跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉詠順
研究生(外文):YAP YONG SOON
論文名稱:電流量測逆運算法預測動圈式揚聲器參數之探討
論文名稱(外文):Inverse Current Measurement Method for Parameter Estimating of Moving-Coil Loudspeakers
指導教授:王啟昌王啟昌引用關係
指導教授(外文):WANG CHI CHANG
口試委員:黃錦煌王啟昌董中庸
口試日期:2014-04-29
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械與電腦輔助工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:SBFGS參數比例附加質量非線性集中參數僅量測動圈式揚聲器之電流
相關次數:
  • 被引用被引用:3
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:3
本文以BFGS法為基礎發展出新的電聲逆運算法並探討如何在僅量測動圈式揚聲器之電流的情形下獲得揚聲器振動模型中重要且難以量測的電聲參數,以避免過往需要量測音圈位移的不便。經由數值結果驗證,發現本文所建構的SBFGS法較之相較於共軛梯度法及簡易共軛梯度法可大幅縮減最佳化過程中所需的反算次數。此外參數比例及附加質量技巧的加入,也可正確的獲得動圈式揚聲器電域(電感 )、機械域(質量 、阻尼 及剛性振膜係數 )與連接兩者的磁力轉換因子 等重要集中參數,並避免了多重解現象的發生。其次,經由常態量測誤差的加入,即便給定不同的激發電壓、頻率及附加質量,依然可獲得良好的非線性集中參數預測值,顯示本文所提之新方法能有效降低量測誤差所帶來的負面影響,可用來取代過往以雷射或麥克風測量非線性電聲參數之方式。
目 錄
摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖目錄 VI
表目錄 VII
符號表 VIII
第一章 緒論 1
1-1 研發理念與技術問題 1
1-2 產業現況說明與文獻回顧 2
1-3 論文架構 4
第二章 優化理論 11
2-1 最速下降法 11
2-1.1 步長 之取法 12
2-1.2 最速下降法的迭代步驟 13
2-2 共軛梯度法 13
2-1.1 共軛梯度法的迭代步驟 14
2-3 牛頓法 15
2-4 變尺度法 16
第三章 參數樣線差分法 22
3-1 三次樣線法 22
3-1.1 三次樣線函數的由來 22
3-1.2 三次樣線的數學理論 24
3-2 參數樣線差分法 27
3-2.1 參數樣線的由來 27
3-2.2 參數樣線差分法之構想 28
3-3 混合樣線差分法 29
3-3.1 捨去誤差(Truncation error)分析 29
3-3.2 混合樣線之觀念 31
第四章 線性電聲參數之反算預測 35
4-1 集中參數模型 35
4-2 電流量測逆運算法 36
4-2.1 正解問題求 39
4-2.2 伴隨問題求目標函數之梯度 40
4-2.3 靈敏度問題求前進步距 43
4-3 預測參數之參數比例 44
4-4 計算方法與步驟 45
4-5 結果與討論 45
4-5.1 參數比例調整之影響 46
4-5.2 共軛梯度法與最速下降法之比較 47
4-5-3 附加質量法 48
4-5.4 量測誤差之影響 50
第五章 結果與未來展望 63
5-1 結論 63
5-2 未來展望 63
參考文獻 65

圖目錄
圖1-1 動圈式換能器模型圖 8
圖1-2 智慧型手機的逐年銷量及成長預估(F) 8
圖1-3 各款耳機的逐年銷量及成長預估(F) 9
圖1-4 2010-2015全球NB &; Tablet出貨成長趨勢 9
圖1-5 2013年手機與智慧手機出貨預估 10
圖1-6 全球耳機市場動向 10
圖2-1 最速下降法求目標函數的極小值 19
圖2-2 坐標轉換 (a)變換前 (b)變換後 20
圖2-3 牛頓法的求優過程 21
圖3-1 (a)三次樣線函數區間圖, (b)三次樣線函數之二次微分區間圖 34
圖4 1 動圈式揚聲器之模型 56
圖4 2 動圈式揚聲器之等效電路圖 57
圖4 3 參數比例調整前後之搜尋示意圖 58
圖4 4 最速下降法與(SDM)與不同共軛梯度法(DY, H3及HS)搜尋次數之比較 59
圖4 5 預測值與正確值之比較 60
圖4-6 附加質量後預測電流之改變 61
圖4-7 常態分佈圖 62
圖4-8 當量測誤差 時,預測電流 與有量測誤差之量測測量點 的關聯 62

表目錄
表1-1 目前市面上商品之特點比較 6
表1-2 現有動圈式揚聲器之量測技術比較表 7
表3-1 各種數值方法之計算方式與精度比較 33
表4-1 揚聲器之線性集中參數 53
表4-2 參數比例調整對預測次數之影響 53
表4-3 正確值與預測值之比較 54
表4-4 附加質量後預測之結果與對應之 值 54
表4-5 電流量測誤差 對預測結果之影響 55
[1]L. L. Beranek, Acoustics, Melville, New York: American Institute of Physics, pp. 47-90, 1993.
[2]D. Weems, How to Design, Build, &; Test Complete Speaker Systems, 1st ed., TAB Books, 1978.
[3]G. M. Remeberto, “Measurement of the Thiele-Small Parameters for a given Loudspeaker, Without Using a Box”, Presented at the 91th AES convention, New York, 1991.
[4]W. Klippel, “Dynamic Measurement and Interpretation of the Nonlinear Parameters of Electrodynamics Loudspeakers”, J. Audio. Eng. Soc., Vol. 38, pp. 944-955, 1990.
[5]W. Klippel, “Measurement of large-signal parameters of electrodynamic transducer,” on the AES E-Library: PN. 5008(E-8), (Presented at the 107th AES convention, Germany, 1999).
[6]W. Klippel, “Measurement of loudspeaker parameters by inverse nonlinear control,” J. Acoust. Soc. Am., pp. 1359-1359, 1999.
[7]M. H. Knudsen, J. G. Jensen, V. Julskjaer and P. Rubak, “Determination of Loudspeaker Driver Parameters Using a System Identification Technique,” J. Audio Eng. Soc., pp. 700-708, 1989.
[8]B. R. Pedersen and F. T. Agerkvist, “Time varying behavior of the loudspeaker suspension,” 123th AES convention, New York, 2007.
[9]S. J. Pawar, Soar Weng and Jin H. Huang, “Total Harmonic Distortion Improvement for Elliptical Miniature Loudspeaker Based on Suspension Stiffness Nonlinearity,” IEEE Trans. Consumer Electron., Vol. 58, pp. 221-227, May 2012.
[10]C. Chang, S. J. Pawar, Soar Weng, Y. C. Shiah and Jin H. Huang, “Effect of nonlinear stiffness on the total harmonic distortion and sound pressure level of a circular miniature loudspeaker-experiments and simulations,” IEEE Trans. Consumer Electron., Vol. 58, pp. 212-220, May 2012.
[11]劉惟信,“機械最佳化設計”,第二版,February 2001。
[12]M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving Linear Systems,” Journal of Research of the National Bureau of Standards, Vol. 49, pp. 409-436, 1952.
[13]R. Fletcher and C.M. Reeves, “Function Minimization by Conjugate Gradients,” Computer Journal, Vol. 7, pp. 149-154, 1964.
[14]O. Axclsson, “Iteration Number for the Conjugate Gradient Method,” Mathermatics and Computers in Simulation, Vol. 61, pp. 421-435, 2003.
[15]G. Yuan, X. Lu and Z. Wei, “Globally Convergent Polak-Ribiere-Polyak Conjugate Gradient Methods under a Modified Wolfe Line Search,” Applied Mathematics and Conputation, Vol. 215, pp. 3082-3090, 2009.
[16]D. J. Fyfe, “The use of cubic splines in the solution of two-point boundary value problems,” Computer Journal, Vol. 12, pp. 188-192, 1969.
[17]E. L. Albasiny, Hoskins and W. D., “Increase Accuracy cubic spline solutions to two-point boundary value problems,” J. Inst. Math. Applic., Vol. 9, pp. 47-55, 1972.
[18]T. C. Chawla, Leaf, G. Chen, W. L. and Grolmes, M. A., “The application of the collocation method using hermite cubic spline to nonlinear transient one-dimensional heat conduction problem,” ASME Journal of Heat Transfer, pp. 562-569, 1975.
[19]J. A. Liggett and J. R. Salmon, “Cubic spline boundary element,” Int. J. Numerical Methods in Engineering, Vol. 17, pp. 543-556, 1981.
[20]M. Isa and R. A. Usmani, “Quintic spline solution of a boundary value problem,” International Journal of Computer Mathematics, Vol. 11, pp. 169-184, 1982.
[21]M. K. Jain and T. Azia, “Cubic spline solution of two-point boundary value problems with significant first derivatives,” Computer Methods in Applied Mechanics and Engineering, Vol. 39, pp. 83-91,1983.
[22]S. G. Rubin and R. A. Graves, “Viscous flow solution with a cubic spline approximation,” Computers and Fluids, Vol. 1, pp. 1-36, 1975.
[23]S. G. Rubin and P. K. Khosla, “Higher-order numerical solution using cubic splines,” AIAA Journal, Vol. 14, pp. 851-858, 1976.
[24]S. G. Rubin and P. K. Khosla, “Polynomial interpolation methods for viscous flow calculation,” Journal of Computational Physics, Vol. 24, pp. 217-244, 1977.
[25]G. F. Raggett, J. A. R. Stone and S. J. Wisher, “The cubic spline solution of practical problems modeled by hyperbolic partial differential equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 8, pp. 139-151, 1976.
[26]P. Wanga and R. Kahawita, “A two-dimensional numerical model of estuarine circulation using cubic spline,” Canadian Journal of Civil Engineering, Vol. 10, pp. 116-124, 1983.
[27]P. Wangb and R. Kahawita, “Numerical integration of partial differential equations using cubic splines,” International Journal of Computer Mathematics, Vol. 13, pp. 271-286, 1983.
[28]P. Wang, S. Lin and R. Kahawita, “The cubic spline integration technique for solving fusion welding problems,” Journal of Heat Transfer, Vol. 107, pp. 485-489, 1985.
[29]M. Napolitano, “Efficient ADI and spline ADI Methods for the steady-state Navior-Stokes equations,” International Journal for Numerical Methods in Fluids, Vol. 4, pp. 1101-1115, 1984.
[30]C. K. Chen, “Application of cubic spline collocation method to solve transient heat transfer problem,” Heat Transfer in Thermal Systems Seminar-phase, N.C.K.U., Tainan, Taiwan, pp. 167-182, 1986.
[31]P. Chiu and H. M. Chou, “Free Convection in the Boundary Layer Flow of a Micropolar Fluid along a Vertical Wavy Surface,” Acta Mechanical. Vol. 101, pp. 161-174, 1993.
[32]C. P. Chiu and H. M. Chou, “Transient analysis of natural convection along a vertical wavy surface in micropolar fluids,” International Journal of Engineering Science, Vol. 32, pp. 19-33, 1994.
[33]Y. T. Yang, C. K. Chen and M. T. Lin, “Natural convection of non-Newtonian fluids along a wavy vertical plate including the magnetic field effect,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 2831-2842, 1996.
[34]A. Martin and I. D. Boyd, “Variant of the Thomas Algorithm for opposite-bordered tridiagonal systems of equations,” International Journal for Numerical Methods in Biomedical Engineering, Vol. 26, pp. 752-759, 2010.
[35]J. H. Ahlbrg, E. N. Nilson, and J. L. Walsh, “The theory of splines and their application,” Academic Press, 1967.
[36]P. Wang and R. Kahawita, “Numerical integration of partial differential equations using cubic splines,” International Journal of Computer Mathematics, Vol. 13, pp. 271-286, 1983.
[37]C. C. Wang and Z. Y. Lee, “Uniform-parameter spline method for solving non-fourier heat conduction problems,” Numerical Heat Transfer Part B, Vol. 56, pp. 293-306, 2009.
[38]H. Ding and Y. Zhang, “Parameters spline methods for the solution of hyperbolic equations,” Applied Mathematics and Computation, Vol. 204, pp. 938-941, 2008.
[39]Y. A. Bayati, R. K. Saeed and K. Hama-Salh, “Lacunary interpolation by quartic splines with application to quadratures,” Int. J. Open Problems Compt. Math., Vol. 3, 2010.
[40]C. C. Wang, “Direct and Inverse solutions with non-Fourier effect on the irregular shape,” International Journal of Heat and Mass Transfer, Vol. 53, pp. 2685-2693, 2010.
[41]T. W. Lin, C. C. Wang and C. Y. Yang, “Inverse Estimation of Temperature Boundary Conditions with Irregular Shape of Gas Tank,” International Journal of Heat and Mass Transfer , Vol. 53, pp. 4651-4662, 2010.
[42]C. H. Huang, “A Nonlinear Inverse Vibration Problem of Estimating the Time-Dependent Stiffness Coefficients by Conjugate Gradient Method,” J. Numerical Methods in Engineering, Vol. 50, pp. 1545-1558, 2001.
[43]A. Zhou, Z. Zhu, H. Fan and Q. Qing, “Three New Hybrid Conjugate Gradient Methods for Optimization,” Applied Mathematics, Vol. 2, pp. 303-308 2011.
[44]C. C. Wang, J. H. Huang and D. J. Yang, “Cubic Spline Difference Method for Heat Conduction,” I. J. Comm. in Heat and Mass Transfer, Vol. 39, pp. 224-230, 2012.
[45]C. C. Wang, L. P. Chao and W. J. Liao, “Hybrid Spline Difference Method (HSDM) for Transient Heat Conduction,” Numerical Heat Transfer – Part B - Fundamentals, Vol. 61, pp. 129-146, 2012.
[46]C. H. Cheng and M. H. Chang, “A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data,” Numerical Heat Transfer– Part B - Fundamentals, Vol. 43, pp. 489-507, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top