跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 17:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王智弘
論文名稱:動圈式揚聲器非線性電聲參數預測之逆運算法探討
論文名稱(外文):Nonlinear Electroacoustic Parameters Estimate of Moving-Coil Loudspeaker by Inverse Method
指導教授:王啟昌王啟昌引用關係
口試委員:康仲豪汪正祺
口試日期:2014-07-11
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電聲碩士學位學程
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:78
中文關鍵詞:電聲逆問題非線性電聲參數量測誤差比例調整
相關次數:
  • 被引用被引用:3
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:1
本文以共軛梯度法與變尺度法為基礎發展出一個方法,其可用來估算動圈式揚聲器中重要但難以量測的非線性電域參數。藉由揚聲器電流及音圈位移訊息之量測,可透過正解問題、伴隨方程式問題及靈敏度問題等三個計算程序,同時反算出未知的磁力轉換因子 及音圈電感 這兩個非線性電域參數與揚聲器振膜質量 、非線性阻尼係數 及振膜懸吊系統剛性係數 這三個難以量測的機械域參數。經由數值模擬之驗證,顯示本文所提出之電聲逆運算理論具有計算時間短、迭代次數少、準確性高之特性。並發現係數比例調整之加入確實可有效改善預測結果的穩定性。此外本方法透過簡易之電聲量測及數值計算,即使在具有量測誤差的情況下,依然可獲得良好之結果,顯示本文所提出之電聲逆運算理論可有效減低量測誤差所造成之影響。
This paper develops a method for estimating the important and hardly measured nonlinear electroacoustic parameters in moving-coil loudspeaker based on conjugate gradient method and variable-metric method. By measuring the information of loudspeaker displacement and current, three hardly measured mechanical domain parameters, including loudspeaker diaphragm mass , nonlinear damping coefficient and diaphragm suspension system stiffness coefficient and the two electrical domain parameters, unknown force factor and voice coil inductance and diaphragm suspension system stiffness coefficient can be calculated inversely through direct problem, adjoint equation problem and sensitivity problem calculation procedures. According to the validation of numerical simulation, the addition of coefficient scale adjustment actually improves the stability of prediction result effectively. In addition, based on simple electroacoustic measurement and numerical calculation, even if there is measurement error, this method can obtain good result, meaning the inverse electroacoustic theory proposed in this paper can reduce the effect of measurement error effectively.
目錄
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
符號表 ix
第一章 緒論 1
1-1前言 1
1-2研究動機 1
1-3文獻回顧 2
1-4論文架構 4
第二章 電聲參數量測方法 6
2-1附加質量法(Added mass method) 8
2-2附加順性法(Added compliance method) 12
2-3 Klippel量測系統 15
第三章 反算理論與優化技巧 21
3-1反算理論 21
3-2優化技巧 22
第四章 電域參數之反算 30
4-1集中參數模型 30
4-2電流量測逆運算法 31
4-3參數比例調整 38
4-4計算方法與步驟 39
4-5結果與討論 40
第五章 機械域參數之反算 52
5-1動圈式揚聲器的模型架構 52
5-2目標函數之定義與變尺度法之搜尋方向 53
5-3計算方法與步驟 61
5-4結果與討論 62
第六章 結論與未來展望 73
6-1結論 73
6-1未來展望 74
參考文獻 75
[1]S. P. Porter, D. J. Domme, and A. W. Sell, “A Craft-Project Loudspeaker to Serve as An Educational Demonstration”, J. Acoust. Soc. Am., Vol. 131 (3), Pt. 2, 2012.
[2]C. A. Richard, B. Brian, and H. T. Clifford, “Parameter Estimation and Inverse Problems”, Elsevier Academic Press, 2005.
[3]David T. W. Lin, C. Y. Yang, J. C. Li and C. C. Wang, “Inverse Estimation of Unknown Heat Flux Boundary with Irregular Shape Fins”, Int. J. Heat Mass Transfer, Vol. 54, pp. 5275-5285, 2011.
[4]C. C. Wang and C. Y. Yang, 2010.11, “Inverse Method in Simultaneously Estimate Internal Heat Generation and Root Temperature of T-shaped Fin”, Int Commun Heat Mass Transfer, Vol. 37, No. 9, pp. 1312-1320.
[5]David T.W. Lin, C. C. Wang and C. Y. Yang, “Inverse Estimation of Temperature Boundary Conditions with Irregular Shape of Gas Tank”, Int. J. Heat Mass Transfer, Vol. 53, pp. 4651-4662, 2010.
[6]C. C. Wang, “Direct and Inverse Solutions with Non-Fourier Effect on the Irregular Shape”, Int. J. Heat Mass Transfer, Vol. 53, pp. 2685-2693, 2010.
[7]D. E. Carlson, “Loudspeaker Parameter Determination”, J. Acoust. Soc. Am., Vol. 61(S1), pp. S53-S53, 1977.
[8]David Weems, “How to Design, Build, &; Test Complete Speaker Systems”, 1st ed., Tab Books, 1978.
[9]G. M. Remeberto, “Measurement of the Thiele-Small Parameters for a Given Loudspeaker, Without Using a Box”, Presented at the 91th AES convention, New York, 1991, 3162 (S-2).
[10]J. R. Wright, “An Empirical Model for Loudspeaker Motor Impedance,” J. Audio Eng. Soc., Vol 38, pp. 749-754, 1990.
[11]R. H. Small, “Simplified Loudspeaker Measurements at Low Frequencies,” J. Audio Eng. Soc., Vol. 20, pp. 28-33, 1972.
[12]J. Christophorou, “Low-Frequency Loudspeaker Measurements with an Accelerometer,” J. Audio Eng. Soc., 28, No. 11, 809-816, 1980.
[13]W. Klippel, “Dynamic Measurement and Interpretation of the Nonlinear Parameters of Electrodynamic Loudspeakers”, J. Audio Eng. Soc., Vol. 38, pp. 944 – 955, 1990.
[14]Jorge N. Moreno, “Measurement of Loudspeaker Parameters Using a Laser Velocity Transducer and Two-Channel FFT Analysis”, J. Audio Eng. Soc., Vol. 39, No. 4 pp. 243-249, 1991.
[15]D. Clark, “Precision Measurement of Loudspeaker Parameters”, J. Audio Eng. Soc., Vol. 45, pp. 129-140, 1997.
[16]M. Faifer, R. Ottoboni, and S. Toscani, “A Novel, Cost-Effective Method for Loudspeakers Parameters Measurement Under Non-Linear Conditions”, Presented at IEEE Autotestcon, Salt Lake Cirty, UT, 2008, pp. 562-568.
[17]B. R. Pedersen, and P. Rubak, “Online Identification of Linear Loudspeakers Parameters”, Presented at the 122nd AES convention, Vienna, Austria, 2007, 7060.
[18]L. S. Lasdon, S. K. Mitter, and A. D. Warren, “The Conjugate Gradient Method for Optimal Control Problem”, IEEE T Automat Contr, Vol. AC-12(2), pp. 132-138, 1967.
[19]C. H. Huang, “A Nonlinear Inverse Vibration Problem of Estimating the Time-Dependent Stiffness Coefficients by Conjugate Gradient Method”, J. Numerical Methods in Engineering, Vol. 50, pp. 1545-1558, 2001.
[20]A. M. Nezhada, R. A. Shandizb, A. E. Jahromi, “A Particle Swarm–BFGS Algorithm for Nonlinear Programming Problems”, Comput Oper Res, Vol. 40, pp. 963–972, 2013.
[21]J. Vlcˇeka, L. Lukšan, “A Conjugate Directions Approach to Improve the Limited-Memory BFGS Method”, Appl Math Comput, Vol. 219, pp. 800–809, 2012.
[22]L. L. Beranek, “Acoustics”, 1993 ed., Melville, New York: American Institute of Physics, 1993, pp. 47-90.
[23]A. N. Thiele, “Loudspeakers in Vented Boxes: Parts I and II”, Proceedings of the IRE, Australia, vol. 22, pp. 487-508, 1961.
[24]郭晟宇, “可攜式揚聲器之分析與模擬”, 逢甲大學電聲碩士學位學程碩士論文, 96年七月。
[25]J. Hadamard, “Lectures on Cauchy&;#39;s Problem in Linear Partial Differential Equations”, Yale University press, New Haven, 1923.
[26]A. Cauchy, “M´ethode G´en´erale pour la R´esolution des Syst`ems D’equations Simultan´ees”, Comp. Rend. Sci. Paris, 25 (1847), pp. 46-89.
[27]M. R. Hestenes, E. Stiefle, “Method of Conjugate Gradient for Solving Linear Systems”, J. Res Natn Bur Stand, Vol. 49, No, 6, pp. 409-436.
[28]Flectcher. R and C. M. Reeves, “Function Minimization by Conjugate-Gradient”, Comput. J., Vol. 7, pp. 149-153.
[29]W.C. Davidon, “Variable Metric Method for Minimization”, Report ANL 5990, Argonne National Laboratory, Illinois.
[30]R. Fletcher and M.J.D. Powell (1963), “A Rapidly Convergent Descent Method for Minimization”, Comput. J., Vol. 6, pp. 163–168.
[31]A. J. M. Kaizer, “Modeling of the Nonlinear Response of an Electrodynamic Loudspeaker by a Volterra Series Expansion”, J. Audio Eng. Soc., Vol. 35, pp. 421-433, 1987 June.
[32]C. C. Wang, J. H. Huang, D. J. Yang, “Cubic Spline Difference Method for Heat Conduction”, I. J. Comm. Heat Mass Transfer, Vol. 39, pp. 224-230, 2012.
[33]C. C. Wang, L. P. Chao, W. J. Liao, “Hybrid Spline Difference Method (HSDM) for Transient Heat Conduction”, Numer. Heat Tr. B–Fund., Vol. 61(2), pp. 129-146, 2012.
[34]Jinag Xiang-cheng, Chen Sen-fa1, “Application of Weighted Markov SCGM(1,1)c Model to Predict Drought Crop Area”, Systems Engineering — Theory &; Practice, Vol. 29(9), pp. 179-185, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top