch antenna array,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 529-532, 2007.
[138] J. A. Ansari, P. Singh and S. K. Dubey, &;quot;H-shaped stacked patch antenna for dual band operation,&;quot; Progress in Electromagnetics Research B, vol. 5, pp. 291-302, 2008.
[139] J. Anguera, C. Puente, and C. Borja, &;quot;Dual frequency broadband microstrip antenna with a reactive loading and stacked elements,&;quot; Progress in Electromagnetics Research Letters, vol. 10, pp. 17-24, 2009
[140] Z. Wang, S. Fang, S. Fu, and S. Lu, &;quot;Dual-band probe-fed stacked patch antenna for GNSS applications,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 100-103, 2009.
[141] S. Behera and K. J. Vinoy, &;quot;Microstrip square ring antenna for dualband operation,&;quot; Progress in Electromagnetics Research, vol. 93, pp. 41-56, 2009.
[142] J. S. Row, &;quot;Design of aperture-coupled annular-ring microstrip antennas for circular polarization,&;quot; IEEE Transactions on Antennas and Propagation, vol. 53, pp. 1779-1784, 2005.
[143] Y. T. Chen, S. W. Wu, and J. S. Row, &;quot;Broadband circularly-polarised slot antenna array,&;quot; Electronics Letters, vol. 43, pp. 1323-1324, 2007.
[144] J. A. Ansari, R. B. Ram, and P. Singh, &;quot;Analysis of a gap-coupled stacked annular ring microstrip antenna,&;quot; Progress in Electromagnetics Research B, vol. 4, pp. 147-158, 2008.
[145] J. A. Ansari and R. B. Ram, &;quot;Broadband stacked U-slot microstrip patch antenna,&;quot; Progress in Electromagnetics Research Letters, vol.4, pp. 17-24, 2008.
[146] N. Ghassemi, &;quot;A high gain dual stacked aperture coupled microstrip antenna for wideband applications,&;quot; Progress in Electromagnetics Research B, vol. 9, pp. 127-135, 2008.
[147] C. Löcker and T. F. Eibert, &;quot;Unidirectional radiation efficient stacked aperture antenna for X-Band application,&;quot; IEEE Antennas Wireless Propagation Letters, vol. 7, pp. 264–266, 2008.
[148] F. Zhao, K. Xiao, W. J. Feng, S. L. Chai, and J.-J. Mao, “Design and manufacture of the wide-band aperture-coupled stacked microstrip antenna,” Progress in Electromagnetics Research B, vol. 7, pp. 37-50, 2009.
[149] T. Y. Han and L. Y. Tseng, &;quot;Reconfigurable circularly polarized microstrip antenna with dual-frequency operation,&;quot; Microwave and Optical Technology Letters, vol. 51, pp. 29-32, 2009.
[150] J. A. Ansari, P. Singh, S. K. Dubey, R. U. Khan, and B. R. Vishvakarma, &;quot;Analysis of stacked V-slot loaded patch antenna for wideband application,&;quot; Microwave and Optical Technology Letters, vol. 51, pp. 324-330, 2009.
[151] J. C. Liu, B. H. Zeng, L. Badjie, S. Drammeh, S. S. Bor, T. F. Hung, et al., &;quot;Single-feed circularly polarized aperture-coupled stack antenna with dual-mode square loop radiator,&;quot; IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 887-890, 2010.
[152] J. C. Liu, B. H. Zeng, C. Y. Liu, H. C. Wu and C. C. Chang, &;quot;A dual-mode aperture-coupled stack antenna for WLAN dual-band and circular polarization applications,&;quot; Progress in Electromagnetics Research C, vol.17, pp. 193-201, 2010.
[153] Nasimuddin and Z. N. Chen, &;quot;Aperture-coupled asymmetrical c-shaped slot microstrip antenna for circular polarisation,&;quot; IET Microwaves, Antennas &; Propagation, vol. 3, pp. 372-378, 2009.
[154] D. C. Chang, B. H. Zeng, and J. C. Liu, “CPW-fed circular fractal slot antenna design for dual-band applications,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 3630-3636, 2008.
[155] C. Mahatthanajatuphat, S. Saleekaw, and P. Akkaraekthalin, &;quot;A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WIMAX application,&;quot; Progress In Electromagnetics Research, vol. 89, pp. 57–74, 2009.
[156] H. R. Cheng, X. Q. Chen, L. Chen, and X. W. Shi, &;quot;Design of a fractal dual-polarized aperture coupled microstrip antenna,&;quot; Progress In Electromagnetics Research Letters, vol. 9, pp. 175-181, 2009.
[157] Z. W. Yu, G. M. Wang, X. J. Gao, and K. Lu, &;quot;A novel small-size single patch microstrip antenna based on Koch and Sierpinski fractal-shapes,&;quot; Progress In Electromagnetics Research Letters, vol. 17, pp. 95-103, 2010.
[158] J. Malik and M. V. Kartikeyan, &;quot;A stacked equilateral triangular patch antenna with Sierpinski gasket fractal for WLAN applications,&;quot; Progress In Electromagnetics Research Letters, vol. 22, pp. 71-81, 2011.
[159] M. Kalhor, J. Nourinia, C. Ghobadi, M. Akbari, and N. Felegari, &;quot;Circularly polarized antenna for WLAN and WiMAX applications,&;quot; International Journal of RF and Microwave Computer-Aided Engineering, vol. 22, pp. 329-335, 2012.
[160] T. F. Hung, J. C. Liu, S. S. Bor, and C. C. Chen, &;quot;Compact single-feed circularly polarized aperture-coupled stack antenna with minkowski-island-based fractal patch,&;quot; Microwave and Optical Technology Letters, vol. 54, pp. 2278-2283, 2012.
[161] J. C. Liu, H. H. Liu, K. D. Yeh, C. Y. Liu, B. H. Zeng, and C. C. Chen, &;quot;Miniaturized dual-mode resonators with Minkowski-island -based fractal patch for WLAN dual-band systems,&;quot; Progress In Electromagnetics Research C, vol. 26, pp. 229-243, 2012.
[162] Available at: HFSS version 11.0, Ansoft Software Inc. Accessed on November 2012.
[163] Available at: www.nearfield.com/products/Software.aspx. Accessed on December 2012.
[164] D. M. Pozar, &;quot;Microstrip antenna aperture-coupled to a microstripline,&;quot; Electronics Letters, vol. 21, pp. 49-50, 1985.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top