跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳利嬌
研究生(外文):Li-Jiao Wu
論文名稱:地面水質對地下水質影響之模擬評估
論文名稱(外文):Modeling the effect of surface water quality on groundwater quality
指導教授:陳建隆陳建隆引用關係
指導教授(外文):Jiann-Long Chen
口試委員:林明德馮秋霞
口試委員(外文):Min-Der LinChiu-Shia Fen
口試日期:2014-07-29
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:地下水流模式污染物傳輸模式健康風險評估
外文關鍵詞:Groundwater modelContaminant transport modelHealth risk assessment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:1
台灣中部某河川下游地區沿岸有諸多放流水排放,在下游南岸兩公里處有地下水井,被當地居民用作農田灌溉及生活用水等,為了瞭解下游水質對地下水影響,並結合健康風險評估,本研究模擬該河川下游南岸,以該區域作為模擬範圍,以區域內有7口監測井水頭數據,校正及驗證地下水流模式,校正及驗證指標為RMSE小於1公尺,以103年2月監測數據進行校正,將K值分為33區,K值範圍由5.39×10-5~3.67×10-3,其RMSE為0.41公尺,符合標準為校正成功,進一步利用其他月份數據進行驗證,因101年1、7月及102年9月驗證不成功,但背景條件不足,得知本模式非Robust,而100年3月、100年7月、102年6月及103年3月均驗證成功。

污染物傳輸模擬,主要以砷、鉬、氨氮及導電度為主,模擬時間為30年,設置一口抽水井,其抽水率為0.1586 m3/s,探討四種污染物受抽水井影響之濃度分布,並與未抽水時相互比較,得知未抽水之最大濃度值大於抽水之最大濃度。

健康風險濃度範圍是以抽水井為中心,探討距離抽水井100~600公尺內之砷、鉬及氨氮最大及最小濃度,風險指標為致癌風險不超過百萬分之一,及非致癌風險小於1,分為成人與孩童,且分為有無飲用地下水之差異,因只有砷為致癌物,故砷之致癌風險皆小於百萬分之一;成人Cmax之氨氮非致癌總風險均超過1,主要受口服之暴露途徑影響,砷及鉬非致癌總風險均在可接受範圍內;成人的致癌與非致癌風險皆大於孩童,且無飲用地下水之行為,致癌及非致癌風險均可大幅降低。
關鍵字:地下水流模式、污染物傳輸模式、健康風險評估
In order to understand the effect of surface water quality infiltration on groundwater quality and the resulting health risk effect, a case study was conducted using the downstream section of a major river in Central Taiwan. The study area was chosen because it receives a wastewater discharge from one the science industrial parks in Central Taiwan. The scenario of the study was as the following: (1) the discharge point is on the south bank of the river locating about 2 Km from the point where the river discharge into the Taiwan Strait; (2) the chemicals of the discharged water enter the groundwater by means of infiltration through the bottom of the river; (3) the chemicals are consumed by human who utilize the groundwater for irrigation and domestic purposes.


A groundwater and solute transport model for the above-mentioned scenario was constructed and calibrated. The calibration uses groundwater elevations in five monitoring wells. To obtain acceptable results, the hydraulic conductivity of the simulated area is divided into 33 zones.During calibration, the hydraulic conductivity of the simulated area is adjusted so that the predicted groundwater elevation approached the observed values. The criterion for the calibration is for the root-mean-square-error (RMSE) of the groundwater elevations to be less than 1.0. After calibration, 4 sets of data were used to validate the model resulting acceptable RMSE (less than 1.0).


The solute transport model used the calibrated model and a pumping well to generate a groundwater flow field. The pumping well is to simulate the scenario when groundwater is drawn during irrigation season for rice growing. Three chemicals were simulated as the “concerned chemicals”: arsenic, molybdenum, and ammonia. In addition, electrical conductivity was also modeled. The concentration distributions of the simulated chemicals over the study area were obtained using 30 years as the duration of transport.


The results of maximum simulated concentrations were used to calculate the health risk assessment. The carcinogen risk indicated acceptable risk increase (less than 1 millionth) by the infiltration of the discharge water. However, the non-carcinogenic health risk exceeds acceptable lever (> 1) if oral consumption of groundwater was taken into account. Ammonia is the major contribution to this risk effect followed by molybdenum. However, the non-carcinogenic health risk is lower than 1 if oral consumption of groundwater is excluded from the calculation. The results of this study show numerical simulation of groundwater and solute transport combined with adequate monitoring scheme of groundwater is effective in predicting the health risk effect of chemicals found in discharged water.


Keywords: Groundwater model, Contaminant transport model, Health risk assessment
致謝...................................i
摘要..................................ii
Abstract.............................iii
目錄...................................v
圖目錄................................vii
表目錄...............................viii
第一章 前言.............................1
1-1 研究動機...........................1
1-2 研究目的...........................1
第二章 文獻回顧..........................3
2-1 環境背景概論........................3
2-1-1 地理位置.........................3
2-1-2 氣候............................4
2-1-3 地形............................6
2-1-4 地質............................7
2-1-5 水文............................9
2-2 地下水及污染物傳輸模式...............13
2-2-1 地下水流傳輸.....................14
2-2-2 污染物傳輸......................17
2-3 污染物特性........................19
2-3-1 砷.............................19
2-3-2 鉬.............................20
2-3-3 氨氮...........................22
2-3-4 導電度..........................23
2-4 健康風險評估.......................24
2-4-1 危害鑑定(Hazard Identification).24
2-4-2 劑量反應評估(Dose Response Assessment)...................................25
2-4-3 暴露評估(Exposure Assessment)...26
2-4-4 風險特徵描述(Risk Characterization)......................................27
第三章 研究方法.........................29
3-1 模式建構..........................29
3-2 地下水流模式.......................31
3-2-1 參數設定........................31
3-2-2 邊界條件........................32
3-2-3 河流套件(River Package, RIV)....34
3-2-4 模式校正與驗證...................35
3-3 污染物傳輸模式.....................36
3-3-1 對流套件........................37
3-3-2 延散參數........................37
3-3-3 吸附參數........................37
3-3-4 污染源濃度設定...................38
3-4 健康風險評估.......................40
3-4-1 關切污染物判定...................40
3-4-2 暴露途徑評估.....................42
3-4-3 暴露濃度........................46
3-4-4 致癌風險與非致癌風險計算...........47
第四章 結果與討論........................49
4-1 地下水流模式校正及驗證...............49
4-2 污染物傳輸模擬.....................57
4-2-1 抽水井之影響.....................57
4-2-2 砷.............................59
4-2-3 鉬.............................61
4-2-4 氨氮...........................63
4-2-5 導電度..........................65
4-3 健康風險評估.......................67
4-3-1 致癌風險........................68
4-3-2 非致癌風險......................71
第五章 結論與建議........................77
5-1結論...............................77
5-2建議...............................79
參考文獻...............................80
Bouwer, H. (1989). The Bouwer and Rice Slug Test — An Updatea. Ground Water, 27(3), 304-309.
Bouwer, H., &; Rice, R. C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12(3), 423-428. doi: 10.1029/WR012i003p00423
Charbeneau, R. J. (2000). Groundwater Hydraulics And Pollutant Transport.
Charles W. Fetter, J. (2000). Applied Hydrogeology (4th Edition).
Chiang, W.-H. (1996). 3D-Groundwater Modeling with PMWIN: Springer.
Foglar, L., Briški, F., Sipos, L., &; Vuković, M. (2005). High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresource Technology, 96(8), 879-888.
Lachaal, F., Mlayah, A., Bédir, M., Tarhouni, J., &; Leduc, C. (2012). Implementation of a 3-D groundwater flow model in a semi-arid region using MODFLOW and GIS tools: The Zéramdine–Béni Hassen Miocene aquifer system (east-central Tunisia). Computers &; Geosciences, 48(0), 187-198.
Lautz, L. K., &; Siegel, D. I. (2006). Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Advances in Water Resources, 29(11), 1618-1633.
McDonald, M. G., &; Harbaugh, A. W. (1988). A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model.
Park, E.-J., Seo, J.-K., Kim, M.-R., Jung, I.-H., Kim, J. y., &; Kim, S.-K. (2001). Salinity acclimation of immobilized freshwater denitrifier. Aquacultural Engineering, 24(3), 169-180.
Şengör, S. S., &; Ünlü, K. (2013). Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey. Journal of Contaminant Hydrology, 150(0), 77-92.
Sumino, T., Isaka, K., Ikuta, H., Saiki, Y., &; Yokota, T. (2006). Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. Journal of Bioscience and Bioengineering, 102(4), 346-351.
丁澈士、蘇惠珍,3D地下水模式(3D-Groundwater Modeling with PMWIN),五南圖書出版公司,(2003)。
行政院環保署,地下水污染擴散模式建立之研究,(2005)。
行政院環保署,土壤及地下水污染場址健康風險評估評析方法及撰寫指引,(2006)。
吳偉競,蘭陽平原整合模式之MODFLOW地下水模擬研究,國立中正大學地震研究所暨應用地球物理研究所,(2007)。
亞太環境科技股份有限公司,園區放流水對土壤及地下水之影響研究計畫-期末報告,中部科學工業園區管理局,(2009)。
翁士民,雲林縣地下水流受高鐵開發之影響研究,雲林科技大學環境與安全工程系,(2004)。

張燿東,大安鄉北汕港改善需求之探討,逢甲大學土木工程學系碩士班,(2006)。
琨鼎環境科技股份有限公司,中科台中園區98年度環境監測計畫,(2010)。
楊士弘,利用TMCS 表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽,國立中山大學環境工程研究所,(2011)
楊庭雅,關渡平原地下水流動模式,國立中央大學應用地質研究所,(2011)。
經濟部水利署,大安大甲溪水源聯合運用輸水工程規劃─大甲溪下游地下水影響評估,(2008)。
經濟部水利署,砂岩層河床深槽沖刷偏一對合到穩定之影響分析(2/3),(2011)。
詹時碩,地下水水質特性因素分析與溶質傳輸模式模擬-以南部科學園區為例,立德管理學院資源環境學系碩士班,(2006)。
廖瑞銘,大甲鎮志,大甲鎮公所,(2009)。
蔡清研,濁水溪沖積扇整合模式下之MODFLOW地下水模擬研究,國立中正大學地震研究所暨應用地球物理研究所,2007)。


賴來甲,大安溪下游沖積扇地下水資源之研究,國立臺灣師範大學地理系碩士班,(1994)。
A+醫學百科網:http://cht.a-hospital.com/w/
大肚台地研究:http://www.scjh.tcc.edu.tw/datu/11-7.html
中部科學工業園區管理局網站:http://www.ctsp.gov.tw/
中央氣象局網站:http://www.cwb.gov.tw/V6/index.htm
台中市大安區公所電子書:http://163.29.86.75/book14/the-history/0063-0116.pdf
行政院環境保護署民國97年水質監測年報-線上版:http://wqshow.epa.gov.tw/waterqaqc/document/LinkDoc/97環境水質年報.rar
行政院環境保護署全國環境水質監測網:http://wqshow.epa.gov.tw/
行政院環境保護署地方環境資料查詢系統:http://edb.epa.gov.tw/localenvdb/Taichung_City/index.htm
美國加州環境健康危害評估處(Office of Environmental Health Hazard Assessment, OEHHA):http://oehha.ca.gov/
美國能源署風險評估資料管理系統(Risk Assessment Information System, RAIS):http://rais.ornl.gov
美國環保署綜合風險資訊系統(Integrated Risk Information System,IRIS):http://www.epa.gov/iris/
經濟部水利署水文水資源資料管理供應系統:http://gweb.wra.gov.tw/wrweb/
經濟部水利署地下水觀測站:http://pc183.hy.ntu.edu.tw/
經濟部水利署地理資訊倉儲中心:http://gic.wra.gov.tw/gic/API/Google/Index.aspx
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top