跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴威勛
研究生(外文):Lai Wei-Hsun
論文名稱:利用具陣列之奈米銀結構提升非晶矽薄膜太陽電池轉換效率研究
論文名稱(外文):The Study of Effective Enhancing Conversion Efficiency for a-Si Thin-Film Solar Cell Using Pattern Array Silver Nanostructrue
指導教授:羅仕守
指導教授(外文):Lo Shih-Shou
口試委員:詹德均陳錫釗
口試委員(外文):Jan Der-JunChen Hsi-Chao
口試日期:2014-07-29
學位類別:碩士
校院名稱:逢甲大學
系所名稱:光電學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:雷射干涉微影奈米銀電化學法太陽能電池
外文關鍵詞:Laser Interference LithographySilver NanostructureElectrochemistry ProcessSolar Cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,結合無光罩的雷射干涉微影技術與電化學法,得以控制奈米銀外形結構,使其具有不同週期間距變化,將此結構應用於薄膜太陽電池背反射層中,使太陽電池膜層表面產生粗糙特性與電池底層具有侷域性表面電漿效應,藉以提升薄膜太陽電池轉換效率。
研究發現,在厚度為350 nm的非晶矽薄膜太陽電池中採用一維灌木狀奈米銀結構,奈米銀結構週期間距為1 um,應用於電池背反射層中,其轉換效率為3.94 %。相較於未採用此結構者,其轉換效率有效增加約20 %。分析元件霧度(Haze)與外部量子效率(EQE),研究結果顯示EQE在波長500 nm開始有明顯的提升,其中500 nm至580 nm可明顯對應到霧度的提升,為光捕捉效應(Light Trapping)貢獻;而波長580 nm後EQE的提升,則推論可能由奈米銀粒子表面電漿效應所貢獻。
In this study, the shape of silver nanostructure can be exactly controlled by combining the maskless laser interference lithography and the electrochemistry process. The silver nanostructure with various period spacing can be applied in back-reflectors of thin-film solar cell. Therefore, the solar cell with textured structure and localized surface plasmon resonance structure is formed on the top and bottom of solar cell, respectively. Therefore, the conversion efficiency of the solar cell increases.
A conversion efficiency= 3.94 % was obtained in an a-Si solar cell with spacing= 1 um one-dimension shrub-like silver nanostructure. Compared with the a-Si solar cell using flat back-reflector, the conversion efficiency effectively increases 20 %. The haze ratio and external quantum efficiency is measured. The external quantum efficiency dramatically increases at the wavelength larger than 500 nm. The haze ratio increases at the wavelength 500 nm to 580 nm due to the light-trapping effect. The increasing external quantum effect at the wavelength longer than 580 nm is due to the contribution of surface plasmon effect caused by Ag nanostructure.
誌  謝 i
中文摘要 ii
Abstract iii
第一章、緒論 1
1.1前言 1
1.2太陽能電池簡介 2
1.3金屬奈米粒子特性 4
1.3.1表面效應 5
1.3.2尺寸效應 6
1.4金屬奈米粒子製備方式 6
1.5雷射干涉微影(Laser Interference Lithography) 7
1.6文獻回顧 9
1.7研究目的 13
第二章、理論 14
2.1雷射干涉微影 14
2.2表面電漿 15
2.3擴散受限凝聚模型 16
2.4碎形結構 17
2.5光捕捉(Light Trapping) 20
2.6霧度 21
2.7外部量子效率 21
2.8非晶矽太陽電池結構 22
2.9太陽電池電流-電壓特性與轉換效率 22
第三章、實驗流程與架構 24
3.1光阻陣列圖形製作 24
3.1.1基板清潔與前置作業 24
3.1.2光阻塗佈 25
3.1.3雷射曝光與顯影 27
3.2電化學法製程 28
3.2.1前置作業 28
3.2.2電解液調配 29
3.2.3電鍍與舉離 30
3.3透明導電薄膜鍍製 31
3.4非晶矽太陽電池元件製作 33
3.5特性分析儀器 33
3.5.1掃描式電子顯微鏡 34
3.5.2能量散佈光譜儀 36
3.5.3霧度 37
3.5.4外部量子效率 38
第四章、結果與討論 39
4.1 結構形貌SEM圖分析 39
4.1.1光阻結構之SEM圖 39
4.1.2光阻結構之SEM圖 40
4.1.3奈米銀形貌之SEM圖 42
4.1.4奈米銀結構之SEM圖 43
4.1.5具AZO覆蓋於奈米銀之SEM圖 44
4.2元素分佈分析圖與成份分析光譜圖 45
4.3反射霧度 47
4.4太陽能電池剖面圖 48
4.5整體元件霧度量測 49
4.6外部量子效率 51
4.7元件J-V曲線圖 53
4.8電池元件量測分析 54
第五章、結論 55
參考文獻 56
[1]翁敏航, 楊茹媛, 管鴻, 晁成虎, “太陽能電池原理、元件、材料、製成與檢策技術,” 臺灣東華書局股份有限公司, 臺北市 (2010).
[2]Mokkapati, S., et al. &;quot;Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells.&;quot; Appl. Phys. Lett. 95.5: 053115 (2009).
[3]Ouyang, Zi, et al. &;quot;Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons.&;quot; Appl. Phys. Lett. 96.26: 261109 (2010).
[4]Beck, F. J., A. Polman, and K. R. Catchpole. &;quot;Tunable light trapping for solar cells using localized surface plasmons.&;quot; Journal of Applied Physics 105.11: 114310 (2009).
[5]Heine, Claus, and Rudolf H. Morf. &;quot;Submicrometer gratings for solar energy applications.&;quot; Applied Optics 34.14: 2476-2482 (1995).
[6]Zayats, Anatoly V., Igor I. Smolyaninov, and Alexei A. Maradudin. &;quot;Nano-optics of surface plasmon polaritons.&;quot; Physics reports 408.3: 131-314 (2005).
[7]Tam, Man Chun, et al. &;quot;Surface-plasmon-enhanced photoluminescence from metal-capped Alq3 thin Films.&;quot; Appl. phys. lett. 95.5: 051503 (2009).
[8]Pillai, S., et al. &;quot;Surface plasmon enhanced silicon solar cells.&;quot; Journal of applied physics 101.9: 093105 (2007).
[9]Duche, David, et al. &;quot;Improving light absorption in organic solar cells by plasmonic contribution.&;quot; Solar Energy Materials and Solar Cells 93.8: 1377-1382 (2009).
[10]Kim, Seok-Soon, et al. &;quot;Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles.&;quot; Appl. Phys. Lett. 93.7: 073307 (2008).
[11]Pillai, S., et al. &;quot;Surface plasmon enhanced silicon solar cells.&;quot; Journal of applied physics 101.9: 093105 (2007).
[12]Nahm, Changwoo, et al. &;quot;The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells.&;quot; Appl. Phys. Lett. 99.25: 253107 (2011).
[13]Chapin, D. M., C. S. Fuller, and G. L. Pearson. &;quot;A new silicon p‐n junction photocell for converting solar radiation into electrical power.&;quot; Journal of Applied Physics 25.5: 676-677 (1954).
[14]Carlson, David E., and Cristopher R. Wronski. &;quot;Amorphous silicon solar cell.&;quot;Appl. Phys. Lett. 28.11: 671-673 (1976).
[15]顧鴻壽, “太陽能電池元件導論,” 全威圖書有限公司, 臺北市 (2008).
[16]Ohno, Tomoya, et al. &;quot;Size effect of TiO2–SiO2 nano-hybrid particle.&;quot; Materials Chemistry and Physics 113.1: 119-123 (2009).
[17]Peng, Dungeng, et al. &;quot;Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity.&;quot; Journal of inorganic biochemistry 101.10: 1457-1463 (2007).
[18]Tian, L. J., et al. &;quot;Surface effect of nano-phosphors studied by time-resolved spectroscopy of Ce3+.&;quot; Chem. Phys. Lett. 452.1: 188-192 (2008).
[19]Lisiecki, I., et al. &;quot;Annealing process of anisotropic copper nanocrystals. 1. Cylinders.&;quot; Langmuir 16.23: 8802-8806 (2000).
[20]C. Unni, D. Philip and K.. G. Gopchandran, Spectrochimica Acta Part A: Molecular and Biomolecular Sectroscopy 71 (4), 1402-1407 (2008).
[21]van der Zande, Bianca MI, et al. &;quot;Optical properties of aligned rod-shaped gold particles dispersed in poly (vinyl alcohol) films.&;quot; The Journal of Physical Chemistry B 103.28: 5761-5767 (1999).
[22]Al-Rawashdeh, Nathir AF, et al. &;quot;Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene.&;quot;The Journal of Physical Chemistry B 102.2: 361-371 (1998).
[23]Unni, C., Daizy Philip, and K. G. Gopchandran. &;quot;Studies on optical absorption and photoluminescence of thioglycerol-stabilized CdS quantum dots.&;quot;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 71.4: 1402-1407 (2008).
[24]Macdonald, D. H., et al. &;quot;Texturing industrial multicrystalline silicon solar cells.&;quot; Solar Energy 76.1: 277-283 (2004).
[25]Liang, Eih-Zhe, Chao-Jei Huang, and Ching-Fuh Lin. &;quot;Use of SiO 2 nanoparticles as etch mask to generate Si nanorods by reactive ion etch.&;quot;Journal of Vacuum Science &; Technology B: Microelectronics and Nanometer Structures 24.2: 599-603 (2006).
[26]Uchida, Noriyuki, et al. &;quot;Synthesis of silicon nanocrystals in aluminum-doped SiO2 film by laser ablation method.&;quot; Physica E: Low-dimensional Systems and Nanostructures 38.1: 31-35 (2007).
[27]Beaudoin, F., et al. &;quot;Femtosecond laser ablation for backside silicon thinning.&;quot;Microelectronics Reliability 44: 1605-1609 (2004).
[28]Alonso, J. C., et al. &;quot;Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG: Nd laser.&;quot; Applied Surface Science 255.9 (2009): 4933-4937.
[29]Indrišiūnas, Simonas, et al. &;quot;Two complementary ways of thin-metal-film patterning using laser beam interference and direct ablation.&;quot; Journal of Micromechanics and Microengineering 23.9: 095034 (2013).
[30]Pasquale, M. A., et al. &;quot;Solution of the stefan problem: Silver electrodeposition under mass transfer control. The transition from diffusion to advection regime.&;quot;The Journal of Physical Chemistry B 108.35: 13315-13319 (2004).
[31]Matsushima, Hisayoshi, et al. &;quot;Magnetic field effects on the initial stages of electrodeposition processes.&;quot; Journal of Electroanalytical Chemistry 615.2: 191-196 (2008).
[32]Remita, H., et al. &;quot;Silver-palladium alloyed clusters synthesized by radiolysis.&;quot;Zeitschrift für Physik D Atoms, Molecules and Clusters 40.1: 127-130 (1997).
[33]Westerström, Rasmus, et al. &;quot;Oxidation and reduction of Pd (100) and aerosol-deposited Pd nanoparticles.&;quot; Physical Review B 83.11: 115440 (2011).
[34]Li, Haiying, et al. &;quot;Ag dots array fabricated using laser interference technique for biosensing.&;quot; Sensors and Actuators B: Chemical 134.2: 940-944 (2008).
[35]Byun, Ikjoo, and Joonwon Kim. &;quot;Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser.&;quot; Journal of Micromechanics and Microengineering 20.5: 055024 (2010).
[36]Xu, Di, et al. &;quot;Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.&;quot;Nanotechnology 22.3: 035303 (2011).
[37]Zhuo, Yujiang, et al. &;quot;Surfactant-assisted synthesis of Ag nanostructures and their self-assembled films on copper and aluminum substrate.&;quot; Applied Surface Science 257.24: 10395-10401 (2011).
[38]Cobley, Claire M., et al. &;quot;Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications.&;quot; Plasmonics 4.2: 171-179 (2009).
[39]Sharma, Virender K., Ria A. Yngard, and Yekaterina Lin. &;quot;Silver nanoparticles: green synthesis and their antimicrobial activities.&;quot; Advances in colloid and interface science 145.1: 83-96 (2009).
[40]Dai, Z. G., et al. &;quot;In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.&;quot; Nanotechnology23.33: 335701 (2012).
[41]Xie, Q., et al. &;quot;Fabrication of nanostructures with laser interference lithography.&;quot;Journal of alloys and compounds 449.1: 261-264 (2008).
[42]Kang, Guo Guo, Qiao Feng Tan, and Guo Fan Jin. &;quot;Polarization-selective subwavelength grating used with 193nm light.&;quot; Optics Communications 283.22: 4531-4535 (2010).
[43]Chou, Ta-Hsin, et al. &;quot;Roll-to-roll fabrication of a low-reflectance transparent conducting oxide film with subwavelength structures.&;quot; Journal of Micromechanics and Microengineering 22.4: 045009 (2012).
[44]Bohren, Craig F., and Donald R. Huffman. &;quot;Absorption and scattering by a sphere.&;quot; Absorption and Scattering of Light by Small Particles: 82-129 (1983).
[45]Kreibig, Uwe, and Michael Vollmer. &;quot;Optical properties of metal clusters.&;quot; (1995).
[46]Wallis, Stegeman. &;quot;Electromagnetic surface excitations.&;quot; (1985).
[47]Raether, Heinz. Surface plasmons on smooth surfaces. Springer Berlin Heidelberg, (1988).
[48]Raether, Heinz. &;quot;Surface plasmons on gratings.&;quot; Springer Tracts in Modern Physics: 91-116 (1988).
[49]Kim, Kwan, Kyung Lock Kim, and Seung Joon Lee. &;quot;Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy.&;quot; Chem. phys. lett. 403.1: 77-82 (2005).
[50]Nanba, Takao, Itsuro Yamamoto, and Mikihiko Ikezawa. &;quot;Surface enhanced Raman scattering of CO adsorbed on silver film.&;quot; Journal of the Physical Society of Japan 55.8: 2716-2722 (1986).
[51]Witten Jr, T. A., and Leonard M. Sander. &;quot;Diffusion-limited aggregation, a kinetic critical phenomenon.&;quot; Physical review letters 47.19: 1400 (1981).
[52]Witten, TA T., and L. M. Sander. &;quot;Diffusion-limited aggregation.&;quot; Physical Review B 27.9: 5686 (1983).
[53]S. Gray, Phil. Trans. 19, 280 (1696)
[54]Kol, Boaz, and Amnon Aharony. &;quot;Diffusion-limited aggregation as a Markovian process: Site-sticking conditions.&;quot; Physical Review E 63.4: 046117 (2001).
[55]Miyazima, Sasuke, Yasuhito Oota, and Yutaka Hasegawa. &;quot;Fractality of a modified Cantor set and modified Koch curve.&;quot; Physica A: Statistical Mechanics and its Applications 233.3: 879-883 (1996).
[56]Mandelbrot, Benoit B. The fractal geometry of nature. Vol. 173. Macmillan, (1983).
[57]Barlow, Martin T., and Edwin A. Perkins. &;quot;Brownian motion on the Sierpinski gasket.&;quot; Probability theory and related fields 79.4: 543-623 (1988).
[58]Jelinek, Herbert F., and Eduardo Fernandez. &;quot;Neurons and fractals: how reliable and useful are calculations of fractal dimensions?.&;quot; Journal of neuroscience methods 81.1: 9-18 (1998).
[59]Chung, K. W., and H. M. Ma. &;quot;Automatic generation of aesthetic patterns on fractal tilings by means of dynamical systems.&;quot; Chaos, Solitons &; Fractals 24.4: 1145-1158 (2005).
[60]Moreau, W. M. &;quot;Semiconductor lithography; Plenum Press.&;quot; New York (1988).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top