跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/05 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐雍
研究生(外文):Yung Hsu
論文名稱:使用兩對共焦柱狀透鏡與小孔徑法拉第旋轉器之光學循環器設計
論文名稱(外文):Design of optical circulators with a small-aperture Faraday rotator by applying two pairs of confocal cylindrical lenses
指導教授:陳敬恒
口試委員:陳敬恒陳坤煌鄒志偉葉建宏
口試日期:2014-05-07
學位類別:碩士
校院名稱:逢甲大學
系所名稱:光電學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:光學循環器法拉第旋轉器共焦透鏡高功率應用
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
光學循環器為在許多應用中不可或缺的元件,包含光通訊系統、大氣通訊系統,以及相關的高能量測系統。現今各式元件都面臨降低成本與使用於高能應用的挑戰。有鑑於此,在本論文中,一種新型的光學循環器設計被提出以滿足這些需求。首先,兩對共焦柱狀透鏡被應用於實現光束擴束器與縮束器的功能。引入這些元件於PBS式光學循環器之設計中,僅需一個小孔徑法拉第旋轉器以降低成本。由於PBS式光學循環器之高損害閥值,此特性使得此設計適用於高功率應用。為了驗證此設計之可行性,四埠與六埠光學循環器雛型被組裝並以氦氖雷射測試。反射損失為27.72 dB,插入損失介於0.62 dB到1.15 dB,且隔離值介於23.04 dB到45.13 dB。實驗結果與設計考量被詳細討論。此設計具有一個簡單、對稱和密集的結構、偏極獨立、緩和強磁場之干擾與危害的優點。此外,此元件適用於高功率之應用,並且其傳輸埠之數目可擴充。
Optical circulators are necessary element in several applications including optical communication systems, atmospheric communication systems and related high-energy measurement systems. In the currently variant devices, they should suffer from challenges of reducing cost and applying to high-power applications. Accordingly, in this thesis, a new design of optical circulator is proposed to fulfill these demands. Firstly, two pairs of confocal cylindrical lenses are applied to implement functions of beam expander and concentrator. Introducing these elements into design of PBS-type optical circulator, only a small-aperture of Faraday rotator is required to reduce the cost. Because of the high damage threshold of PBS-type optical circulator this characteristic make this design suitable for high power applications. In order to show the feasibility of this design, prototypes of four-port and six-port optical circulator were assembled and tested with helium-neon laser. The return losses are 27.72 dB, the insertion losses are ranged from 0.62 dB to 1.15 dB, and the isolation values are ranged from 23.04 dB to 45.13 dB. The experimental results and design considerations were discussed in detail. This design should bear merits of a simple, symmetrical, and compact structure, polarization independent, relaxing the interference and hazard of strong magnetic field. In addition, the device is suitable for high power applications and the port number can be expanded.
誌 謝 i
摘 要 iii
Abstract iv
目 錄 v
圖 目 錄 ix
表 目 錄 xii
第一章 緒論 1
1.1 前言 1
1.2 章節簡介 3
第二章 光學循環器之介紹 5
2.1 前言 5
2.2 光學循環器之組件 5
2.2.1空間偏離偏極器 5
2.2.2法拉第旋轉器 12
2.2.3二分之一波片 15
2.3 光學循環器之種類 19
2.3.1晶體式光學循環器 19
2.3.2 PBS式光學循環器 20
2.3.3波導式光學循環器 22
2.3.4全像式光學循環器 24
2.4 光學循環器之應用 25
2.4.1光學存取多工/解多工器 25
2.4.2光學時域反射量測術 27
2.4.3光纖雷射 28
2.4.4光達 29
2.5小結 31
第三章 小孔徑法拉第旋轉器之PBS式光學循環器 32
3.1前言 32
3.2共焦透鏡操作原理 32
3.3四埠PBS式光學循環器原理 33
3.4六埠PBS式光學循環器原理 36
3.5小結 39
第四章 實驗結果與討論 40
4.1前言 40
4.2 PBS式光學循環器之組裝與實驗結果 40
4.3實驗結果之討論 44
4.3.1共焦透鏡之分光間距 45
4.3.2光學循環器之尺寸 46
4.3.3傳輸埠的擴展性 47
4.3.4偏極相依損耗與偏極模態色散 50
4.3.5實驗模具之選用 54
4.4法拉第旋轉器之探討 55
4.4.1法拉第旋轉器之強磁場干擾及危害 55
4.4.2高功率傳輸對法拉第旋轉器所造成之影響 57
4.5本設計概念之延伸 58
4.5.1擴束與縮束之設計概念 58
4.5.2應用範圍之延伸 60
4.6小結 65
第五章 結論 66
附錄一 小孔徑法拉第旋轉器之四埠光學循環器模具設計圖 68
附錄二 小孔徑法拉第旋轉器之六埠光學循環器模具設計圖 69
參考文獻 70
[1]C. S. Lee and H. H. Lu, “A hybrid DWDM system based on a Fabry–Perot laser diode and an optical circulator with a fiber Bragg grating,” Microwave and Optical Technology Letters, vol. 32, no. 5, pp. 390–393, 2002.
[2]M. Renilkumar and P. Nair, “Low loss 2-port OADM using 1-D Photonic Crystal and 3-Port Optical Circulator,” Institute of Smart Structures and Systems, ISSS, vol. 1, no. 1, pp. 10–15, 2012.
[3]Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” Photonics Technology Letters, IEEE, vol. 12, no. 10, pp. 1394–1396, 2000.
[4]A. V. Tran, W. De Zhong, R. C. Tucker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” Photonics Technology Letters, IEEE, vol. 13, no. 6, pp. 582–584, 2001.
[5]M. J. Weber, Handbook of optical materials. Boca Raton: CRC Press, 2003.
[6]J.-P. Laude, DWDM fundamentals, components, and applications. Boston, MA: Artech House, 2002.
[7]S. K. Liaw, W. Y. Jang, C. J. Wang, and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics vol. 46, no. 12, pp. 2280–2285, 2007.
[8]C. H. Yeh, J. Y. Sung, L. G. Yang, C. W. Chow, and J. H. Chen, “Stable and wavelength-tunable RSOA- and SOA-based fiber ring laser,” Optical Fiber Technology, 2014.
[9]C. H. Yeh and S. Chi, “A broadband fiber ring laser technique with stable and tunable signal-frequency operation,” Optics express, vol. 13, no. 14, pp. 5240–5244, 2005.
[10]C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, J. H. Chen, and C. L. Pan, “Stable Multiwavelength Semiconductor Laser Using FWM and SBS-Assisted Filter,” IEEE Photonics Technology Letters, vol. 23, no. 21, pp. 1627–1629, Nov. 2011.
[11]C. H. Yeh, C. W. Chow, Y. F. Wu, Y. H. Lin, B. C. Cheng, and J. H. Chen, “Using optimal cavity loss and saturable-absorber passive filter for stable and tunable dual-wavelength erbium fiber laser in single-longitudinal-mode operation,” Laser Physics Letters, vol 8, no. 9, pp. 672–677, 2011.
[12]H. Lin and C. H. Chang, “High power C+ L-band Erbium ASE source using optical circulator with double-pass and bidirectional pumping configuration,” Optics express, vol. 12, no. 25, pp. 6135–6140, 2004.
[13]Naoto Kishi, Takahumi Sano, and Eikichi Yamashita, “Fiber-Optic Transceiver with an Optical Circulator for Optical Time-Domain Reflectometers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 4, pp. 1045–1048, 1997.
[14]J. G. Ellison and A. S. Siddiqui, “A Fully Polarimetric Optical Time-Domain Reflectometer,” IEEE Photonics Technology Letters, vol. 10, no. 2, pp. 246–248, 1998.
[15]Yuncai Wang, Bingjie Wang, and Anbang Wang, “Chaotic Correlation Optical Time Domain Reflectometer Utilizing Laser Diode,” IEEE Photonics Technology Letters, vol. 20, no. 19, pp. 1636–1638, 2008.
[16]Yuncai Wang, Hucheng He, Bingjie Wang, and Anbang Wang, “Chaotic Correlation Optical Time Domain Reflectometer method and apparatus,” U.S. Patent, No. 0290035 A1, 2010.
[17]Tetsuro Komukai, Yoshiaki Miyajima, and Masataka Nakazawa, “An In-Line Optical Bandpass Filter with Fiber Gratings and an Optical Circulator and Its Application to Pulse Compression,” Japanese Journal of Applied Physics, vol. 34, no. 2B, pp. L230–L232, 1995.
[18]M. Yamada, M. Shimizu, Y. Ohishi, J. Temmyo, T. Kanamori, and S. Sudo, “Highly efficient configuration of a Pr/sup 3+/-doped fluoride fiber amplifier module with an optical circulator,” Photonics Technology Letters, IEEE, vol. 5, no. 9, pp. 1011–1013, 1993.
[19]R. E. Wagner and J. Cheng, “Electrically controlled optical switch for multimode fiber applications,” Applied optics, vol. 19, no. 17, pp. 2921–2925, 1980.
[20]J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free space,” Optics &; Laser Technology, vol. 42, no. 6, pp. 927–933, Sep. 2010.
[21]Harry J. R. Dutton, Understanding Optical Communications. New Jersey: Prentice Hall, 1998.
[22]Dawei Wang, Tee-Hiang Cheng, Yong-Kee Yeo, Zhaowen Xu, Jianguo Liu, and Yixin Wang, “Optically controlled loop buffer using a SOA loop mirror and a circulator based reflector,” Optics Communications, vol 282, issue 20, pp. 4052–4056.
[23]M. Euler and V. F. Fusco, “Split slot ring spatial quasi-circulator for RCS characterisation,” Electronics letters, vol. 46, no. 6, pp. 394–395, 2010.
[24]J. Wang, A. Yang, Y. Chen, Z. Chen, A. Geiler, S. M. Gillette, V. G. Harris, and C. Vittoria, “Self Biased Y-Junction Circulator at Ku Band,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 6, pp. 292–294, Jun. 2011.
[25]P. C. Fletcher and D. L. Weisman, “Circulators for optical radar systems,” Applied Optics, vol. 4, no. 7, pp. 867–873, 1965.
[26]T. Shiina, E. Minami, M. Ito, and Y. Okamura, “Optical circulator for an in-line-type compact lidar,” Applied optics, vol. 41, no. 19, pp. 3900–3905, 2002.
[27]T. Shiina, K. Noguchi, and T. Fukuchi, “Polarization-independent optical circulator for high accuracy Faraday depolarization lidar,” Applied optics, vol. 51, no. 7, pp. 898–904, 2012.
[28]H. Guo, D. J. Hoppe, J. Rodgers, R. M. Perez, J. P. Tate, B. L. Conroy, V. L. Granatstein, A. M. Bhanji, P. E. Latham, and G. S. Nusinovich, “Phase-locking of a second-harmonic gyrotron oscillator using a quasi-optical circulator to separate injection and output signals,” Plasma Science, IEEE Transactions on, vol. 23, no. 5, pp. 822–832, 1995.
[29]A. G. Danelyan, D. I. Garibashvili, K. Z. Kartvelishvili, and V. A. Danelyan, “Scope for an optical circulator in metrology,” Measurement techniques, vol. 40, no. 8, pp. 762–766, 1997.
[30]F. H. Hsu, J. H. Chen, K. H. Chen, C. H. Yeh, and K. Y. Hsu, “Optimized design of multiport optical circulator,” Optik - International Journal for Light and Electron Optics, Feb. 2014.
[31]J. H. Chen, K. H. Chen, H. Y. Hsieh, and F. H. Hsu, “Design of Crystal-Type Multiport Optical Quasi-Circulator,” IEEE Photonics Technology Letters, vol. 22, no. 1, pp. 48–50, Jan. 2010.
[32]J. H. Chen, P. J. Hsieh, J. Y. Lin, and D. C. Su, “Improved N-port optical quasi-circulator by using a pair of orthogonal holographic spatial-and polarization-modules,” Optics express, vol. 12, no. 26, pp. 6553–6558, 2004.
[33]W. B. Ribbens, “An optical circulator,” Applied Optics, vol. 4, no. 8, pp. 1037–1038, 1965.
[34]A. Shibukawa and M. Kobayashi, “Compact optical circulator for near-infrared region,” Electronics Letters, vol. 14, no. 25, pp. 816–817, 1978.
[35]I. Hidetoshi, I. Hiroshi, K. Kenichi, T. Yasuhiro, and N. Juichi, “Simple polarisation-independent optical circulator for optical transmission systems,” Electronics Letters, vol. 15, no. 25, pp. 830–831, 1979.
[36]W. Emkey, “A polarization-independent optical circulator for 1.3 m,” Lightwave Technology, Journal of, vol. 1, no. 3, pp. 466–469, 1983.
[37]A. Shibukawa and M. Kobayashi, “Compact optical circulator for optical fiber transmission,” Applied optics, vol. 18, no. 21, pp. 3700–3703, 1979.
[38]M. Shirasaki, H. Kuwahara, and T. Obokata, “Compact polarization-independent optical circulator,” Applied optics, vol. 20, no. 15, pp. 2683–2687, 1981.
[39]Y. Fujii, “High-isolation polarization-independent optical circulator coupled with single-mode fibers,” Lightwave Technology, Journal of, vol. 9, no. 4, pp. 456–460, 1991.
[40]M. Koga and T. Matsrnmoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” Lightwave Technology, Journal of, vol. 10, no. 9, pp. 1210–1217, 1992.
[41]Emil Wolf, Progress in Optics, vol 49, Elsevier, 2006.
[42]John L. Wentz, “Polarization independent light modulation means using birefringent crystals,” U.S. Patent, No. 3719414, 1973.
[43]John Nicholls, “Birefringent crystals find new niche in WDM networks,” WDM Solutions, 2001.
[44]A. Tagaya, “Compensation of the Birefringence of a Polymer by a Birefringent Crystal,” Science, vol. 301, no. 5634, pp. 812–814, Aug. 2003.
[45]F. Flossmann, U. Schwarz, M. Maier, and M. Dennis, “Polarization Singularities from Unfolding an Optical Vortex through a Birefringent Crystal,” Physical Review Letters, vol. 95, no. 25, Dec. 2005.
[46]福建華科(CASIX)光電有限公司產品型錄.
http://www.casix.com/
[47]K. Shiraishi and K. Matsumura, “Fabrication of spatial walk-off polarizing films by oblique deposition,” Quantum Electronics, IEEE Journal of, vol. 30, no. 10, pp. 2417–2420, 1994.
[48]K. Muro and K. Shiraishi, “Poly-Si/SiO2 Laminated Walk-Off Polarizer Having a Beam-Splitting Angle of More Than 20°,” Journal of lightwave technology, vol. 16, no. 1, p. 127, 1998.
[49]K. Shiraishi and S. Kawakami, “Spatial walk-off polarizer utilizing artificial anisotropic dielectrics,” Optics letters, vol. 15, no. 9, pp. 516–518, 1990.
[50]K. Shiraishi and T. Aoyagi, “Fabrication of spatial walk-off polarizing film exhibiting a large split angle by oblique silicon deposition,” Optics letters, vol. 23, no. 15, pp. 1232–1234, 1998.
[51]Stephen M Macneille, “Beam splitter,” U.S. Patent, No. 2403731, 1946.
[52]L. Li and J. A. Dobrowolski, “High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle,” Applied Optics, vol. 39, no. 16, pp. 2754–2771, 2000.
[53]J. H. Chen, K. H. Chen, and D. C. Su, “Polarization-Selective Substrate-Mode Volume Holograms and Its Application to Optical Circulators.”
[54]陳敬恒, “使用全像空間偏離偏極器之多埠光學循環器,” 博士學位論文, 國立交通大學 光電工程研究所 (2004).
[55]P. J. Hsieh, J. H. Chen, H. C. Hsieh, Z. C. Jian, and D. C. Su, “4-Port polarization-independent wavelength-interleaving bidirectional circulator,” Optics Communications, vol. 281, no. 2, pp. 225–231, Jan. 2008.
[56]T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly Tb2O3/Dy2O3 -Concentrated B2O3−Ga2O3−SiO2−P2O5 Glasses,” Chemistry of Materials, vol. 14, no. 8, pp. 3223–3225, Aug. 2002.
[57]銓州光電股份有限公司產品型錄.
[58]OPTO SCIENCE, INC.公司產品介紹:
http://www.optoscience.com/maker/northrop/pdf/TGG.pdf
[59]Thorlabs產品型錄:
http://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=6338&;pn=LCC1222-B
[60]L. D. Wang, “High-isolation polarization-independent optical quasi-circulator with a simple structure,” Optics letters, vol. 23, no. 7, pp. 549–551, 1998.
[61]Y. Fujii, “Compact high-isolation polarization-independent optical circulator,” Optics letters, vol. 18, no. 3, pp. 250–252, 1993.
[62]T. Matsumoto and K. Sato, “Polarization-independent optical circulator: an experiment,” Applied optics, vol. 19, no. 1, pp. 108–112, 1980.
[63]N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” Photonics Technology Letters, IEEE, vol. 11, no. 3, pp. 355–357, 1999.
[64]Haifeng Zhou, Xiaoqing Jiang, Yiling Sun, Jianyi Yang, and Minghua Wang, “Analysis of an MMI-Based Six-Port Circulator by Using 3-D Magneto-Optical Beam Propagation Method,” Journal of Lightwave Technology, vol. 27, no. 21, pp. 4660–4666, Nov. 2009.
[65]Q. Wang, Z. Ouyang, and Q. Liu, “Multiport photonic crystal circulators created by cascading magneto-optical cavities,” JOSA B, vol. 28, no. 4, pp. 703–708, 2011.
[66]Q. Wang, Z. Ouyang, K. Tao, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Physics Letters A, vol. 376, no. 4, pp. 646–649, Jan. 2012.
[67]J. H. Chen, D. C. Su, and J. C. Su, “Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,” Optics express, vol. 11, no. 17, pp. 2001–2006, 2003.
[68]Carlos E. Saavedra, Stanley S. K. Ho, “Optical Quasi-Circulator Using Power Couplers and Optical Amplifiers,” IEEE Photonics Technology Letters, vol. 22, no. 9, pp. 604–606, 2010.
[69]J. H. Chen, K. H. Chen, C. H. Yeh, and W. P. Huang, “Simplified Design of Multiport Optical Circulator With Parallel Connection of Mirror-Image Arranged Spatial- and Polarization-Modules,” IEEE Photonics Technology Letters, vol. 23, no. 23, pp. 1766–1768, 2011.
[70]Agilent Technologies, “Polarization-dependent loss measurements using modular test system configurations.”
http://cp.literature.agilent.com/litweb/pdf/5965-5720E.pdf
[71]Gunnar Stolze, “光纖被動元件之極化相依損耗量測.”
http://www.hope.com.tw/art/print.asp?O=HJN758VDGJYAR-STDY
[72]Agilent Technologies, “Polarization Dependent Loss Measurement of Passive Optical Components.”
http://cp.literature.agilent.com/litweb/pdf/5990-3281EN.pdf
[73]Polarization Mode Dispersion:
http://www.photonics.com/EDU/Handbook.aspx?AID=25153
[74]L. E. Nelson and R. M. Jopson, “Introduction to polarization mode dispersion in optical systems,” Journal of Optical and Fiber Communications Reports, vol. 1, no. 4, pp. 312–344, Dec. 2004.
[75]JDUS, “Testing Polarization Mode Dispersion in the Field.”
http://www.jdsu.com/ProductLiterature/pmd_wp_fop_tm_ae.pdf

[76]Polarization Mode Dispersion:
http://www.ofsoptics.com/resources/UFO-PMD.pdf
[77]華郁塑膠, 產品材料特性.:
http://www.hwayu.com.tw/material.php?index_id=28
[78]Neodymium Iron Boron Technical Information:
http://www.duramag.com/materials/neodymium-magnets-ndfeb/neodymium-iron-boron-technical-information/
[79]Neodymium Iron Boron Magnets:
http://www.arnoldmagnetics.com/Neodymium_Magnets.aspx
[80]Neodymium Iron Boron Magnets:
http://www.dextermag.com/material-grades/neodymium-iron-boron-magnets
[81]Neodymium Iron Boron Magnets:
http://www.mceproducts.com/knowledge-base/article/28/28/1/2
[82]Randall D. Knight, PHYSICS FOR SCIENTISTS AND ENGINEERS WITH MODERN PHYSICS. Boston: Pearson Education, Addison Wesley, 2004.
[83]Eric Pooler, Electro-Optics Technology,“Technical Bulletin: Thermal Lensing And Thermally Induced Depolarization In 1 Micron High Power Faraday Isolators.” 2007.
[84]A. A. Jalali, J. Rybarsyk, and E. Rogers, “Thermal lensing analysis of TGG and its effect on beam quality,” Optics Express, vol. 21, no. 11, p. 13741, Jun. 2013.
[85]Y. Hsu, J. Y. Lin, K. H. Chen, C. H. Yeh, and J. H. Chen, “Holographic-type Four-port Optical Circulator with a Narrow Waist of Faraday Rotator Window,” OPTIC 2013.
[86]Hideo Kuwahara, “Optical circulator,” U.S. Patent, No. 4650289, 1987.
[87]Yihao Cheng, “Optical circulator,” U.S. Patent, No. 5878176, 1999.
[88]Wei-Zhong Li, Vincent Au-Yeung, and Qing-Dong Guo, “Optical circulator,” U.S. Patent, No. 5909310, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top