(3.236.228.250) 您好!臺灣時間:2021/04/22 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝宜君
研究生(外文):Yi-chun Hsieh
論文名稱:螺旋強度對藍相液晶晶格面之影響
論文名稱(外文):Effect of chirality on the lattice plane of blue phase I
指導教授:盧聖華盧聖華引用關係陳惠玉陳惠玉引用關係
指導教授(外文):Sheng-hua LuHui-yu Chen
口試委員:吳俊傑黃素真
口試日期:2014-07-24
學位類別:碩士
校院名稱:逢甲大學
系所名稱:光電學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:藍相晶格面晶格繞射法
外文關鍵詞:Blue phaselattice planeKossel diagram
相關次數:
  • 被引用被引用:3
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本文針對不同濃度手徵性分子加入向列型液晶後所形成的藍相液晶(Blue phase),手徵性分子濃度與藍相液晶反射光波長的關係進行探討。藉由反射光譜與晶格繞射法相互驗證的實驗結果顯示,藍相液晶的反射波長受晶格方向與晶格常數影響,使得藍相的反射波長與手徵性分子濃度(螺旋強度)不呈線性關係。隨著手徵性分子在液晶中的濃度增加,藍相液晶的晶格常數因螺旋強度增強而縮小,因此反射波長往短波長位移;但當晶格面的方向改變,便會使BPI的反射波長往長波長方向位移,這樣的結果使得BPI的反射波長與手徵性分子的濃度(螺旋強度)不為線性關係。
In this study, we explore the relationship between reflection wavelength and chiral concentrations in blue phase I (BPI). Based on our experiments, the reflection wavelengths in BPI are dominated by the lattice plane of the platelets and the lattice parameter of a unit cell, but they do not depend linearly on the chiral concentration. The reflection peak moves to a short wavelength as the chiral concentration increases because of the contraction of the lattice constant. However, when the lattice plane is changed, it dominates the reflection, and it may move to a longer wavelength. These results are also confirmed by Kossel diagrams.
致謝………………………………………………………………………. i
摘要……………………………………………………………………… iii
Abstract………………………………………………………………….. iv
目錄……………………………………………………………………... v
圖目錄………………………………………………………………….... vii
表目錄…………………………………………………………………… x
第一章 緒論…………………………………………………………….. 1
1-1 膽固醇相(Chiral Nematic, Cholesteric Phase;N*)……. 1
1-2 藍相液晶(Blue Phase;BP)…………………………….. 4
1-2.1 藍相之光學特性…………………………………. 5
1-2.2 藍相液晶之電學特性……………………………. 6
1-2.3 藍相液晶相態判別………………………………. 8
1-2.4藍相液晶溫度範圍之拓寬………………………. 10
1-3 本文研究目的與動機 ………………………………… 10
第二章 理論…………………………………………………………… 12
2-1 藍相缺陷線自由能理論………………………………. 12
2-2 膽固醇液晶之選擇性反射……………………………. 13
2-3 米勒指數(Miller index)………………………………… 16
2-4 藍相液晶之反射機制………………………………….. 17
2-5 晶格繞射法(Kossel diagram)………………………….. 18
2-6 晶格方向推算………………………………………….. 20
2-6.1由反射光譜計算藍相的晶格面方向……………. 20
2-6.2 由Kossel diagram推算藍相晶格面方向………. 21
第三章 實驗方法……………………………………………………… 22
3-1 材料與樣品配置……………………………………….. 22
3-2 膽固醇相態下螺距對溫度的相依性之量測………….. 24
3-3 藍相相態鑑定………………………………………….. 25
3-3.1量測反射光譜判定藍相相態……………………. 25
3-3.2晶格繞射法(Kossel diagram)……………………. 27
第四章 實驗結果與討論……………………………………………… 29
4-1 液晶在不同相態下螺距和溫度的相依性…………….. 29
4-1.1膽固醇相下螺距和溫度的相依性………………. 29
4-1.2藍相下螺距和溫度的相依性……………………. 34
4-2 NYCL系統下手徵性分子濃度與BPI晶格方向之關係……………………………………………………….. 37
4-3 S811系統下手徵性分子濃度與BPI晶格方向之關係.. 49
第五章 結論……………………………………………………………. 52
參考文獻……………………………………………………………….. 53
[1]P. J. Collings and M. Hird, Introduction to Liquid Crystals Chemistry and Physics, (Taylor &; Francis, 1997).
[2]P. P. Crooker, “The blue phases: A review of experiments”, Liq. Cryst. 5(3), 751−775 (1989).
[3]H. Stegemeyer, Th. Blumel, K. Hiltrop, H. Onusseit, and F. Porsch, “Thermodynamics, structural and morphological studies on liquid−crystalline blue phases,” Liq. Cryst. 1, 3−28 (1986).
[4]P. P. Crooker, Chirality in crystals, (Springer, 2001).
[5]H.-S. Kitzerow, “Blue Phases at Work,” Chem. Phys. Chem. 7, 63–66 (2006).
[6]Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
[7]D. L. Johnson, J. H. Flack, and P. P. Crooker, “Structure and Properties of the Cholesteric Blue Phases,” Phys. Rev. Lett. 45, 641–644 (1980).
[8]J. Her, B. B. Rao, and J. T. Ho, “Behavior of lattice parameter in cholesteric blue phases,” Phys. Rev. A, 24, 3272−3275 (1981).
[9]G. Heppke, H.-S. Kitzerow, D. Lötzsch, and Ch. Papenfuß, “Blue phase mixtures exhibiting low fractions of a chiral compound Experimental observation of some unusual properties” Liq. Cryst. 8(3), 407−418 (1990).
[10]H.-Y. Chen, J.-Y. Chiou, and K.-X. Yang, “Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,” Appl. Phys. Lett. 99, 181119 (2011).
[11]H.-S. Chen, Y.-H. Lin, C.-H. Wu, M. Chen, and H.-K. Hsu, “ Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles,” Opt. Mater. Express. 2, 1149–1155 (2012).
[12]F. Castales, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three dimensional nanostructures for photonic applications,” Nat. Mater. 11, 599–603 (2012).
[13]H.-S. Kitzerow, “The effect of electric fields on blue phases,” Liq. Cryst. 202, 51–83 (1991).
[14]H. J. Coles and H. F. Glesson, “Electric field induced phase transitions and color switching in the blue phases of chiral nematic liquid crystal,” Liq. Cryst. 167, 213–225 (1989).
[15]R. J. Miller and H. F. Glesson, “Lattice Parameter Mesurements from the Kossel diagrams of the Cubic Liquid Crystal Blue Phases,” J. Phys. II France, 6, 909−922 (1996).
[16]H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature, 436, 997–1000 (2005).
[17]M. J Costello, S. Meiboom, and M. Sammon, “Electron microscopy of a cholesteric liquid crystal and its blue phase,” Phys. Rev. A, 29(5), 2957–2959 (1984).
[18]J. A. N. Zasadzinski, S. Meiboom, M. J. Sammon, and D. W. Berreman, “Freeze−fracture electron−microscope observations of the blue phasesIII,” Phys. Rev. Lett. 57, 364–367 (1986).
[19]J. Fukuda, “Stabilization of a blue phase by a guest component: An approach based on a Landau−de Gennes theory,” Phys. Rev. E, 82, 061702 (2010).
[20]H.-Y. Chen, H.-H. Liu, J.-L. Lai, C.-H. Chiu, and J.-Y. Chou, “Relation between physical parameters and thermal stability of liquid-crystal blue phase,” Appl. Phys. Lett. 97, 181919 (2010).
[21]J. Yan, S.-T. Wu, K.-L. Cheng, and J.-W. Shiu, “A full-color reflective display using polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 081102 (2013).
[22]H.-Y. Chen, J.-L. Lai, C.-C. Chan, and C.-H. Tseng, “Fast tunable reflection in amorphous blue phase III liquid crystal,” Appl. Phys. 113, 123103 (2013).
[23]D. K. Yang and P. P. Crooker, “Chiral-racemic phase diagrams of blue-phase liquid crystals,” Phys. Rev. A, 35, 4419–4423 (1987).
[24]S. Meiboom, M. Sammon, and W. F. Brinkman, “Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals,” Phys. Rev. A 27, 438−454 (1983).
[25]R. J. Miller and H. F. Gleesson, “Lattice parameter measurements from the Kossel diagrams of the cubic liquid crystal blue phase,” J. Phys. II France 6, 909–922 (1996).
[26]D. E. Sands, Introduction to Crystallography, (Dover Publications, 1993).
[27]劉信宏,液晶參數與藍相溫度範圍關係之研究(逢甲大學光電學系碩士班,碩士論文,2010)。
[28]G. P. Alexander and J. M. Yeomans, “Stabilizing the blue phases,” Phys. Rev. E 74, 061706 (2006).
[29]B. P. Huff, J. J. Krich, and P. J. Collings, “Helix inversion in the chiral nematic and isotropic phases of a liquid crystal,” Phys. Rev. E 61, 5372−5378 (2000).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔