(3.227.235.183) 您好!臺灣時間:2021/04/13 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉宏哲
研究生(外文):Liou Hong Jhe
論文名稱:快濾池之生物活性及其有機物螢光特性之探討
論文名稱(外文):The Study on the Bioactivity and Organic Fluorescent Property in Rapid Filter
指導教授:吳志超
口試委員:賴文亮黃文鑑張進興陳文祥
口試日期:2014-07-04
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:快濾池生物活性螢光激發發散光譜
外文關鍵詞:Rapid filterBioactivityFluorescence-excitation-emission-spectra
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究以豐原第二淨水場及潭頂淨水場為例,以下簡稱豐原場及潭頂場,探討快濾池濾砂上生物活性與水體中有機物螢光特性之變化。生物活性結果顯示螢光染色法適用於此兩水場濾料生物活性分析。由掃描式電子顯微鏡 (Scanning Electron Microscope, SEM )結果顯示反洗前快濾床表層濾料附著之物質為聚集狀而底層則為分散狀,反洗後濾料表面之附著物呈現破碎狀。快濾床反洗前總生物活性大於反洗後,而反洗前快濾床濾料表層生物活性又大於底層,反洗後快濾床底層濾料生物活性則略高於表層,因此實場反洗是影響快濾床生物活性之因素。
藉由螢光激發發散光譜(Fluorescence-Excitation-Emission-spectra, FEEMs分析發現豐原場無論是否進行反洗,快濾池對於水中芳香族蛋白質I區(I區)、芳香族蛋白質II區(II區)及類微生物副產物(IV區)皆有降解能力,因為此三區之有機物為小分子易於微生物所利用。芳香族蛋白質I區(I區)有四次採樣呈現反洗前生物活性高其降解能力大於反洗後的趨勢,而濾床表底層生物活性高低會改變濾後水之芳香族蛋白質II區(II區),但類微生物副產物(IV區)呈現反洗前生物活性較高有較佳的降解能力,而反洗後生物活性降低使其降解能力變差。
潭頂場濾前水的螢光強度主要落在芳香族蛋白質II(II區)、黃腐酸(III區)及腐植酸(V區),而濾後水的螢光強度則落在黃腐酸(III區)及腐植酸(V區),且水質變動較大,不易探討生物活性與FEEMs之間變化。
最後綜合兩水場之研究結果發現由於兩水場之水質不同,豐原場生物活性高時,對於類微生物副產物(IV區)有較佳之降解能力,但潭頂場因原水部分就幾乎沒有類微生物副產物(IV區)的螢光強度,且於實場中無法操控之因素太多,所以無法說明生物活性與其有機物螢光特性之關係。
In this research, we took Fong-yuan the second Water Treatment Plant and Tanding Water Treatment Plant as examples to investigate the variation between bioactivity and organic fluorescent property on the media with rapid filter.
The biological activity results showed that fluorescent staining method can be applied to determine the amount of bioactivity in both water treatment plants. From the observation of scanning electron microscope (SEM), before backwashing, the materials attached were gathered on the surface of the filter and were dispersed on the bottom, while they became broken after backwashing. The total bioactivity before the filter being backwashed was greater than that after being backwashed. Besides, before backwashing, the bioactivity of the surface was greater than that in bottom, whereas after backwashing the bioactivity in bottom of filter bed was greater than that on the surface. Therefore, the main factor that influences the bioactivity is backwash.
According to fluorescence-excitation-emission-spectra (FEEMs) analysis, we found that being backwashed or not, the rapid filter had the ability to degradate aromatic protein I (Region I), aromatic protein II (Region II) and soluble microbial by-product-like (Region IV) in Fong-yuan the second Water Treatment Plant because the organics in these three regions were small molecules which are easier to be used with microorganism. There were four samples in a trend showing that the degradation ability of higher bioactivity before backwash was greater than after backwash in aromatic protein I (Region I). The bioactivity could change the effluent aromatic protein II (Region II) in rapid filter. The soluble microbial by-product-like (Region IV) presented that higher bioactivity had better degradation ability before backwash, while the decreased bioactivity after backwash caused the degradation ability being worse.
The fluorescent intensity of influent before filtering was mainly located in aromatic protein II (Region II), fulvic acid-like (Region III) and humic acid-like (Region V), while the effluent was located in fulvic acid-like(Region III) and humic acid-like (Region V) in Tanding Water Treatment Plant. However, the water quality due to the dramatic change of it was more difficult to explore the variation between biological activity and FEEMs.
From what have been mentioned above, two water plants we observe the difference in water quality for the soluble microbial by-product-like (Region IV) had better degradation ability in Fong-Yuan the second Water Treatment Plant when bioactivity was higher. Meanwhile, the water source was in lack of soluble microbial by-product-like (Region IV) fluorescent intensity in Tanding Water Treatment Plant, as a result, there were too many factors to be manipulated in real water treatment plant, which made it difficult to explain the relationship between the bioactivity and organic fluorescent property.
誌謝..i
摘要..iii
Abstract..iv
目錄..vi
圖目錄..viii
表目錄..xi
第一章 前言..1
1.1研究緣起..1
1.2 研究動機及目的..2
第二章 文獻回顧..3
2.1 有機物與快濾池中微生物之關係..3
2.1-1 微生物對快濾池的影響..3
2.1-2 微生物對有機物的影響..5
2.1-3 影響濾床上微生物的因素 ..7
2.2 快濾池中有機物與現有生物活性分析方法..11
2.2-1 濾料上生物膜之活性定量..11
2.2-2 有機物特性及分析方法..14
2.2-3 螢光激發發射光譜的應用..17
第三章 研究材料及方法..20
3.1 研究架構與內容..20
3.1-1 快濾池生物活性探討..20
3.1-2 影響生物活性高低之因素..20
3.1-3 FEEMs與快濾池生物活性之變化..20
3.2 實驗方法..22
3.2-1 水場介紹..22
3.2-2 現場採樣方法..23
3.2-3 一般水質分析..26
3.2-4 有機物分析..26
3.2-5 快濾池生物活性分析..27
3.2-6 螢光激發發射光譜..28
3.3 分析儀器設備..29
第四章 結果與討論..30
4.1 快濾池生物活性探討..30
4.1-1 不同快濾床之適用性..30
4.1-2 不同水場之適用性..33
4.1-3 快濾床反洗前後之螢光染色法適用..35
4.2影響生物活性高低之因素..37
4.2-1 餘氯量及NPDOC變化對生物活性之影響..37
4.2-2 反沖洗對快濾床生物活性之影響..42
4.3 FEEMs與快濾池生物活性之變化..46
4.3-1 豐原給水廠..46
4.3-2 潭頂淨水場..58
第五章 結論與建議..61
5.1 結論..61
5.2 建議..63
第六章 參考文獻..64
Bai, Y., Zhang, J., Li, Y.F., Gao, Y.N. and Li, Y. (2005) Biomass and microbial activity in a biofilter during backwashing. Journal of Zhejiang University Science 6B(5), 427-432.
Baghoth, S.A., Sharma, S.K. and Amy, G.L. (2011) Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC. Water Research 45, 797-809.
Boon, N., Pycke, B.F.G., Marzorati, M. and Hammes, F. (2011) Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics. Water Research 45, 6355-6361.
Campos, L.C., Su, M.F.J., Graham, N.J.D. and Smith, S.R. (2002) Biomass development in slow sand filters. Water Research 36, 4543-4551.
Chen, W., Westerhoff, P., Leenheer, J.A. and Booksh, K. (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science &; Technology 37, 5701-5710.
Chuang, Y.H., Wang, G.S. and Tung, H.H. (2011) Chlorine residuals and haloacetic acid reduction in rapid sand filtration. Chemosphere 85, 1146–1153.
Cohen, E., Levy, G.J. and Borisover, M. (2014) Fluorescent components of organic matter in wastewater: Efficacy and selectivity of the water treatment. Water Research 55, 323-334.
Edo, B.R., Natalia, B., Boris, L., Tom, B. and Ilana, B.F. (2012) Rapid sand filtration pretreatment for SWRO: Microbial maturation dynamics and filtration efficiency of organic matter. Desalination 286, 120-130.
Edzwalds, J.K. and Tobiason, J.E. (1999) Enhanced coagulation: US requirement and a broader. Water Science and Technology 40 (9), 63-70.
Fonseca, A.C., Summers, R.S. and Hernandez, M.T. (2001) Comparative measurements of microbial activity in drinking water biofilters. Water Research 35(16), 3817-3824.
Han, L.N., Liu, W.J., Chen, M., Zhang, M.L., Liu, S.M., Sun, R.L. and Fei, X.Q. (2013) Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter. Water Research 47, 4861-4868.
Hoefel, D., Ho, L., Monis, P.T., Newcombe, G. and Saint, C.P. (2009) Biodegradation of geosmin by a novel gram-negative bacterium; isolation, phylogenetic characterisation. Water Research 43, 2927-2935.
Hudson, N., Baker, A. and Reynolds, D. (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters- a review. River Research and Applications 23, 631-649.
Moll, D.M., Summers, R.S., Fonseca, A.C. and Matheis, W. (1999) Impact of temperature on drinking water biofilter performance and microbial community structure. Environmental Science &; Technology 33, 2377-2382.
Naidu, G., Jeong, S., Vigneswaran, S. and Rice, S.A. (2013) Microbial activity in biofilter used as a pretreatment for seawater desalination. Desalination 309, 254-260.
Ndiongue, S., Huck, P.M. and Slawson, R.M. (2005 ) Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Water Research 39, 953-964.
Norton, C.D. and Lechevallier, M.W. (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Applied and Environmental Microbiology, 268-276.
Parlanti, E., Worz, K., Geoffroy, L. and Lamotte, M. (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry 31, 1765-1781.
Richardson, S.D., Plewa, M.J., Wagner, E.D., Schoeny, R. and Demarini, D.M. (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research 636, 178-242.
Rodriguez, M.J., Serodes, J. and Roy, D. (2007) Formation and fate of haloacetic acids (HAAs)within the water treatment plant. Water Research 41, 4222-4232.
Selberg, A., Viik, M., Ehapalu, K. and Tenno, T. (2011) Content and composition of natural organic matter in water of Lake Pitkjärv and mire feeding Kuke River (Estonia). Journal of Hydrology 400, 274–280.
Simon, F.X., Rudé, E., Llorens, J. and Baig, S. (2013) Study on the removal of biodegradable NOM from seawater using biofiltration. Desalination 316, 8–16.

Sin, G., Weijma, J., Spanjers, H. and Nopens, I. (2008) Dynamic model development and validation for a nitrifying moving bed biofilter: Effect of temperature and influent load on the performance. Process Biochemistry 43, 384-397.
Stevenson, F. J. (1994) Humus chemistry: genesis, composition, reactions. John Wiley, New York.
Tao, W., He, Y., Wang, Z., Smith, R., Shayya, W. and Pei, Y. (2012) Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater. Ecological Engineering 47, 76-82.
Velten, S., Boller, M., Oliver, K., Helbing, J., Weilenmann, H.U. and Hammes, F. (2011) Development of biomass in a drinking water granular active carbon (GAC) filter. Water Research 45, 6347-6354.
Volk, C.J. and Lechevallier M.W. (2002) Effects of conventional treatment on AOC and BDOC levels. Journal American Water Works Association 94(6), 112-123.
文浩洋(2006)台灣西部地區梨形鞭毛蟲及隱胞子蟲之環境調查與消毒評估。碩士論文,國立中正大學地震研究所。嘉義縣。
江婉嘉(2004)。應用螢光染色法以螢光顯微鏡與流式細胞儀評估醫院汙水處理廠水中微生物特性。碩士論文,國立台灣大學公共衛生學院環境衛生研究所。台北市。
邱莉婷(2010)。淨水程序中快濾池去除藻類效能之研究。碩士論文,國立中興大學環境工程學研究所。台中市。

林育彰(2009)。藻體胞外有機物特性之研究。碩士論文,國立成功大學環境工程學系。台南市。
林建宏(2005)。水中生物可分解有機碳之測定。碩士論文,大仁技術學院環境管理研究所。屏東縣。
林建立(2011)
高肇藩(1987)。給水工程。台北市:三民
郭譯惇(2009)。探討截留於快濾池中微生物組成及其對過濾系統造成之可能影響。碩士論文,國立中興大學環境工程學系。台中市。
陳佳莉(2010)。應用螢光染色法監測溫泉水微生物特性研究。碩士論文,國立台灣大學公共衛生學院環境衛生研究所。台北市,
陳柏志(2010)。前加氯劑量對快濾床中生物活性的影響。碩士論文,國立臺灣大學環境工程學研究所。台北市。
陳聖偉(2010)。前氧化對混凝沉澱程序影響之研究。碩士論文,國立成功大學環境工程學系。台南市。
莊佳卉(2012)。錳砂濾料之抗菌性研究。碩士論文,國立交通大學環境工程研究所。新竹縣。
崔立超(2005)。螢光光譜法在農藥殘留檢測中的應用研究。碩士論文,燕山大學。秦皇島市。
張德威、邱宜亭、李明潔、連紹凱、林財富(2009)三種氧化劑對微囊藻細胞破壞及其代謝物去除之研究。第26屆自來水研究發表會。台南。
張庭瑋(2011)。模擬高級與傳統淨水場中污染物之變化。博士論文,國立中山大學環境工程研究所。高雄市。
黃永定(2008)。慢砂濾池生物膜生物總量與含鹵乙酸降解之關係。碩士論文,國立台灣大學公共衛生學院環境衛生研究所。台北市。
黃政賢(2010)。給水工程。台北縣五股鄉:高立圖書有限公司。
楊博名(2006)。消毒對生物膜活性之影響。碩士論文,大仁科技大學環境管理研究所。屏東縣。
鄭如涵(2012)。混凝對天然有機物(NOM)去除之研究。碩士論文,國立成功大學環境工程學系。台南市。
劉靜宜(2004)。活性碳濾床對有機物吸附效率及附著微生物代謝活性之研究。碩士論文,逢甲大學環境工程與科學學系,台中市。
蔡先逸(2011)。淨水場快濾池效能提昇方法之研究。碩士論文,逢甲大學環境工程與科學學系,台中市。
薛志宏、張勝輝、王珊莉、張玉玲、張美鳳、陳富鈴 (2013)。自來水供水水質生物穩定性簡易評估方法。自來水會刊第 32 卷第 3 期
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔